[ty] Generic types aliases (implicit and PEP 613) (#21553)

## Summary

Add support for generic PEP 613 type aliases and generic implicit type
aliases:
```py
from typing import TypeVar

T = TypeVar("T")
ListOrSet = list[T] | set[T]

def _(xs: ListOrSet[int]):
    reveal_type(xs)  # list[int] | set[int]
```

closes https://github.com/astral-sh/ty/issues/1643
closes https://github.com/astral-sh/ty/issues/1629
closes https://github.com/astral-sh/ty/issues/1596
closes https://github.com/astral-sh/ty/issues/573
closes https://github.com/astral-sh/ty/issues/221

## Typing conformance

```diff
-aliases_explicit.py:52:5: error[type-assertion-failure] Type `list[int]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_explicit.py:53:5: error[type-assertion-failure] Type `tuple[str, ...] | list[str]` does not match asserted type `@Todo(Generic specialization of types.UnionType)`
-aliases_explicit.py:54:5: error[type-assertion-failure] Type `tuple[int, int, int, str]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_explicit.py:56:5: error[type-assertion-failure] Type `(int, str, /) -> str` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
-aliases_explicit.py:59:5: error[type-assertion-failure] Type `int | str | None | list[list[int]]` does not match asserted type `int | str | None | list[@Todo(specialized generic alias in type expression)]`
```

New true negatives ✔️ 

```diff
+aliases_explicit.py:41:36: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
-aliases_explicit.py:57:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
+aliases_explicit.py:57:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `(...) -> Unknown`
```

These require `ParamSpec`

```diff
+aliases_explicit.py:67:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_explicit.py:68:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_explicit.py:69:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:70:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:71:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_explicit.py:102:20: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

New true positives ✔️ 

```diff
-aliases_implicit.py:63:5: error[type-assertion-failure] Type `list[int]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_implicit.py:64:5: error[type-assertion-failure] Type `tuple[str, ...] | list[str]` does not match asserted type `@Todo(Generic specialization of types.UnionType)`
-aliases_implicit.py:65:5: error[type-assertion-failure] Type `tuple[int, int, int, str]` does not match asserted type `@Todo(specialized generic alias in type expression)`
-aliases_implicit.py:67:5: error[type-assertion-failure] Type `(int, str, /) -> str` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
-aliases_implicit.py:70:5: error[type-assertion-failure] Type `int | str | None | list[list[int]]` does not match asserted type `int | str | None | list[@Todo(specialized generic alias in type expression)]`
-aliases_implicit.py:71:5: error[type-assertion-failure] Type `list[bool]` does not match asserted type `@Todo(specialized generic alias in type expression)`
```

New true negatives ✔️ 

```diff
+aliases_implicit.py:54:36: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
-aliases_implicit.py:68:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `@Todo(Generic specialization of typing.Callable)`
+aliases_implicit.py:68:5: error[type-assertion-failure] Type `(int, str, str, /) -> None` does not match asserted type `(...) -> Unknown`
```

These require `ParamSpec`

```diff
+aliases_implicit.py:76:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_implicit.py:77:24: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+aliases_implicit.py:78:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:79:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:80:29: error[invalid-type-arguments] Too many type arguments: expected 1, got 2
+aliases_implicit.py:81:25: error[invalid-type-arguments] Type `str` is not assignable to upper bound `int | float` of type variable `TFloat@GoodTypeAlias12`
+aliases_implicit.py:135:20: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

New true positives ✔️ 

```diff
+callables_annotation.py:172:19: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:175:19: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:188:25: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
+callables_annotation.py:189:25: error[invalid-type-arguments] Too many type arguments: expected 0, got 1
```

These require `ParamSpec` and `Concatenate`.

```diff
-generics_defaults_specialization.py:26:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, str]` does not match asserted type `SomethingWithNoDefaults[int, typing.TypeVar]`
+generics_defaults_specialization.py:26:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, str]` does not match asserted type `SomethingWithNoDefaults[int, DefaultStrT]`
```

Favorable diagnostic change ✔️ 

```diff
-generics_defaults_specialization.py:27:5: error[type-assertion-failure] Type `SomethingWithNoDefaults[int, bool]` does not match asserted type `@Todo(specialized generic alias in type expression)`
```

New true negative ✔️ 

```diff
-generics_defaults_specialization.py:30:1: error[non-subscriptable] Cannot subscript object of type `<class 'SomethingWithNoDefaults[int, typing.TypeVar]'>` with no `__class_getitem__` method
+generics_defaults_specialization.py:30:15: error[invalid-type-arguments] Too many type arguments: expected between 0 and 1, got 2
```

Correct new diagnostic ✔️ 


```diff
-generics_variance.py:175:25: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:175:35: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:179:29: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:179:39: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:183:21: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:183:27: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:187:25: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:187:31: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:33: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:43: error[non-subscriptable] Cannot subscript object of type `<class 'Co[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:191:49: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:5: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:15: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
-generics_variance.py:196:25: error[non-subscriptable] Cannot subscript object of type `<class 'Contra[typing.TypeVar]'>` with no `__class_getitem__` method
```

One of these should apparently be an error, but not of this kind, so
this is good ✔️

```diff
-specialtypes_type.py:152:16: error[invalid-type-form] `typing.TypeVar` is not a generic class
-specialtypes_type.py:156:16: error[invalid-type-form] `typing.TypeVar` is not a generic class
```

Good, those were false positives. ✔️ 

I skipped the analysis for everything involving `TypeVarTuple`.

## Ecosystem impact

**[Full report with detailed
diff](https://david-generic-implicit-alias.ecosystem-663.pages.dev/diff)**

Previous iterations of this PR showed all kinds of problems. In it's
current state, I do not see any large systematic problems, but it is
hard to tell with 5k diagnostic changes.

## Performance

* There is a huge 4x regression in `colour-science/colour`, related to
[this large
file](https://github.com/colour-science/colour/blob/develop/colour/io/luts/tests/test_lut.py)
with [many assignments of hard-coded arrays (lists of lists) to
`np.NDArray`
types](83e754c8b6/colour/io/luts/tests/test_lut.py (L701-L781))
that we now understand. We now take ~2 seconds to check this file, so
definitely not great, but maybe acceptable for now.

