[ty] Track enclosing definitions and nested references in the semantic index

This commit adds duplicate errors for invalid `nonlocal` statements,
which breaks some tests. The following commit removes `infer_nonlocal`
from `infer.rs` and unbreaks those tests.
This commit is contained in:
Jack O'Connor 2025-07-30 12:32:02 -07:00
parent 85bd961fd3
commit 4a3451c527
5 changed files with 447 additions and 25 deletions

View File

@ -684,7 +684,8 @@ impl SemanticSyntaxContext for Checker<'_> {
| SemanticSyntaxErrorKind::LoadBeforeNonlocalDeclaration { .. } | SemanticSyntaxErrorKind::LoadBeforeNonlocalDeclaration { .. }
| SemanticSyntaxErrorKind::NonlocalAndGlobal(_) | SemanticSyntaxErrorKind::NonlocalAndGlobal(_)
| SemanticSyntaxErrorKind::AnnotatedGlobal(_) | SemanticSyntaxErrorKind::AnnotatedGlobal(_)
| SemanticSyntaxErrorKind::AnnotatedNonlocal(_) => { | SemanticSyntaxErrorKind::AnnotatedNonlocal(_)
| SemanticSyntaxErrorKind::NoBindingForNonlocal(_) => {
self.semantic_errors.borrow_mut().push(error); self.semantic_errors.borrow_mut().push(error);
} }
} }

View File

@ -989,6 +989,9 @@ impl Display for SemanticSyntaxError {
SemanticSyntaxErrorKind::AnnotatedNonlocal(name) => { SemanticSyntaxErrorKind::AnnotatedNonlocal(name) => {
write!(f, "annotated name `{name}` can't be nonlocal") write!(f, "annotated name `{name}` can't be nonlocal")
} }
SemanticSyntaxErrorKind::NoBindingForNonlocal(name) => {
write!(f, "no binding for nonlocal `{name}` found")
}
} }
} }
} }
@ -1346,6 +1349,20 @@ pub enum SemanticSyntaxErrorKind {
/// Represents a type annotation on a variable that's been declared nonlocal /// Represents a type annotation on a variable that's been declared nonlocal
AnnotatedNonlocal(String), AnnotatedNonlocal(String),
/// Represents a `nonlocal` statement that doesn't match any enclosing definition.
///
/// ## Examples
///
/// ```python
/// def f():
/// nonlocal x # error
///
/// y = 1
/// def f():
/// nonlocal y # error (the global `y` isn't considered)
/// ```
NoBindingForNonlocal(String),
} }
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, get_size2::GetSize)] #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, get_size2::GetSize)]

View File

@ -14,7 +14,7 @@ use ruff_python_ast::{self as ast, NodeIndex, PySourceType, PythonVersion};
use ruff_python_parser::semantic_errors::{ use ruff_python_parser::semantic_errors::{
SemanticSyntaxChecker, SemanticSyntaxContext, SemanticSyntaxError, SemanticSyntaxErrorKind, SemanticSyntaxChecker, SemanticSyntaxContext, SemanticSyntaxError, SemanticSyntaxErrorKind,
}; };
use ruff_text_size::TextRange; use ruff_text_size::{Ranged, TextRange};
use crate::ast_node_ref::AstNodeRef; use crate::ast_node_ref::AstNodeRef;
use crate::module_name::ModuleName; use crate::module_name::ModuleName;
@ -66,10 +66,41 @@ impl Loop {
} }
} }
struct ScopeInfo { struct ScopeInfo<'ast> {
file_scope_id: FileScopeId, file_scope_id: FileScopeId,
/// Current loop state; None if we are not currently visiting a loop /// Current loop state; None if we are not currently visiting a loop
current_loop: Option<Loop>, current_loop: Option<Loop>,
/// Symbols from scopes nested inside of this one that haven't yet been resolved to a
/// definition. They might end up resolving in this scope, or in an enclosing scope.
