mirror of https://github.com/astral-sh/ruff
move implementation
This commit is contained in:
parent
27ab1e9fa4
commit
18319d33f9
|
|
@ -208,30 +208,18 @@ def given_constraints[T]():
|
|||
static_assert(not ConstraintSet.always().implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
# For a covariant typevar, (T ≤ int) implies that (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(Never, T, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
given_bool = ConstraintSet.range(Never, T, bool)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_bool.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_bool.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_bool.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
||||
|
|
@ -239,8 +227,6 @@ def mutually_constrained[T, U]():
|
|||
# If (T = U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
|
@ -248,8 +234,6 @@ def mutually_constrained[T, U]():
|
|||
# If (T ≤ U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Covariant[T] ≤ Covariant[int]).
|
||||
given_int = ConstraintSet.range(Never, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Covariant[T], Covariant[int]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[bool]))
|
||||
static_assert(not given_int.implies_subtype_of(Covariant[T], Covariant[str]))
|
||||
|
|
@ -268,28 +252,18 @@ def given_constraints[T]():
|
|||
static_assert(not ConstraintSet.always().implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
# For a contravariant typevar, (T ≤ int) implies that (Contravariant[int] ≤ Contravariant[T]).
|
||||
# (The order of the comparison is reversed because of contravariance.)
|
||||
given_int = ConstraintSet.range(Never, T, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
||||
given_bool = ConstraintSet.range(Never, T, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_bool.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
|
|
@ -300,8 +274,6 @@ def mutually_constrained[T, U]():
|
|||
# If (T = U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Contravariant[int] ≤ Contravariant[T]).
|
||||
given_int = ConstraintSet.range(U, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
|
@ -309,8 +281,6 @@ def mutually_constrained[T, U]():
|
|||
# If (T ≤ U ∧ U ≤ int), then (T ≤ int) must be true as well, and therefore
|
||||
# (Contravariant[int] ≤ Contravariant[T]).
|
||||
given_int = ConstraintSet.range(Never, T, U) & ConstraintSet.range(Never, U, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Contravariant[int], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[bool], Contravariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Contravariant[str], Contravariant[T]))
|
||||
|
|
@ -333,14 +303,8 @@ def given_constraints[T]():
|
|||
static_assert(not ConstraintSet.always().implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# These are vacuously true; false implies anything
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(ConstraintSet.never().implies_subtype_of(Invariant[T], Invariant[str]))
|
||||
|
||||
# For an invariant typevar, (T ≤ int) does not imply that (Invariant[T] ≤ Invariant[int]).
|
||||
|
|
@ -356,11 +320,7 @@ def given_constraints[T]():
|
|||
|
||||
# But (T = int) does imply both.
|
||||
given_int = ConstraintSet.range(int, T, int)
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Invariant[T], Invariant[int]))
|
||||
# TODO: no error
|
||||
# error: [static-assert-error]
|
||||
static_assert(given_int.implies_subtype_of(Invariant[int], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[bool], Invariant[T]))
|
||||
static_assert(not given_int.implies_subtype_of(Invariant[T], Invariant[bool]))
|
||||
|
|
|
|||
|
|
@ -1618,6 +1618,25 @@ impl<'db> Type<'db> {
|
|||
self.has_relation_to(db, target, inferable, TypeRelation::Subtyping)
|
||||
}
|
||||
|
||||
/// Return the constraints under which this type is a subtype of type `target`, assuming that
|
||||
/// all of the restrictions in `constraints` hold.
|
||||
///
|
||||
/// See [`TypeRelation::ConstraintImplication`] for more details.
|
||||
fn when_subtype_of_given(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
target: Type<'db>,
|
||||
constraints: ConstraintSet<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> ConstraintSet<'db> {
|
||||
self.has_relation_to(
|
||||
db,
|
||||
target,
|
||||
inferable,
|
||||
TypeRelation::ConstraintImplication(constraints),
|
||||
)
|
||||
}
|
||||
|
||||
/// Return true if this type is assignable to type `target`.
|
||||
///
|
||||
/// See [`TypeRelation::Assignability`] for more details.