## Test Plan

Updated and new Markdown tests
This commit is contained in:
David Peter 2025-11-28 20:38:24 +01:00 committed by GitHub
parent 594b7b04d3
commit 42f152108a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 652 additions and 140 deletions

View File

@ -120,7 +120,7 @@ static COLOUR_SCIENCE: Benchmark = Benchmark::new(
max_dep_date: "2025-06-17",
python_version: PythonVersion::PY310,
},
600,
1070,
);
static FREQTRADE: Benchmark = Benchmark::new(

View File

@ -61,8 +61,7 @@ async def main():
result = await task
# TODO: this should be `int`
reveal_type(result) # revealed: Unknown
reveal_type(result) # revealed: int
```
### `asyncio.gather`
@ -79,9 +78,8 @@ async def main():
task("B"),
)
# TODO: these should be `int`
reveal_type(a) # revealed: Unknown
reveal_type(b) # revealed: Unknown
reveal_type(a) # revealed: int
reveal_type(b) # revealed: int
```
## Under the hood

View File

@ -191,13 +191,13 @@ def _(
reveal_type(int_or_callable) # revealed: int | ((str, /) -> bytes)
reveal_type(callable_or_int) # revealed: ((str, /) -> bytes) | int
# TODO should be Unknown | int
reveal_type(type_var_or_int) # revealed: typing.TypeVar | int
reveal_type(type_var_or_int) # revealed: T@TypeVarOrInt | int
# TODO should be int | Unknown
reveal_type(int_or_type_var) # revealed: int | typing.TypeVar
reveal_type(int_or_type_var) # revealed: int | T@IntOrTypeVar
# TODO should be Unknown | None
reveal_type(type_var_or_none) # revealed: typing.TypeVar | None
reveal_type(type_var_or_none) # revealed: T@TypeVarOrNone | None
# TODO should be None | Unknown
reveal_type(none_or_type_var) # revealed: None | typing.TypeVar
reveal_type(none_or_type_var) # revealed: None | T@NoneOrTypeVar
```
If a type is unioned with itself in a value expression, the result is just that type. No
@ -366,7 +366,9 @@ def g(obj: Y):
reveal_type(obj) # revealed: list[int | str]
```
## Generic types
## Generic implicit type aliases
### Functionality
Implicit type aliases can also be generic:
@ -388,73 +390,62 @@ ListOrTuple = list[T] | tuple[T, ...]
ListOrTupleLegacy = Union[list[T], tuple[T, ...]]
MyCallable = Callable[P, T]
AnnotatedType = Annotated[T, "tag"]
TransparentAlias = T
MyOptional = T | None
# TODO: Consider displaying this as `<class 'list[T]'>`, … instead? (and similar for some others below)
reveal_type(MyList) # revealed: <class 'list[typing.TypeVar]'>
reveal_type(MyDict) # revealed: <class 'dict[typing.TypeVar, typing.TypeVar]'>
reveal_type(MyList) # revealed: <class 'list[T@MyList]'>
reveal_type(MyDict) # revealed: <class 'dict[T@MyDict, U@MyDict]'>
reveal_type(MyType) # revealed: GenericAlias
reveal_type(IntAndType) # revealed: <class 'tuple[int, typing.TypeVar]'>
reveal_type(Pair) # revealed: <class 'tuple[typing.TypeVar, typing.TypeVar]'>
reveal_type(Sum) # revealed: <class 'tuple[typing.TypeVar, typing.TypeVar]'>
reveal_type(IntAndType) # revealed: <class 'tuple[int, T@IntAndType]'>
reveal_type(Pair) # revealed: <class 'tuple[T@Pair, T@Pair]'>
reveal_type(Sum) # revealed: <class 'tuple[T@Sum, U@Sum]'>
reveal_type(ListOrTuple) # revealed: types.UnionType
reveal_type(ListOrTupleLegacy) # revealed: types.UnionType
reveal_type(MyCallable) # revealed: GenericAlias
reveal_type(MyCallable) # revealed: @Todo(Callable[..] specialized with ParamSpec)
reveal_type(AnnotatedType) # revealed: <typing.Annotated special form>
reveal_type(TransparentAlias) # revealed: typing.TypeVar
reveal_type(MyOptional) # revealed: types.UnionType
def _(
list_of_ints: MyList[int],
dict_str_to_int: MyDict[str, int],
# TODO: no error here
# error: [invalid-type-form] "`typing.TypeVar` is not a generic class"
subclass_of_int: MyType[int],
int_and_str: IntAndType[str],
pair_of_ints: Pair[int],
int_and_bytes: Sum[int, bytes],
list_or_tuple: ListOrTuple[int],
list_or_tuple_legacy: ListOrTupleLegacy[int],
# TODO: no error here
# error: [invalid-type-form] "List literals are not allowed in this context in a type expression: Did you mean `tuple[str, bytes]`?"
my_callable: MyCallable[[str, bytes], int],
annotated_int: AnnotatedType[int],
transparent_alias: TransparentAlias[int],
optional_int: MyOptional[int],
):
# TODO: This should be `list[int]`
reveal_type(list_of_ints) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should be `dict[str, int]`
reveal_type(dict_str_to_int) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should be `type[int]`
reveal_type(subclass_of_int) # revealed: Unknown
# TODO: This should be `tuple[int, str]`
reveal_type(int_and_str) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should be `tuple[int, int]`
reveal_type(pair_of_ints) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should be `tuple[int, bytes]`
reveal_type(int_and_bytes) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should be `list[int] | tuple[int, ...]`
reveal_type(list_or_tuple) # revealed: @Todo(Generic specialization of types.UnionType)
# TODO: This should be `list[int] | tuple[int, ...]`
reveal_type(list_or_tuple_legacy) # revealed: @Todo(Generic specialization of types.UnionType)
reveal_type(list_of_ints) # revealed: list[int]