///
/// When we pop scopes, we merge any unresolved free variables into the parent scope's
/// collection. The reason we need to collect free variables for each scope separately, instead
/// of just having one map for the whole builder, is because of sibling scope arrangements like
/// this:
/// ```py
/// def f():
/// def g():
/// # When we pop `g`, `x` goes in `f`'s set of free variables.
/// nonlocal x
/// def h():
/// # When we pop `h`, this binding of `x` won't resolve the free variable from `g`,
/// # because it's not in `h`'s set of free variables.
/// x = 1
/// # When we pop `f`, this binding of `x` will resolve the free variable from `g`.
/// x = 1
/// ```
free_variables: FxHashMap<ast::name::Name, Vec<FreeVariable<'ast>>>,
}
struct FreeVariable<'ast> {
scope_id: FileScopeId,
symbol_id: ScopedSymbolId,
// If this variable is `nonlocal`, then this is `Some` reference to its identifier in the
// `nonlocal` statement. In that case, it's an error if we don't resolve it before we reach the
// global scope (or if we resolve it in a scope where it's `global`).
nonlocal_identifier: Option<&'ast ast::Identifier>,
} }
pub(super) struct SemanticIndexBuilder<'db, 'ast> { pub(super) struct SemanticIndexBuilder<'db, 'ast> {
@ -78,7 +109,7 @@ pub(super) struct SemanticIndexBuilder<'db, 'ast> {
file: File, file: File,
source_type: PySourceType, source_type: PySourceType,
module: &'ast ParsedModuleRef, module: &'ast ParsedModuleRef,
scope_stack: Vec<ScopeInfo>, scope_stack: Vec<ScopeInfo<'ast>>,
/// The assignments we're currently visiting, with /// The assignments we're currently visiting, with
/// the most recent visit at the end of the Vec /// the most recent visit at the end of the Vec
current_assignments: Vec<CurrentAssignment<'ast, 'db>>, current_assignments: Vec<CurrentAssignment<'ast, 'db>>,
@ -167,13 +198,13 @@ impl<'db, 'ast> SemanticIndexBuilder<'db, 'ast> {
builder builder
} }
fn current_scope_info(&self) -> &ScopeInfo { fn current_scope_info(&self) -> &ScopeInfo<'ast> {
self.scope_stack self.scope_stack
.last() .last()
.expect("SemanticIndexBuilder should have created a root scope") .expect("SemanticIndexBuilder should have created a root scope")
} }
fn current_scope_info_mut(&mut self) -> &mut ScopeInfo { fn current_scope_info_mut(&mut self) -> &mut ScopeInfo<'ast> {
self.scope_stack self.scope_stack
.last_mut() .last_mut()
.expect("SemanticIndexBuilder should have created a root scope") .expect("SemanticIndexBuilder should have created a root scope")
@ -275,6 +306,7 @@ impl<'db, 'ast> SemanticIndexBuilder<'db, 'ast> {
self.scope_stack.push(ScopeInfo { self.scope_stack.push(ScopeInfo {
file_scope_id, file_scope_id,
current_loop: None, current_loop: None,
free_variables: FxHashMap::default(),
}); });
} }
@ -444,6 +476,7 @@ impl<'db, 'ast> SemanticIndexBuilder<'db, 'ast> {
let ScopeInfo { let ScopeInfo {
file_scope_id: popped_scope_id, file_scope_id: popped_scope_id,
free_variables: mut popped_free_variables,
.. ..
} = self } = self
.scope_stack .scope_stack
@ -456,13 +489,189 @@ impl<'db, 'ast> SemanticIndexBuilder<'db, 'ast> {
let popped_scope = &mut self.scopes[popped_scope_id]; let popped_scope = &mut self.scopes[popped_scope_id];
popped_scope.extend_descendants(children_end); popped_scope.extend_descendants(children_end);
let is_eager = popped_scope.is_eager();
let kind = popped_scope.kind();
debug_assert_eq!(
popped_scope_id.is_global(),
matches!(kind, ScopeKind::Module),
);
if popped_scope.is_eager() { if is_eager {
self.record_eager_snapshots(popped_scope_id); self.record_eager_snapshots(popped_scope_id);
} else { } else {
self.record_lazy_snapshots(popped_scope_id); self.record_lazy_snapshots(popped_scope_id);
} }
// If we've popped a scope that free variables from nested (previously popped) scopes can
// refer to, resolve any free variables that have definitions here.
if kind.is_function_like() || popped_scope_id.is_global() {
// Look up each free variable name in the popped scope, and see if we've resolved it.