|
||||
|
|
@ -1679,6 +1698,14 @@ impl<'db> Type<'db> {
|
|||
return ConstraintSet::from(true);
|
||||
}
|
||||
|
||||
// Handle constraint implication first. If either `self` or `target` is a typevar, check
|
||||
// the constraint set to see if the corresponding constraint is satisfied.
|
||||
if let TypeRelation::ConstraintImplication(constraints) = relation
|
||||
&& (self.is_type_var() || target.is_type_var())
|
||||
{
|
||||
return constraints.when_subtype_of_given(db, self, target);
|
||||
}
|
||||
|
||||
match (self, target) {
|
||||
// Everything is a subtype of `object`.
|
||||
(_, Type::NominalInstance(instance)) if instance.is_object() => {
|
||||
|
|
@ -10319,21 +10346,36 @@ pub(crate) enum TypeRelation<'db> {
|
|||
/// This relationship tests whether one type is a [subtype][Self::Subtyping] of another,
|
||||
/// assuming that the constraints in a particular constraint set hold.
|
||||
///
|
||||
/// For concrete types, constraint implication is exactly the same as subtyping. (A concrete
|
||||
/// type is any fully static type that does not contain a typevar.) Moreover, for concrete
|
||||
/// types, the answer does not depend on which constraint set we are considering. `bool` is a
|
||||
/// subtype of `int` no matter what types any typevars are specialized to — and even if
|
||||
/// there isn't a valid specialization for the typevars we are considering.
|
||||
/// For concrete types (types that do not contain typevars), this relationship is the same as
|
||||
/// [subtyping][Self::Subtyping]. (Constraint sets place restrictions on typevars, so if you
|
||||
/// are not comparing typevars, the constraint set can have no effect on whether subtyping
|
||||
/// holds.)
|
||||
///
|
||||
/// The interesting case is typevars. The other typing relationships (TODO: will) all "punt" on
|
||||
/// the question when considering a typevar, by translating the desired relationship into a
|
||||
/// constraint set. At some point, though, we need to resolve a constraint set; at that point,
|
||||
/// we can no longer punt on the question. Unlike with concrete types, the answer will depend
|
||||
/// on the constraint set that we are considering. For instance, a constraint set that requires
|
||||
/// `T ≤ bool` implies that `T` is a subtype of `int`, since every valid specialization
|
||||
/// satisfies `T ≤ int`. But the reverse is not true: the constraint set `T ≤ int` does _not_
|
||||
/// imply that `T` is a subtype of `bool`, since `T = int` is a valid specialization, and `int`
|
||||
/// is not a subtype of `bool`.
|
||||
/// If you're comparing a typevar, we have to consider what restrictions the constraint set
|
||||
/// places on that typevar to determine if subtyping holds. For instance, if you want to check
|
||||
/// whether `T ≤ int`, then answer will depend on what constraint set you are considering:
|
||||
///
|
||||
/// ```text
|
||||
/// when_subtype_of_given(T ≤ bool, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ int, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ str, T, int) ⇒ false
|
||||
/// ```
|
||||
///
|
||||
/// In the first two cases, the constraint set ensures that `T` will always specialize to a
|
||||
/// type that is a subtype of `int`. In the final case, the constraint set requires `T` to
|
||||
/// specialize to a subtype of `str`, and there is no such type that is also a subtype of
|
||||
/// `int`.
|
||||
///
|
||||
/// There are two constraint sets that deserve special consideration.
|
||||
///
|
||||
/// - The "always true" constraint set does not place any restrictions on any typevar. In this
|
||||
/// case, `when_subtype_of_given` will return the same result as `when_subtype_of`, even if
|
||||
/// you're comparing against a typevar.
|
||||
///
|
||||
/// - The "always false" constraint set represents an impossible situation. In this case, every
|
||||
/// subtype check will be vacuously true, even if you're comparing two concrete types that
|
||||
/// are not actually subtypes of each other. (That is,
|
||||
/// `when_subtype_of_given(false, int, str)` will return true!)