reveal_type(dict_str_to_int) # revealed: dict[str, int]
reveal_type(subclass_of_int) # revealed: type[int]
reveal_type(int_and_str) # revealed: tuple[int, str]
reveal_type(pair_of_ints) # revealed: tuple[int, int]
reveal_type(int_and_bytes) # revealed: tuple[int, bytes]
reveal_type(list_or_tuple) # revealed: list[int] | tuple[int, ...]
reveal_type(list_or_tuple_legacy) # revealed: list[int] | tuple[int, ...]
# TODO: This should be `(str, bytes) -> int`
reveal_type(my_callable) # revealed: @Todo(Generic specialization of typing.Callable)
# TODO: This should be `int`
reveal_type(annotated_int) # revealed: @Todo(Generic specialization of typing.Annotated)
reveal_type(my_callable) # revealed: @Todo(Callable[..] specialized with ParamSpec)
reveal_type(annotated_int) # revealed: int
reveal_type(transparent_alias) # revealed: int
reveal_type(optional_int) # revealed: int | None
```
Generic implicit type aliases can be partially specialized:
```py
U = TypeVar("U")
DictStrTo = MyDict[str, U]
reveal_type(DictStrTo) # revealed: GenericAlias
reveal_type(DictStrTo) # revealed: <class 'dict[str, U@DictStrTo]'>
def _(
# TODO: No error here
# error: [invalid-type-form] "Invalid subscript of object of type `GenericAlias` in type expression"
dict_str_to_int: DictStrTo[int],
):
# TODO: This should be `dict[str, int]`
reveal_type(dict_str_to_int) # revealed: Unknown
reveal_type(dict_str_to_int) # revealed: dict[str, int]
```
Using specializations of generic implicit type aliases in other implicit type aliases works as
@ -464,43 +455,118 @@ expected:
IntsOrNone = MyList[int] | None
IntsOrStrs = Pair[int] | Pair[str]
ListOfPairs = MyList[Pair[str]]
ListOrTupleOfInts = ListOrTuple[int]
AnnotatedInt = AnnotatedType[int]
SubclassOfInt = MyType[int]
CallableIntToStr = MyCallable[[int], str]
reveal_type(IntsOrNone) # revealed: UnionType
reveal_type(IntsOrStrs) # revealed: UnionType
reveal_type(ListOfPairs) # revealed: GenericAlias
reveal_type(IntsOrNone) # revealed: types.UnionType
reveal_type(IntsOrStrs) # revealed: types.UnionType
reveal_type(ListOfPairs) # revealed: <class 'list[tuple[str, str]]'>
reveal_type(ListOrTupleOfInts) # revealed: types.UnionType
reveal_type(AnnotatedInt) # revealed: <typing.Annotated special form>
reveal_type(SubclassOfInt) # revealed: GenericAlias
reveal_type(CallableIntToStr) # revealed: @Todo(Callable[..] specialized with ParamSpec)
def _(
# TODO: This should not be an error
# error: [invalid-type-form] "Variable of type `UnionType` is not allowed in a type expression"
ints_or_none: IntsOrNone,
# TODO: This should not be an error
# error: [invalid-type-form] "Variable of type `UnionType` is not allowed in a type expression"
ints_or_strs: IntsOrStrs,
list_of_pairs: ListOfPairs,
list_or_tuple_of_ints: ListOrTupleOfInts,
annotated_int: AnnotatedInt,
subclass_of_int: SubclassOfInt,
callable_int_to_str: CallableIntToStr,
):
# TODO: This should be `list[int] | None`
reveal_type(ints_or_none) # revealed: Unknown
# TODO: This should be `tuple[int, int] | tuple[str, str]`
reveal_type(ints_or_strs) # revealed: Unknown
# TODO: This should be `list[tuple[str, str]]`
reveal_type(list_of_pairs) # revealed: @Todo(Support for `typing.GenericAlias` instances in type expressions)
reveal_type(ints_or_none) # revealed: list[int] | None
reveal_type(ints_or_strs) # revealed: tuple[int, int] | tuple[str, str]
reveal_type(list_of_pairs) # revealed: list[tuple[str, str]]
reveal_type(list_or_tuple_of_ints) # revealed: list[int] | tuple[int, ...]
reveal_type(annotated_int) # revealed: int
reveal_type(subclass_of_int) # revealed: type[int]
# TODO: This should be `(int, /) -> str`
reveal_type(callable_int_to_str) # revealed: @Todo(Callable[..] specialized with ParamSpec)
```
If a generic implicit type alias is used unspecialized in a type expression, we treat it as an
`Unknown` specialization:
A generic implicit type alias can also be used in another generic implicit type alias:
```py
from typing_extensions import Any
B = TypeVar("B", bound=int)
MyOtherList = MyList[T]
MyOtherType = MyType[T]
TypeOrList = MyType[B] | MyList[B]
reveal_type(MyOtherList) # revealed: <class 'list[T@MyOtherList]'>
reveal_type(MyOtherType) # revealed: GenericAlias
reveal_type(TypeOrList) # revealed: types.UnionType
def _(
list_of_ints: MyOtherList[int],
subclass_of_int: MyOtherType[int],
type_or_list: TypeOrList[Any],
):
reveal_type(list_of_ints) # revealed: list[int]
reveal_type(subclass_of_int) # revealed: type[int]
reveal_type(type_or_list) # revealed: type[Any] | list[Any]
```
If a generic implicit type alias is used unspecialized in a type expression, we use the default
specialization. For type variables without defaults, this is `Unknown`:
```py
def _(
my_list: MyList,
my_dict: MyDict,
list_unknown: MyList,
dict_unknown: MyDict,
subclass_of_unknown: MyType,
int_and_unknown: IntAndType,
pair_of_unknown: Pair,
unknown_and_unknown: Sum,
list_or_tuple: ListOrTuple,
list_or_tuple_legacy: ListOrTupleLegacy,
my_callable: MyCallable,
annotated_unknown: AnnotatedType,
optional_unknown: MyOptional,
):