// Collect these in a separate list, to avoid borrowck woes.
struct Resolution {
name: ast::name::Name,
symbol_id: ScopedSymbolId,
// Either the symbol is declared `global`, or this is the global scope.
is_global: bool,
}
let mut resolutions = Vec::new();
for name in popped_free_variables.keys() {
if let Some(symbol_id) = self.place_tables[popped_scope_id].symbol_id(name.as_str())
{
// If this scope defines (binds or declares) a name and doesn't mark it
// `nonlocal`, then free variables of that name in nested scopes resolve here.
// We also consider a free variable resolved here if it's marked `global`,
// though that will be a semantic syntax error below rather than a successful
// resolution.
//
// Note that popping scopes in the normal stack order means that free variables
// resolve (correctly) to the closest scope with a matching definition.
let symbol = self.place_tables[popped_scope_id].symbol(symbol_id);
if (symbol.is_bound() || symbol.is_declared() || symbol.is_global())
&& !symbol.is_nonlocal()
{
resolutions.push(Resolution {
name: name.clone(),
symbol_id,
is_global: symbol.is_global() || popped_scope_id.is_global(),
});
}
}
}
// Remove each resolved name along with all its references from
// `popped_free_variables`. For each reference, make an entry in
// `references_in_nested_scopes` in the popped place table, and also make the
// corresponding entry in `definitions_in_enclosing_scopes` in the place table the
// reference comes from.
for resolution in resolutions {
let resolved_variables = popped_free_variables.remove(&resolution.name).unwrap();
for FreeVariable {
scope_id: nested_scope_id,
symbol_id: nested_scope_symbol_id,
nonlocal_identifier,
} in resolved_variables
{
let nested_symbol_is_nonlocal = nonlocal_identifier.is_some();
if nested_symbol_is_nonlocal && resolution.is_global {
// If the symbol is declared `nonlocal` in the nested scope (rather than
// just used without a local binding or declaration), then it's a syntax
// error for it to resolve to the global scope or to a `global` statement.
self.report_semantic_error(SemanticSyntaxError {
kind: SemanticSyntaxErrorKind::NoBindingForNonlocal(
resolution.name.clone().into(),
),
range: nonlocal_identifier.unwrap().range(),
python_version: self.python_version,
});
} else {
let is_bound_in_nested_scope = self.place_tables[nested_scope_id]
.symbol(nested_scope_symbol_id)
.is_bound();
self.place_tables[popped_scope_id].add_reference_in_nested_scope(
resolution.symbol_id,
nested_scope_id,
nested_scope_symbol_id,
is_bound_in_nested_scope,
);
self.place_tables[nested_scope_id].add_definition_in_enclosing_scope(
nested_scope_symbol_id,
popped_scope_id,
resolution.symbol_id,
);
}
}
}
}
if popped_scope_id.is_global() {
// If we've popped the global/module scope, any remaining free variables are
// unresolved. The common case for these is built-ins like `print`, and rarer cases are
// things like direct insertions into `globals()`. However, if any `nonlocal` free
// variables are still unresolved, that's another syntax error.
debug_assert!(self.scope_stack.is_empty());
for (name, variables) in &popped_free_variables {
for variable in variables {
if let Some(nonlocal_identifier) = variable.nonlocal_identifier {
self.report_semantic_error(SemanticSyntaxError {
kind: SemanticSyntaxErrorKind::NoBindingForNonlocal(
name.clone().into(),
),
range: nonlocal_identifier.range(),
python_version: self.python_version,
});
}
}
}
} else {
// Otherwise, add any still-unresolved free variables from nested scopes to the parent
// scope's collection, and walk the popped scope's symbol table to collect any new free
// variables. During that walk, also record references to global variables.