|
||||
ConstraintImplication(ConstraintSet<'db>),
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1179,10 +1179,10 @@ impl<'db> Bindings<'db> {
|
|||
continue;
|
||||
};
|
||||
|
||||
let result = tracked.constraints(db).when_subtype_of_given(
|
||||
let result = ty_a.when_subtype_of_given(
|
||||
db,
|
||||
*ty_a,
|
||||
*ty_b,
|
||||
tracked.constraints(db),
|
||||
InferableTypeVars::None,
|
||||
);
|
||||
let tracked = TrackedConstraintSet::new(db, result);
|
||||
|
|
|
|||
|
|
@ -216,47 +216,16 @@ impl<'db> ConstraintSet<'db> {
|
|||
}
|
||||
|
||||
/// Returns the constraints under which `lhs` is a subtype of `rhs`, assuming that the
|
||||
/// constraints in this constraint set hold.
|
||||
///
|
||||
/// For concrete types (types that are not typevars), this returns the same result as
|
||||
/// [`when_subtype_of`][Type::when_subtype_of]. (Constraint sets place restrictions on
|
||||
/// typevars, so if you are not comparing typevars, the constraint set can have no effect on
|
||||
/// whether subtyping holds.)
|
||||
///
|
||||
/// If you're comparing a typevar, we have to consider what restrictions the constraint set
|
||||
/// places on that typevar to determine if subtyping holds. For instance, if you want to check
|
||||
/// whether `T ≤ int`, then answer will depend on what constraint set you are considering:
|
||||
///
|
||||
/// ```text
|
||||
/// when_subtype_of_given(T ≤ bool, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ int, T, int) ⇒ true
|
||||
/// when_subtype_of_given(T ≤ str, T, int) ⇒ false
|
||||
/// ```
|
||||
///
|
||||
/// In the first two cases, the constraint set ensures that `T` will always specialize to a
|
||||
/// type that is a subtype of `int`. In the final case, the constraint set requires `T` to
|
||||
/// specialize to a subtype of `str`, and there is no such type that is also a subtype of
|
||||
/// `int`.
|
||||
///
|
||||
/// There are two constraint sets that deserve special consideration.
|
||||
///
|
||||
/// - The "always true" constraint set does not place any restrictions on any typevar. In this
|
||||
/// case, `when_subtype_of_given` will return the same result as `when_subtype_of`, even if
|
||||
/// you're comparing against a typevar.
|
||||
///
|
||||
/// - The "always false" constraint set represents an impossible situation. In this case, every
|
||||
/// subtype check will be vacuously true, even if you're comparing two concrete types that
|
||||
/// are not actually subtypes of each other. (That is,
|
||||
/// `when_subtype_of_given(false, int, str)` will return true!)
|
||||
/// constraints in this constraint set hold. Panics if neither of the types being compared are
|
||||
/// a typevar. (That case is handled by `Type::has_relation_to`.)
|
||||
pub(crate) fn when_subtype_of_given(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
lhs: Type<'db>,
|
||||
rhs: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> Self {
|
||||
Self {
|
||||
node: self.node.when_subtype_of_given(db, lhs, rhs, inferable),
|
||||
node: self.node.when_subtype_of_given(db, lhs, rhs),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -830,13 +799,7 @@ impl<'db> Node<'db> {
|
|||
simplified.and(db, domain)
|
||||
}
|
||||
|
||||
fn when_subtype_of_given(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
lhs: Type<'db>,
|
||||
rhs: Type<'db>,
|
||||
inferable: InferableTypeVars<'_, 'db>,
|
||||
) -> Self {
|
||||
fn when_subtype_of_given(self, db: &'db dyn Db, lhs: Type<'db>, rhs: Type<'db>) -> Self {
|
||||
// When checking subtyping involving a typevar, we can turn the subtyping check into a
|
||||
// constraint (i.e, "is `T` a subtype of `int` becomes the constraint `T ≤ int`), and then
|
||||
// check when the BDD implies that constraint.
|
||||
|
|
@ -847,8 +810,7 @@ impl<'db> Node<'db> {
|
|||
(_, Type::TypeVar(bound_typevar)) => {
|
||||
ConstrainedTypeVar::new_node(db, bound_typevar, lhs, Type::object())
|
||||
}
|
||||
// If neither type is a typevar, then we fall back on a normal subtyping check.
|
||||
_ => return lhs.when_subtype_of(db, rhs, inferable).node,
|
||||
_ => panic!("at least one type should be a typevar"),
|
||||
};
|
||||
|
||||
self.satisfies(db, constraint)
|
||||
|
|
|
|||
Loading…
Reference in New Issue