# TODO: Should be `list[Unknown]`
reveal_type(my_list) # revealed: list[typing.TypeVar]
# TODO: Should be `dict[Unknown, Unknown]`
reveal_type(my_dict) # revealed: dict[typing.TypeVar, typing.TypeVar]
# TODO: This should be `list[Unknown]`
reveal_type(list_unknown) # revealed: list[T@MyList]
# TODO: This should be `dict[Unknown, Unknown]`
reveal_type(dict_unknown) # revealed: dict[T@MyDict, U@MyDict]
# TODO: Should be `type[Unknown]`
reveal_type(subclass_of_unknown) # revealed: type[T@MyType]
# TODO: Should be `tuple[int, Unknown]`
reveal_type(int_and_unknown) # revealed: tuple[int, T@IntAndType]
# TODO: Should be `tuple[Unknown, Unknown]`
reveal_type(pair_of_unknown) # revealed: tuple[T@Pair, T@Pair]
# TODO: Should be `tuple[Unknown, Unknown]`
reveal_type(unknown_and_unknown) # revealed: tuple[T@Sum, U@Sum]
# TODO: Should be `list[Unknown] | tuple[Unknown, ...]`
reveal_type(list_or_tuple) # revealed: list[T@ListOrTuple] | tuple[T@ListOrTuple, ...]
# TODO: Should be `list[Unknown] | tuple[Unknown, ...]`
reveal_type(list_or_tuple_legacy) # revealed: list[T@ListOrTupleLegacy] | tuple[T@ListOrTupleLegacy, ...]
# TODO: Should be `(...) -> Unknown`
reveal_type(my_callable) # revealed: (...) -> typing.TypeVar
reveal_type(my_callable) # revealed: @Todo(Callable[..] specialized with ParamSpec)
# TODO: Should be `Unknown`
reveal_type(annotated_unknown) # revealed: T@AnnotatedType
# TODO: Should be `Unknown | None`
reveal_type(optional_unknown) # revealed: T@MyOptional | None
```
For a type variable with a default, we use the default type:
```py
T_default = TypeVar("T_default", default=int)
MyListWithDefault = list[T_default]
def _(
list_of_str: MyListWithDefault[str],
list_of_int: MyListWithDefault,
):
reveal_type(list_of_str) # revealed: list[str]
# TODO: this should be `list[int]`
reveal_type(list_of_int) # revealed: list[T_default@MyListWithDefault]
```
(Generic) implicit type aliases can be used as base classes:
@ -522,37 +588,209 @@ reveal_mro(Derived1)
GenericBaseAlias = GenericBase[T]
# TODO: No error here
# error: [non-subscriptable] "Cannot subscript object of type `<class 'GenericBase[typing.TypeVar]'>` with no `__class_getitem__` method"
class Derived2(GenericBaseAlias[int]):
pass
```
### Imported aliases
Generic implicit type aliases can be imported from other modules and specialized:
`my_types.py`:
```py
from typing_extensions import TypeVar
T = TypeVar("T")
MyList = list[T]
```
`main.py`:
```py
from my_types import MyList
import my_types as mt
def _(
list_of_ints1: MyList[int],
list_of_ints2: mt.MyList[int],
):
reveal_type(list_of_ints1) # revealed: list[int]
reveal_type(list_of_ints2) # revealed: list[int]
```
### In stringified annotations
Generic implicit type aliases can be specialized in stringified annotations:
```py
from typing_extensions import TypeVar
T = TypeVar("T")
MyList = list[T]
def _(
list_of_ints: "MyList[int]",
):
reveal_type(list_of_ints) # revealed: list[int]
```
### Tuple unpacking
```toml
[environment]
python-version = "3.11"
```
```py
from typing import TypeVar
T = TypeVar("T")
U = TypeVar("U")
V = TypeVar("V")
X = tuple[T, *tuple[U, ...], V]
Y = X[T, tuple[int, str, U], bytes]
def g(obj: Y[bool, range]):
reveal_type(obj) # revealed: tuple[bool, *tuple[tuple[int, str, range], ...], bytes]
```
### Error cases
A generic alias that is already fully specialized cannot be specialized again:
```py
ListOfInts = list[int]
# TODO: this should be an error
# error: [invalid-type-arguments] "Too many type arguments: expected 0, got 1"
def _(doubly_specialized: ListOfInts[int]):
# TODO: this should be `Unknown`
reveal_type(doubly_specialized) # revealed: @Todo(specialized generic alias in type expression)
# TODO: This should ideally be `list[Unknown]` or `Unknown`
reveal_type(doubly_specialized) # revealed: list[int]
```
Specializing a generic implicit type alias with an incorrect number of type arguments also results
in an error:
```py
from typing_extensions import TypeVar
T = TypeVar("T")
U = TypeVar("U")
MyList = list[T]
MyDict = dict[T, U]
def _(
# TODO: this should be an error
# error: [invalid-type-arguments] "Too many type arguments: expected 1, got 2"
list_too_many_args: MyList[int, str],
# TODO: this should be an error
# error: [invalid-type-arguments] "No type argument provided for required type variable `U`"
dict_too_few_args: MyDict[int],
):
# TODO: this should be `Unknown`
reveal_type(list_too_many_args) # revealed: @Todo(specialized generic alias in type expression)
# TODO: this should be `Unknown`
reveal_type(dict_too_few_args) # revealed: @Todo(specialized generic alias in type expression)
reveal_type(list_too_many_args) # revealed: list[Unknown]
reveal_type(dict_too_few_args) # revealed: dict[Unknown, Unknown]
```
Trying to specialize a non-name node results in an error:
```py
from ty_extensions import TypeOf
IntOrStr = int | str
def this_does_not_work() -> TypeOf[IntOrStr]:
raise NotImplementedError()
def _(
# TODO: Better error message (of kind `invalid-type-form`)?
# error: [invalid-type-arguments] "Too many type arguments: expected 0, got 1"
specialized: this_does_not_work()[int],