let parent_free_variables = &mut self
.scope_stack
.last_mut() // current_scope_info_mut() would be a borrock error here
.expect("this is not the global/module scope")
.free_variables;
for (name, variables) in popped_free_variables {
parent_free_variables
.entry(name)
.or_default()
.extend(variables);
}
let popped_place_table = &self.place_tables[popped_scope_id];
let mut references_to_globals = Vec::new();
for (symbol_id, symbol) in popped_place_table.symbols_enumerated() {
// Collect new free variables.
if symbol.is_used()
&& !symbol.is_bound()
&& !symbol.is_declared()
&& !symbol.is_global()
// `nonlocal` variables do wind up in the parent's `free_variables`, but we
// handle that in `visit_stmt`, so that we can stash an AST reference.
&& !symbol.is_nonlocal()
{
parent_free_variables
.entry(symbol.name().clone())
.or_default()
.push(FreeVariable {
scope_id: popped_scope_id,
symbol_id,
nonlocal_identifier: None,
});
}
// Record references to global variables. Put these in a temporary Vec as another
// borrowck workaround.
if symbol.is_global() {
references_to_globals.push((
symbol_id,
symbol.name().clone(),
symbol.is_bound(),
));
}
}
// Update the global scope with those references to globals, now that
// `popped_place_table` and `parent_free_variables` are no longer borrowed.
for (symbol_id, symbol_name, is_bound) in references_to_globals {
// Add this symbol to the global scope, if it isn't there already.
let global_symbol_id = self.add_symbol_to_scope(symbol_name, FileScopeId::global());
// Update the global place table with this reference, and update this place
// table with the global definition. Doing this here rather than when we first
// encounter the `global` statement lets us record whether the symbol is bound.
self.place_tables[FileScopeId::global()].add_reference_in_nested_scope(
global_symbol_id,
popped_scope_id,
symbol_id,
is_bound,
);
self.place_tables[popped_scope_id].add_definition_in_enclosing_scope(
symbol_id,
FileScopeId::global(),
global_symbol_id,
);
}
}
popped_scope_id popped_scope_id
} }
@ -510,22 +719,36 @@ impl<'db, 'ast> SemanticIndexBuilder<'db, 'ast> {
/// Add a symbol to the place table and the use-def map. /// Add a symbol to the place table and the use-def map.
/// Return the [`ScopedPlaceId`] that uniquely identifies the symbol in both. /// Return the [`ScopedPlaceId`] that uniquely identifies the symbol in both.
fn add_symbol(&mut self, name: Name) -> ScopedSymbolId { fn add_symbol_to_scope(&mut self, name: Name, scope_id: FileScopeId) -> ScopedSymbolId {
let (symbol_id, added) = self.current_place_table_mut().add_symbol(Symbol::new(name)); let (symbol_id, added) = self.place_tables[scope_id].add_symbol(Symbol::new(name));
if added { if added {
self.current_use_def_map_mut().add_place(symbol_id.into()); self.use_def_maps[scope_id].add_place(symbol_id.into());
} }
symbol_id symbol_id
} }
fn add_symbol(&mut self, name: Name) -> ScopedSymbolId {
self.add_symbol_to_scope(name, self.current_scope())
}
/// Add a place to the place table and the use-def map.
/// Return the [`ScopedPlaceId`] that uniquely identifies the place in both.
fn add_place_to_scope(
&mut self,
place_expr: PlaceExpr,
scope_id: FileScopeId,
) -> ScopedPlaceId {
let (place_id, added) = self.place_tables[scope_id].add_place(place_expr);
if added {
self.use_def_maps[scope_id].add_place(place_id);
}
place_id
}
/// Add a place to the place table and the use-def map. /// Add a place to the place table and the use-def map.
