This commit is contained in:
Douglas Creager 2025-11-11 18:11:20 -05:00
parent dedfa8a642
commit acd08168c8
15 changed files with 612 additions and 845 deletions

View File

@ -60,29 +60,29 @@ class Sub(Base): ...
class Unrelated: ...
def unbounded[T]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# (T = Never) is a valid specialization, which satisfies (T ≤ Unrelated).
static_assert(ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T ≤ Unrelated).
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Unrelated) is a valid specialization, which does not satisfy (T ≤ Super).
static_assert(not ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Unrelated) is a valid specialization, which does not satisfy (T ≤ Base).
static_assert(not ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars())
# (T = Sub) is a valid specialization, which satisfies (T ≤ Sub).
static_assert(ConstraintSet.range(Never, T, Sub).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Unrelated) is a valid specialization, which does not satisfy (T ≤ Sub).
static_assert(not ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars())
```
@ -106,38 +106,38 @@ class Sub(Base): ...
class Unrelated: ...
def bounded[T: Base]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars(inferable=tuple[T]))
# Every valid specialization satisfies (T ≤ Base). Since (Base ≤ Super), every valid
# specialization also satisfies (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# Every valid specialization satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars())
# (T = Sub) is a valid specialization, which satisfies (T ≤ Sub).
static_assert(ConstraintSet.range(Never, T, Sub).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T ≤ Sub).
static_assert(not ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars())
# (T = Never) is a valid specialization, which satisfies (T ≤ Unrelated).
constraints = ConstraintSet.range(Never, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T ≤ Unrelated).
static_assert(not constraints.satisfied_by_all_typevars())
# Never is the only type that satisfies both (T ≤ Base) and (T ≤ Unrelated). So there is no
# valid specialization that satisfies (T ≤ Unrelated ∧ T ≠ Never).
constraints = constraints & ~ConstraintSet.range(Never, T, Never)
static_assert(not constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(not constraints.satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not constraints.satisfied_by_all_typevars())
```
@ -153,15 +153,15 @@ the constraint set.
from typing import Any
def bounded_by_gradual[T: Any]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# If we choose Base as the materialization for the upper bound, then (T = Base) is a valid
# specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# We are free to choose any materialization of the upper bound, and only have to show that the
# constraint set holds for that one materialization. Having chosen one materialization, we then
# have to show that the constraint set holds for all valid specializations of that
@ -173,7 +173,7 @@ def bounded_by_gradual[T: Any]():
# If we choose Unrelated as the materialization, then (T = Unrelated) is a valid specialization,
# which satisfies (T ≤ Unrelated).
constraints = ConstraintSet.range(Never, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Never as the materialization, then (T = Never) is the only valid specialization,
# which satisfies (T ≤ Unrelated).
static_assert(constraints.satisfied_by_all_typevars())
@ -181,7 +181,7 @@ def bounded_by_gradual[T: Any]():
# If we choose Unrelated as the materialization, then (T = Unrelated) is a valid specialization,
# which satisfies (T ≤ Unrelated ∧ T ≠ Never).
constraints = constraints & ~ConstraintSet.range(Never, T, Never)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# There is no upper bound that we can choose to satisfy this constraint set in non-inferable
# position. (T = Never) will be a valid assignment no matter what, and that does not satisfy
# (T ≤ Unrelated ∧ T ≠ Never).
@ -196,15 +196,15 @@ restrictive variance (i.e., invariance), but we get the same results for other v
```py
def bounded_by_gradual[T: list[Any]]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# If we choose list[Base] as the materialization of the upper bound, then (T = list[Base]) is a
# valid specialization, which satisfies (T ≤ list[Base]).
static_assert(ConstraintSet.range(Never, T, list[Base]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Base]).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Base as the materialization, then all valid specializations must satisfy
# (T ≤ list[Base]).
# We are free to choose any materialization of the upper bound, and only have to show that the
@ -217,7 +217,7 @@ def bounded_by_gradual[T: list[Any]]():
# If we choose Unrelated as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated]).
constraints = ConstraintSet.range(Never, T, list[Unrelated])
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Unrelated as the materialization, then all valid specializations must satisfy
# (T ≤ list[Unrelated]).
static_assert(constraints.satisfied_by_all_typevars())
@ -225,7 +225,7 @@ def bounded_by_gradual[T: list[Any]]():
# If we choose Unrelated as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated] ∧ T ≠ Never).
constraints = constraints & ~ConstraintSet.range(Never, T, Never)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# There is no upper bound that we can choose to satisfy this constraint set in non-inferable
# position. (T = Never) will be a valid assignment no matter what, and that does not satisfy
# (T ≤ list[Unrelated] ∧ T ≠ Never).
@ -251,61 +251,61 @@ class Sub(Base): ...
class Unrelated: ...
def constrained[T: (Base, Unrelated)]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# (T = Unrelated) is a valid specialization, which satisfies (T ≤ Unrelated).
static_assert(ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T ≤ Unrelated).