):
reveal_type(specialized) # revealed: int | str
```
Similarly, if you try to specialize a union type without a binding context, we emit an error:
```py
# TODO: Better error message (of kind `invalid-type-form`)?
# error: [invalid-type-arguments] "Too many type arguments: expected 0, got 1"
x: (list[T] | set[T])[int]
def _():
# TODO: `list[Unknown] | set[Unknown]` might be better
reveal_type(x) # revealed: list[typing.TypeVar] | set[typing.TypeVar]
```
### Multiple definitions
#### Shadowed definitions
When a generic type alias shadows a definition from an outer scope, the inner definition is used:
```py
from typing_extensions import TypeVar
T = TypeVar("T")
MyAlias = list[T]
def outer():
MyAlias = set[T]
def _(x: MyAlias[int]):
reveal_type(x) # revealed: set[int]
```
#### Statically known conditions
```py
from typing_extensions import TypeVar
T = TypeVar("T")
if True:
MyAlias1 = list[T]
else:
MyAlias1 = set[T]
if False:
MyAlias2 = list[T]
else:
MyAlias2 = set[T]
def _(
x1: MyAlias1[int],
x2: MyAlias2[int],
):
reveal_type(x1) # revealed: list[int]
reveal_type(x2) # revealed: set[int]
```
#### Statically unknown conditions
If several definitions are visible, we emit an error:
```py
from typing_extensions import TypeVar
T = TypeVar("T")
def flag() -> bool:
return True
if flag():
MyAlias = list[T]
else:
MyAlias = set[T]
# It is questionable whether this should be supported or not. It might also be reasonable to
# emit an error here (e.g. "Invalid subscript of object of type `<class 'list[T@MyAlias]'> |
# <class 'set[T@MyAlias]'>` in type expression"). If we ever choose to do so, the revealed
# type should probably be `Unknown`.
def _(x: MyAlias[int]):
reveal_type(x) # revealed: list[int] | set[int]
```
## `Literal`s
@ -642,8 +880,7 @@ Deprecated = Annotated[T, "deprecated attribute"]
class C:
old: Deprecated[int]
# TODO: Should be `int`
reveal_type(C().old) # revealed: @Todo(Generic specialization of typing.Annotated)
reveal_type(C().old) # revealed: int
```
If the metadata argument is missing, we emit an error (because this code fails at runtime), but
@ -1298,3 +1535,21 @@ def _(
reveal_type(recursive_dict3) # revealed: dict[Divergent, int]
reveal_type(recursive_dict4) # revealed: dict[Divergent, int]
```
### Self-referential generic implicit type aliases
```py
from typing import TypeVar
T = TypeVar("T")
NestedDict = dict[str, "NestedDict[T] | T"]
NestedList = list["NestedList[T] | None"]
def _(
nested_dict_int: NestedDict[int],
nested_list_str: NestedList[str],
):
reveal_type(nested_dict_int) # revealed: dict[str, Divergent]
reveal_type(nested_list_str) # revealed: list[Divergent]
```

View File

@ -44,9 +44,6 @@ class _SupportsDType(Protocol[_DTypeT_co]):
@property
def dtype(self) -> _DTypeT_co: ...
# TODO: no errors here
# error: [invalid-type-arguments] "Type `typing.TypeVar` is not assignable to upper bound `generic[Any]` of type variable `_ScalarT_co@dtype`"
# error: [invalid-type-arguments] "Type `typing.TypeVar` is not assignable to upper bound `generic[Any]` of type variable `_ScalarT_co@dtype`"
_DTypeLike: TypeAlias = type[_ScalarT] | dtype[_ScalarT] | _SupportsDType[dtype[_ScalarT]]
DTypeLike: TypeAlias = _DTypeLike[Any] | str | None

View File

@ -96,6 +96,45 @@ def _(x: MyAlias):
reveal_type(x) # revealed: int | ((str, /) -> int)
```
## Generic aliases
A more comprehensive set of tests can be found in
[`implicit_type_aliases.md`](./implicit_type_aliases.md). If the implementations ever diverge, we
may need to duplicate more tests here.
### Basic
```py
from typing import TypeAlias, TypeVar
T = TypeVar("T")
MyList: TypeAlias = list[T]
ListOrSet: TypeAlias = list[T] | set[T]
reveal_type(MyList) # revealed: <class 'list[T]'>
reveal_type(ListOrSet) # revealed: types.UnionType
def _(list_of_int: MyList[int], list_or_set_of_str: ListOrSet[str]):
reveal_type(list_of_int) # revealed: list[int]
reveal_type(list_or_set_of_str) # revealed: list[str] | set[str]
```
### Stringified generic alias
```py
from typing import TypeAlias, TypeVar
T = TypeVar("T")
U = TypeVar("U")
TotallyStringifiedPEP613: TypeAlias = "dict[T, U]"
TotallyStringifiedPartiallySpecialized: TypeAlias = "TotallyStringifiedPEP613[U, int]"
def f(x: "TotallyStringifiedPartiallySpecialized[str]"):
reveal_type(x) # revealed: @Todo(Generic stringified PEP-613 type alias)
```
## Subscripted generic alias in union
```py
@ -107,8 +146,7 @@ Alias1: TypeAlias = list[T] | set[T]
MyAlias: TypeAlias = int | Alias1[str]
def _(x: MyAlias):
# TODO: int | list[str] | set[str]
reveal_type(x) # revealed: int | @Todo(Specialization of union type alias)
reveal_type(x) # revealed: int | list[str] | set[str]
```
## Imported
@ -173,7 +211,7 @@ NestedDict: TypeAlias = dict[K, Union[V, "NestedDict[K, V]"]]
def _(nested: NestedDict[str, int]):
# TODO should be `dict[str, int | NestedDict[str, int]]`
reveal_type(nested) # revealed: @Todo(specialized generic alias in type expression)
reveal_type(nested) # revealed: dict[@Todo(specialized recursive generic type alias), Divergent]
my_isinstance(1, int)
my_isinstance(1, int | str)