/// Return the [`ScopedPlaceId`] that uniquely identifies the place in both. /// Return the [`ScopedPlaceId`] that uniquely identifies the place in both.
fn add_place(&mut self, place_expr: PlaceExpr) -> ScopedPlaceId { fn add_place(&mut self, place_expr: PlaceExpr) -> ScopedPlaceId {
let (place_id, added) = self.current_place_table_mut().add_place(place_expr); self.add_place_to_scope(place_expr, self.current_scope())
if added {
self.current_use_def_map_mut().add_place(place_id);
}
place_id
} }
#[track_caller] #[track_caller]
@ -2095,10 +2318,22 @@ impl<'ast> Visitor<'ast> for SemanticIndexBuilder<'_, 'ast> {
range: name.range, range: name.range,
python_version: self.python_version, python_version: self.python_version,
}); });
// Never mark a symbol both global and nonlocal, even in this error case.
// That would create conflicting resolutions, which we prefer to assert we
// never do.
continue;
}
// Assuming none of the rules above are violated, repeated `global`
// declarations are allowed and ignored.
if symbol.is_global() {
continue;
} }
self.current_place_table_mut() self.current_place_table_mut()
.symbol_mut(symbol_id) .symbol_mut(symbol_id)
.mark_global(); .mark_global();
// We'll add this symbol to the global scope in `pop_scope`, at the same time
// we're collecting free variables. That lets us record whether it's bound in
// this scope, which we don't know yet.
} }
walk_stmt(self, stmt); walk_stmt(self, stmt);
} }
@ -2128,19 +2363,41 @@ impl<'ast> Visitor<'ast> for SemanticIndexBuilder<'_, 'ast> {
range: name.range, range: name.range,
python_version: self.python_version, python_version: self.python_version,
}); });
// Never mark a symbol both global and nonlocal, even in this error case.
// That would create conflicting resolutions, which we prefer to assert we
// never do.
continue;
}
// Check whether this is the module scope, where `nonlocal` isn't allowed.
let scope_id = self.current_scope();
if scope_id.is_global() {
// The SemanticSyntaxChecker will report an error for this.
continue;
}
// Assuming none of the rules above are violated, repeated `nonlocal`
// declarations are allowed and ignored.
if symbol.is_nonlocal() {
continue;
} }
// The variable is required to exist in an enclosing scope, but that definition
// might come later. For example, this is example legal, but we can't check
// that here, because we haven't gotten to `x = 1`:
// ```py
// def f():
// def g():
// nonlocal x
// x = 1
// ```
self.current_place_table_mut() self.current_place_table_mut()
.symbol_mut(symbol_id) .symbol_mut(symbol_id)
.mark_nonlocal(); .mark_nonlocal();
// Add this symbol to the parent scope's set of free variables. (It would also
// work to add it to this scope's set, which will get folded into the parent's
// in `pop_scope`. But since it can't possibly resolve here, we might as well
// spare an allocation.) We checked above that we aren't in the module scope,
// so there's definitely a parent scope.
let parent_scope_index = self.scope_stack.len() - 2;
let parent_scope_info = &mut self.scope_stack[parent_scope_index];
parent_scope_info
.free_variables
.entry(name.id.clone())
.or_default()
.push(FreeVariable {
scope_id,
symbol_id,
nonlocal_identifier: Some(name),
});
} }
walk_stmt(self, stmt); walk_stmt(self, stmt);
} }
@ -2168,6 +2425,9 @@ impl<'ast> Visitor<'ast> for SemanticIndexBuilder<'_, 'ast> {
// foo() // foo()
// ``` // ```
symbol.mark_bound(); symbol.mark_bound();
// TODO: `mark_used` might be redundant here, since `walk_stmt` visits
// the deleted expression, and `visit_expr` considers `del` to be a
// use.