View File

@ -90,6 +90,12 @@ impl<'db> Definition<'db> {
.to_string(),
)
}
DefinitionKind::Assignment(assignment) => {
let target_node = assignment.target.node(&module);
target_node
.as_name_expr()
.map(|name_expr| name_expr.id.as_str().to_string())
}
_ => None,
}
}

View File

@ -3726,7 +3726,7 @@ impl<'db> Type<'db> {
dunder_call
.has_relation_to_impl(
db,
CallableType::unknown(db),
Type::Callable(CallableType::unknown(db)),
inferable,
TypeRelation::Assignability,
relation_visitor,
@ -7219,7 +7219,7 @@ impl<'db> Type<'db> {
}
KnownInstanceType::Literal(ty) => Ok(ty.inner(db)),
KnownInstanceType::Annotated(ty) => Ok(ty.inner(db)),
KnownInstanceType::TypeGenericAlias(ty) => {
KnownInstanceType::TypeGenericAlias(instance) => {
// When `type[…]` appears in a value position (e.g. in an implicit type alias),
// we infer its argument as a type expression. This ensures that we can emit
// diagnostics for invalid type expressions, and more importantly, that we can
@ -7228,7 +7228,7 @@ impl<'db> Type<'db> {
// (`int` -> instance of `int` -> subclass of `int`) can be lossy, but it is
// okay for all valid arguments to `type[…]`.
Ok(ty.inner(db).to_meta_type(db))
Ok(instance.inner(db).to_meta_type(db))
}
KnownInstanceType::Callable(callable) => Ok(Type::Callable(*callable)),
KnownInstanceType::LiteralStringAlias(ty) => Ok(ty.inner(db)),
@ -7258,7 +7258,7 @@ impl<'db> Type<'db> {
SpecialFormType::OrderedDict => Ok(KnownClass::OrderedDict.to_instance(db)),
// TODO: Use an opt-in rule for a bare `Callable`
SpecialFormType::Callable => Ok(CallableType::unknown(db)),
SpecialFormType::Callable => Ok(Type::Callable(CallableType::unknown(db))),
// Special case: `NamedTuple` in a type expression is understood to describe the type
// `tuple[object, ...] & <a protocol that any `NamedTuple` class would satisfy>`.
@ -7578,18 +7578,71 @@ impl<'db> Type<'db> {
match self {
Type::TypeVar(bound_typevar) => bound_typevar.apply_type_mapping_impl(db, type_mapping, visitor),
Type::KnownInstance(KnownInstanceType::TypeVar(typevar)) => match type_mapping {
TypeMapping::BindLegacyTypevars(binding_context) => {
Type::TypeVar(BoundTypeVarInstance::new(db, typevar, *binding_context))
Type::KnownInstance(known_instance) => match known_instance {
KnownInstanceType::TypeVar(typevar) => {
match type_mapping {
TypeMapping::BindLegacyTypevars(binding_context) => {
Type::TypeVar(BoundTypeVarInstance::new(db, typevar, *binding_context))
}
TypeMapping::Specialization(_) |
TypeMapping::PartialSpecialization(_) |
TypeMapping::PromoteLiterals(_) |
TypeMapping::BindSelf(_) |
TypeMapping::ReplaceSelf { .. } |
TypeMapping::Materialize(_) |
TypeMapping::ReplaceParameterDefaults |
TypeMapping::EagerExpansion => self,
}
}
TypeMapping::Specialization(_) |
TypeMapping::PartialSpecialization(_) |
TypeMapping::PromoteLiterals(_) |
TypeMapping::BindSelf(_) |
TypeMapping::ReplaceSelf { .. } |
TypeMapping::Materialize(_) |
TypeMapping::ReplaceParameterDefaults |
TypeMapping::EagerExpansion => self,
KnownInstanceType::UnionType(instance) => {
if let Ok(union_type) = instance.union_type(db) {
Type::KnownInstance(KnownInstanceType::UnionType(
UnionTypeInstance::new(
db,
instance._value_expr_types(db),
Ok(union_type.apply_type_mapping_impl(db, type_mapping, tcx, visitor)
)
)))
} else {
self
}
},
KnownInstanceType::Annotated(ty) => {
Type::KnownInstance(KnownInstanceType::Annotated(
InternedType::new(
db,
ty.inner(db).apply_type_mapping_impl(db, type_mapping, tcx, visitor),
)
))
},
KnownInstanceType::Callable(callable_type) => {
Type::KnownInstance(KnownInstanceType::Callable(
callable_type.apply_type_mapping_impl(db, type_mapping, tcx, visitor),
))
},
KnownInstanceType::TypeGenericAlias(ty) => {
Type::KnownInstance(KnownInstanceType::TypeGenericAlias(
InternedType::new(
db,
ty.inner(db).apply_type_mapping_impl(db, type_mapping, tcx, visitor),
)
))
},
KnownInstanceType::SubscriptedProtocol(_) |
KnownInstanceType::SubscriptedGeneric(_) |
KnownInstanceType::TypeAliasType(_) |
KnownInstanceType::Deprecated(_) |
KnownInstanceType::Field(_) |
KnownInstanceType::ConstraintSet(_) |
KnownInstanceType::GenericContext(_) |
KnownInstanceType::Specialization(_) |
KnownInstanceType::Literal(_) |
KnownInstanceType::LiteralStringAlias(_) |
KnownInstanceType::NewType(_) => {
// TODO: For some of these, we may need to apply the type mapping to inner types.
self
},
}
Type::FunctionLiteral(function) => {
@ -7755,8 +7808,7 @@ impl<'db> Type<'db> {
// some other generic context's specialization is applied to it.
| Type::ClassLiteral(_)
| Type::BoundSuper(_)
| Type::SpecialForm(_)
| Type::KnownInstance(_) => self,
| Type::SpecialForm(_) => self,
}
}
@ -7893,6 +7945,44 @@ impl<'db> Type<'db> {
});
}
Type::KnownInstance(known_instance) => match known_instance {
KnownInstanceType::UnionType(instance) => {
if let Ok(union_type) = instance.union_type(db) {
union_type.find_legacy_typevars_impl(
db,
binding_context,
typevars,
visitor,
);
}
}
KnownInstanceType::Annotated(ty) => {
ty.inner(db)
.find_legacy_typevars_impl(db, binding_context, typevars, visitor);
}
KnownInstanceType::Callable(callable_type) => {
callable_type.find_legacy_typevars_impl(db, binding_context, typevars, visitor);
}
KnownInstanceType::TypeGenericAlias(ty) => {
ty.inner(db)
.find_legacy_typevars_impl(db, binding_context, typevars, visitor);
}
KnownInstanceType::SubscriptedProtocol(_)
| KnownInstanceType::SubscriptedGeneric(_)
| KnownInstanceType::TypeVar(_)
| KnownInstanceType::TypeAliasType(_)
| KnownInstanceType::Deprecated(_)
| KnownInstanceType::Field(_)
| KnownInstanceType::ConstraintSet(_)
| KnownInstanceType::GenericContext(_)
| KnownInstanceType::Specialization(_)
| KnownInstanceType::Literal(_)
| KnownInstanceType::LiteralStringAlias(_)
| KnownInstanceType::NewType(_) => {
// TODO: For some of these, we may need to try to find legacy typevars in inner types.
}
},
Type::Dynamic(_)
| Type::Never
| Type::AlwaysTruthy
@ -7920,7 +8010,6 @@ impl<'db> Type<'db> {
| Type::EnumLiteral(_)
| Type::BoundSuper(_)
| Type::SpecialForm(_)
| Type::KnownInstance(_)
| Type::TypedDict(_) => {}
}
}
@ -11595,8 +11684,8 @@ impl<'db> CallableType<'db> {
}
/// Create a callable type which accepts any parameters and returns an `Unknown` type.
pub(crate) fn unknown(db: &'db dyn Db) -> Type<'db> {
Type::Callable(Self::single(db, Signature::unknown()))
pub(crate) fn unknown(db: &'db dyn Db) -> CallableType<'db> {
Self::single(db, Signature::unknown())
}
pub(crate) fn bind_self(

View File

@ -4796,6 +4796,12 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
unpacked.expression_type(target)
}
TargetKind::Single => {
// This could be an implicit type alias (OptionalList = list[T] | None). Use the definition
// of `OptionalList` as the binding context while inferring the RHS (`list[T] | None`), in
// order to bind `T` to `OptionalList`.
let previous_typevar_binding_context =
self.typevar_binding_context.replace(definition);
let value_ty = if let Some(standalone_expression) = self.index.try_expression(value)
{
self.infer_standalone_expression_impl(value, standalone_expression, tcx)
@ -4834,6 +4840,8 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
self.infer_expression(value, tcx)
};
self.typevar_binding_context = previous_typevar_binding_context;
// `TYPE_CHECKING` is a special variable that should only be assigned `False`
// at runtime, but is always considered `True` in type checking.
// See mdtest/known_constants.md#user-defined-type_checking for details.
@ -5580,11 +5588,18 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
self.deferred_state = DeferredExpressionState::Deferred;
}
// This might be a PEP-613 type alias (`OptionalList: TypeAlias = list[T] | None`). Use
// the definition of `OptionalList` as the binding context while inferring the
// RHS (`list[T] | None`), in order to bind `T` to `OptionalList`.
let previous_typevar_binding_context = self.typevar_binding_context.replace(definition);
let inferred_ty = self.infer_maybe_standalone_expression(
value,
TypeContext::new(Some(declared.inner_type())),
);
self.typevar_binding_context = previous_typevar_binding_context;
self.deferred_state = previous_deferred_state;
self.dataclass_field_specifiers.clear();
@ -10860,6 +10875,14 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
fn infer_subscript_load(&mut self, subscript: &ast::ExprSubscript) -> Type<'db> {
let value_ty = self.infer_expression(&subscript.value, TypeContext::default());
// If we have an implicit type alias like `MyList = list[T]`, and if `MyList` is being
// used in another implicit type alias like `Numbers = MyList[int]`, then we infer the
// right hand side as a value expression, and need to handle the specialization here.
if value_ty.is_generic_alias() {
return self.infer_explicit_type_alias_specialization(subscript, value_ty, false);
}
self.infer_subscript_load_impl(value_ty, subscript)
}
@ -10929,7 +10952,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
}
Type::KnownInstance(KnownInstanceType::TypeAliasType(type_alias)) => {
if let Some(generic_context) = type_alias.generic_context(self.db()) {
return self.infer_explicit_type_alias_specialization(
return self.infer_explicit_type_alias_type_specialization(
subscript,
value_ty,
type_alias,
@ -11065,6 +11088,35 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
));
}
Type::SpecialForm(SpecialFormType::Callable) => {
// TODO: Remove this once we support ParamSpec properly. This is necessary to avoid
// a lot of false positives downstream, because we can't represent the specialized
// `Callable[P, _]` type yet.
if let Some(first_arg) = subscript
.slice
.as_ref()
.as_tuple_expr()
.and_then(|args| args.elts.first())
&& first_arg.is_name_expr()
{
let first_arg_ty = self.infer_expression(first_arg, TypeContext::default());
if let Type::KnownInstance(KnownInstanceType::TypeVar(typevar)) = first_arg_ty
&& typevar.kind(self.db()).is_paramspec()
{
return todo_type!("Callable[..] specialized with ParamSpec");
}
if let Some(builder) = self.context.report_lint(&INVALID_TYPE_FORM, subscript) {
builder.into_diagnostic(format_args!(
"The first argument to `Callable` must be either a list of types, \
ParamSpec, Concatenate, or `...`",
));
}
return Type::KnownInstance(KnownInstanceType::Callable(
CallableType::unknown(self.db()),
));
}
let callable = self
.infer_callable_type(subscript)
.as_callable()
@ -11161,8 +11213,13 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
.map(Type::from)
.unwrap_or_else(Type::unknown);
}
Type::KnownInstance(KnownInstanceType::UnionType(_)) => {
return todo_type!("Specialization of union type alias");
Type::KnownInstance(
KnownInstanceType::UnionType(_)
| KnownInstanceType::Annotated(_)
| KnownInstanceType::Callable(_)
| KnownInstanceType::TypeGenericAlias(_),
) => {
return self.infer_explicit_type_alias_specialization(subscript, value_ty, false);
}
_ => {}
}
@ -11194,7 +11251,7 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
)
}
fn infer_explicit_type_alias_specialization(
fn infer_explicit_type_alias_type_specialization(
&mut self,
subscript: &ast::ExprSubscript,
value_ty: Type<'db>,