symbol.mark_used(); symbol.mark_used();
} }

View File

@ -268,6 +268,40 @@ impl PlaceTable {
) -> Option<ScopedMemberId> { ) -> Option<ScopedMemberId> {
self.members.place_id_by_instance_attribute_name(name) self.members.place_id_by_instance_attribute_name(name)
} }
pub(crate) fn definition_in_enclosing_scope(
&self,
symbol_id: ScopedSymbolId,
) -> Option<(FileScopeId, ScopedSymbolId)> {
self.symbols
.definitions_in_enclosing_scopes
.get(&symbol_id)
.copied()
}
// TODO: Use this for "find all references" in the LSP.
pub(crate) fn _references_in_nested_scopes(
&self,
symbol_id: ScopedSymbolId,
) -> &[(FileScopeId, ScopedSymbolId)] {
if let Some(references) = self.symbols.references_in_nested_scopes.get(&symbol_id) {
references
} else {
&[]
}
}
// TODO: Use this in `infer_place_load`.
pub(crate) fn _bindings_in_nested_scopes(
&self,
symbol_id: ScopedSymbolId,
) -> &[(FileScopeId, ScopedSymbolId)] {
if let Some(references) = self.symbols.bindings_in_nested_scopes.get(&symbol_id) {
references
} else {
&[]
}
}
} }
#[derive(Default)] #[derive(Default)]
@ -335,6 +369,10 @@ impl PlaceTableBuilder {
self.symbols.iter() self.symbols.iter()
} }
pub(crate) fn symbols_enumerated(&self) -> impl Iterator<Item = (ScopedSymbolId, &Symbol)> {
self.symbols.iter_enumerated()
}
pub(crate) fn add_symbol(&mut self, symbol: Symbol) -> (ScopedSymbolId, bool) { pub(crate) fn add_symbol(&mut self, symbol: Symbol) -> (ScopedSymbolId, bool) {
let (id, is_new) = self.symbols.add(symbol); let (id, is_new) = self.symbols.add(symbol);
@ -410,6 +448,34 @@ impl PlaceTableBuilder {
} }
} }
pub(super) fn add_reference_in_nested_scope(
&mut self,
this_scope_symbol_id: ScopedSymbolId,
nested_scope: FileScopeId,
nested_scope_symbol_id: ScopedSymbolId,
is_bound_in_nested_scope: bool,
) {
self.symbols.add_reference_in_nested_scope(
this_scope_symbol_id,
nested_scope,
nested_scope_symbol_id,
is_bound_in_nested_scope,
);
}
pub(super) fn add_definition_in_enclosing_scope(
&mut self,
this_scope_symbol_id: ScopedSymbolId,
enclosing_scope: FileScopeId,
enclosing_scope_symbol_id: ScopedSymbolId,
) {
self.symbols.add_definition_in_enclosing_scope(
this_scope_symbol_id,
enclosing_scope,
enclosing_scope_symbol_id,
);
}
pub(crate) fn finish(self) -> PlaceTable { pub(crate) fn finish(self) -> PlaceTable {
PlaceTable { PlaceTable {
symbols: self.symbols.build(), symbols: self.symbols.build(),

View File

@ -1,8 +1,9 @@
use crate::semantic_index::scope::FileScopeId;
use bitflags::bitflags; use bitflags::bitflags;
use hashbrown::hash_table::Entry; use hashbrown::hash_table::Entry;
use ruff_index::{IndexVec, newtype_index}; use ruff_index::{IndexVec, newtype_index};
use ruff_python_ast::name::Name; use ruff_python_ast::name::Name;
use rustc_hash::FxHasher; use rustc_hash::{FxHashMap, FxHasher};
use std::hash::{Hash as _, Hasher as _}; use std::hash::{Hash as _, Hasher as _};
use std::ops::{Deref, DerefMut}; use std::ops::{Deref, DerefMut};
@ -123,6 +124,26 @@ pub(super) struct SymbolTable {
/// ///
/// Uses a hash table to avoid storing the name twice. /// Uses a hash table to avoid storing the name twice.
map: hashbrown::HashTable<ScopedSymbolId>, map: hashbrown::HashTable<ScopedSymbolId>,
// The resolutions of variables that are either used-but-not-defined or explicitly marked
// `global` or `nonlocal` in this scope. These (keys) are similar to what CPython calls "free"
// variables, except that we also include variables marked `global`.
pub(super) definitions_in_enclosing_scopes:
FxHashMap<ScopedSymbolId, (FileScopeId, ScopedSymbolId)>,
// The inverse of `definitions_in_enclosing_scopes` above: variables defined in this scope,
// and not marked `global` or `nonlocal` here, which are used or bound in nested scopes.
// These (keys) are similar to what CPython calls "cell" variables, except that this scope
// may also be the global scope. We also include nested scopes that only mark a variable
// `global` or `nonlocal` but don't touch it after that. Those aren't very useful, but IDE
// features like "rename all" will still want to know about them.
pub(super) references_in_nested_scopes:
FxHashMap<ScopedSymbolId, Vec<(FileScopeId, ScopedSymbolId)>>,
// A subset of `references_in_nested_scopes` above: variables defined in this scope, and not
// marked `nonlocal` or `global`, which are bound in nested scopes.
pub(super) bindings_in_nested_scopes:
FxHashMap<ScopedSymbolId, Vec<(FileScopeId, ScopedSymbolId)>>,
} }
impl SymbolTable { impl SymbolTable {
@ -156,6 +177,11 @@ impl SymbolTable {
self.symbols.iter() self.symbols.iter()
} }
/// Iterate over the symbols in this symbol table, along with their IDs.
pub(crate) fn iter_enumerated(&self) -> impl Iterator<Item = (ScopedSymbolId, &Symbol)> {
self.symbols.iter_enumerated()
}
fn hash_name(name: &str) -> u64 { fn hash_name(name: &str) -> u64 {
let mut h = FxHasher::default(); let mut h = FxHasher::default();
name.hash(&mut h); name.hash(&mut h);
@ -212,12 +238,64 @@ impl SymbolTableBuilder {
} }
} }
pub(super) fn add_reference_in_nested_scope(
&mut self,
this_scope_symbol_id: ScopedSymbolId,
nested_scope: FileScopeId,
nested_scope_symbol_id: ScopedSymbolId,
is_bound_in_nested_scope: bool,
) {
let references = self
.table
.references_in_nested_scopes
.entry(this_scope_symbol_id)
.or_default();
debug_assert!(
!references.contains(&(nested_scope, nested_scope_symbol_id)),
"the same scoped symbol shouldn't get added more than once",
);
references.push((nested_scope, nested_scope_symbol_id));
if is_bound_in_nested_scope {
let bindings = self
.table
.bindings_in_nested_scopes
.entry(this_scope_symbol_id)
.or_default();
debug_assert!(
!bindings.contains(&(nested_scope, nested_scope_symbol_id)),
"the same scoped symbol shouldn't get added more than once",
);
bindings.push((nested_scope, nested_scope_symbol_id));
}
}
pub(super) fn add_definition_in_enclosing_scope(
&mut self,
this_scope_symbol_id: ScopedSymbolId,
enclosing_scope: FileScopeId,
enclosing_scope_symbol_id: ScopedSymbolId,
) {
let definition_pair = (enclosing_scope, enclosing_scope_symbol_id);
let previous = self
.table
.definitions_in_enclosing_scopes
.insert(this_scope_symbol_id, definition_pair);
assert!(
previous.is_none(),
"each free variable should only be resolved once",
);
}
pub(super) fn build(self) -> SymbolTable { pub(super) fn build(self) -> SymbolTable {
let mut table = self.table; let mut table = self.table;
table.symbols.shrink_to_fit(); table.symbols.shrink_to_fit();
table table
.map .map
.shrink_to_fit(|id| SymbolTable::hash_name(&table.symbols[*id].name)); .shrink_to_fit(|id| SymbolTable::hash_name(&table.symbols[*id].name));
table.definitions_in_enclosing_scopes.shrink_to_fit();
table.references_in_nested_scopes.shrink_to_fit();
table.bindings_in_nested_scopes.shrink_to_fit();
table table
} }
} }