View File

@ -2,6 +2,7 @@ use itertools::Either;
use ruff_python_ast as ast;
use super::{DeferredExpressionState, TypeInferenceBuilder};
use crate::FxOrderSet;
use crate::types::diagnostic::{
self, INVALID_TYPE_FORM, NON_SUBSCRIPTABLE, report_invalid_argument_number_to_special_form,
report_invalid_arguments_to_callable,
@ -12,9 +13,9 @@ use crate::types::string_annotation::parse_string_annotation;
use crate::types::tuple::{TupleSpecBuilder, TupleType};
use crate::types::visitor::any_over_type;
use crate::types::{
CallableType, DynamicType, IntersectionBuilder, KnownClass, KnownInstanceType,
LintDiagnosticGuard, SpecialFormType, SubclassOfType, Type, TypeAliasType, TypeContext,
TypeIsType, UnionBuilder, UnionType, todo_type,
BindingContext, CallableType, DynamicType, GenericContext, IntersectionBuilder, KnownClass,
KnownInstanceType, LintDiagnosticGuard, SpecialFormType, SubclassOfType, Type, TypeAliasType,
TypeContext, TypeIsType, TypeMapping, UnionBuilder, UnionType, todo_type,
};
/// Type expressions
@ -734,6 +735,84 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
}
}
/// Infer the type of an explicitly specialized generic type alias (implicit or PEP 613).
pub(crate) fn infer_explicit_type_alias_specialization(
&mut self,
subscript: &ast::ExprSubscript,
mut value_ty: Type<'db>,
in_type_expression: bool,
) -> Type<'db> {
let db = self.db();
if let Type::KnownInstance(KnownInstanceType::TypeVar(typevar)) = value_ty
&& let Some(definition) = typevar.definition(db)
{
value_ty = value_ty.apply_type_mapping(
db,
&TypeMapping::BindLegacyTypevars(BindingContext::Definition(definition)),
TypeContext::default(),
);
}
let mut variables = FxOrderSet::default();
value_ty.find_legacy_typevars(db, None, &mut variables);
let generic_context = GenericContext::from_typevar_instances(db, variables);
let scope_id = self.scope();
let current_typevar_binding_context = self.typevar_binding_context;
// TODO
// If we explicitly specialize a recursive generic (PEP-613 or implicit) type alias,
// we currently miscount the number of type variables. For example, for a nested
// dictionary type alias `NestedDict = dict[K, "V | NestedDict[K, V]"]]`, we might
// infer `<class 'dict[K, Divergent]'>`, and therefore count just one type variable
// instead of two. So until we properly support these, specialize all remaining type
// variables with a `@Todo` type (since we don't know which of the type arguments
// belongs to the remaining type variables).
if any_over_type(self.db(), value_ty, &|ty| ty.is_divergent(), true) {
let value_ty = value_ty.apply_specialization(
db,
generic_context.specialize(
db,
std::iter::repeat_n(
todo_type!("specialized recursive generic type alias"),
generic_context.len(db),
)
.collect(),
),
);
return if in_type_expression {
value_ty
.in_type_expression(db, scope_id, current_typevar_binding_context)
.unwrap_or_else(|_| Type::unknown())
} else {
value_ty
};
}
let specialize = |types: &[Option<Type<'db>>]| {
let specialized = value_ty.apply_specialization(
db,
generic_context.specialize_partial(db, types.iter().copied()),
);
if in_type_expression {
specialized
.in_type_expression(db, scope_id, current_typevar_binding_context)
.unwrap_or_else(|_| Type::unknown())
} else {
specialized
}
};
self.infer_explicit_callable_specialization(
subscript,
value_ty,
generic_context,
specialize,
)
}
fn infer_subscript_type_expression(
&mut self,
subscript: &ast::ExprSubscript,
@ -824,15 +903,11 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
}
Type::unknown()
}
KnownInstanceType::TypeVar(_) => {
self.infer_type_expression(slice);
todo_type!("TypeVar annotations")
}
KnownInstanceType::TypeAliasType(type_alias @ TypeAliasType::PEP695(_)) => {
match type_alias.generic_context(self.db()) {
Some(generic_context) => {
let specialized_type_alias = self
.infer_explicit_type_alias_specialization(
.infer_explicit_type_alias_type_specialization(
subscript,
value_ty,
type_alias,
@ -870,11 +945,7 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
self.infer_type_expression(slice);
todo_type!("Generic stringified PEP-613 type alias")
}
KnownInstanceType::UnionType(_) => {
self.infer_type_expression(slice);
todo_type!("Generic specialization of types.UnionType")
}
KnownInstanceType::Literal(ty) | KnownInstanceType::TypeGenericAlias(ty) => {
KnownInstanceType::Literal(ty) => {
self.infer_type_expression(slice);
if let Some(builder) = self.context.report_lint(&INVALID_TYPE_FORM, subscript) {
builder.into_diagnostic(format_args!(
@ -884,13 +955,15 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
}
Type::unknown()
}
KnownInstanceType::Callable(_) => {
self.infer_type_expression(slice);
todo_type!("Generic specialization of typing.Callable")
KnownInstanceType::TypeVar(_) => {
self.infer_explicit_type_alias_specialization(subscript, value_ty, false)
}
KnownInstanceType::Annotated(_) => {
self.infer_type_expression(slice);
todo_type!("Generic specialization of typing.Annotated")
KnownInstanceType::UnionType(_)
| KnownInstanceType::Callable(_)
| KnownInstanceType::Annotated(_)
| KnownInstanceType::TypeGenericAlias(_) => {
self.infer_explicit_type_alias_specialization(subscript, value_ty, true)
}
KnownInstanceType::NewType(newtype) => {
self.infer_type_expression(&subscript.slice);
@ -904,7 +977,10 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
}
},
Type::Dynamic(_) => {
self.infer_type_expression(slice);
// Infer slice as a value expression to avoid false-positive
// `invalid-type-form` diagnostics, when we have e.g.
// `MyCallable[[int, str], None]` but `MyCallable` is dynamic.
self.infer_expression(slice, TypeContext::default());
value_ty
}
Type::ClassLiteral(class) => {
@ -933,11 +1009,7 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
}
}
Type::GenericAlias(_) => {
self.infer_type_expression(slice);
// If the generic alias is already fully specialized, this is an error. But it
// could have been specialized with another typevar (e.g. a type alias like `MyList
// = list[T]`), in which case it's later valid to do `MyList[int]`.
todo_type!("specialized generic alias in type expression")
self.infer_explicit_type_alias_specialization(subscript, value_ty, true)
}
Type::StringLiteral(_) => {
self.infer_type_expression(slice);
@ -1049,7 +1121,7 @@ impl<'db> TypeInferenceBuilder<'db, '_> {
{
Type::single_callable(db, Signature::new(parameters, Some(return_type)))
} else {
CallableType::unknown(db)
Type::Callable(CallableType::unknown(db))
};
// `Signature` / `Parameters` are not a `Type` variant, so we're storing

View File

@ -238,7 +238,7 @@ impl ClassInfoConstraintFunction {
Type::SpecialForm(SpecialFormType::Callable)
if self == ClassInfoConstraintFunction::IsInstance =>
{
Some(CallableType::unknown(db).top_materialization(db))
Some(Type::Callable(CallableType::unknown(db)).top_materialization(db))
}
Type::SpecialForm(special_form) => special_form