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Unrelated) is a valid specialization, which does not satisfy (T ≤ Super).
static_assert(not ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars())
# (T = Base) is a valid specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Unrelated) is a valid specialization, which does not satisfy (T ≤ Base).
static_assert(not ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars())
# Neither (T = Base) nor (T = Unrelated) satisfy (T ≤ Sub).
static_assert(not ConstraintSet.range(Never, T, Sub).with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.range(Never, T, Sub).satisfied_by_all_typevars())
# (T = Base) and (T = Unrelated) both satisfy (T ≤ Super T ≤ Unrelated).
constraints = ConstraintSet.range(Never, T, Super) | ConstraintSet.range(Never, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(constraints.satisfied_by_all_typevars())
# (T = Base) and (T = Unrelated) both satisfy (T ≤ Base T ≤ Unrelated).
constraints = ConstraintSet.range(Never, T, Base) | ConstraintSet.range(Never, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(constraints.satisfied_by_all_typevars())
# (T = Unrelated) is a valid specialization, which satisfies (T ≤ Sub T ≤ Unrelated).
constraints = ConstraintSet.range(Never, T, Sub) | ConstraintSet.range(Never, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T ≤ Sub T ≤ Unrelated).
static_assert(not constraints.satisfied_by_all_typevars())
# (T = Unrelated) is a valid specialization, which satisfies (T = Super T = Unrelated).
constraints = ConstraintSet.range(Super, T, Super) | ConstraintSet.range(Unrelated, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T = Super T = Unrelated).
static_assert(not constraints.satisfied_by_all_typevars())
# (T = Base) and (T = Unrelated) both satisfy (T = Base T = Unrelated).
constraints = ConstraintSet.range(Base, T, Base) | ConstraintSet.range(Unrelated, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(constraints.satisfied_by_all_typevars())
# (T = Unrelated) is a valid specialization, which satisfies (T = Sub T = Unrelated).
constraints = ConstraintSet.range(Sub, T, Sub) | ConstraintSet.range(Unrelated, T, Unrelated)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# (T = Base) is a valid specialization, which does not satisfy (T = Sub T = Unrelated).
static_assert(not constraints.satisfied_by_all_typevars())
```
@ -322,50 +322,50 @@ satisfy the constraint set.
from typing import Any
def constrained_by_gradual[T: (Base, Any)]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# If we choose Unrelated as the materialization of the gradual constraint, then (T = Unrelated)
# is a valid specialization, which satisfies (T ≤ Unrelated).
static_assert(ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = Base) is a valid specialization, which does
# not satisfy (T ≤ Unrelated).
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# If we choose Super as the materialization, then (T = Super) is a valid specialization, which
# satisfies (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Never as the materialization, then (T = Base) and (T = Never) are the only valid
# specializations, both of which satisfy (T ≤ Super).
static_assert(ConstraintSet.range(Never, T, Super).satisfied_by_all_typevars())
# If we choose Base as the materialization, then (T = Base) is a valid specialization, which
# satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Never as the materialization, then (T = Base) and (T = Never) are the only valid
# specializations, both of which satisfy (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars())
def constrained_by_two_gradual[T: (Any, Any)]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# If we choose Unrelated as the materialization of either constraint, then (T = Unrelated) is a
# valid specialization, which satisfies (T ≤ Unrelated).
static_assert(ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Unrelated as the materialization of both constraints, then (T = Unrelated) is the
# only valid specialization, which satisfies (T ≤ Unrelated).
static_assert(ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# If we choose Base as the materialization of either constraint, then (T = Base) is a valid
# specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Never as the materialization of both constraints, then (T = Never) is the only
# valid specialization, which satisfies (T ≤ Base).
static_assert(ConstraintSet.range(Never, T, Base).satisfied_by_all_typevars())
@ -379,35 +379,35 @@ restrictive variance (i.e., invariance), but we get the same results for other v
```py
def constrained_by_gradual[T: (list[Base], list[Any])]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# No matter which materialization we choose, every valid specialization will be of the form
# (T = list[X]). Because Unrelated is final, it is disjoint from all lists. There is therefore
# no materialization or specialization that satisfies (T ≤ Unrelated).
static_assert(not ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# If we choose list[Super] as the materialization, then (T = list[Super]) is a valid
# specialization, which satisfies (T ≤ list[Super]).
static_assert(ConstraintSet.range(Never, T, list[Super]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Super]).satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Super]).
static_assert(not ConstraintSet.range(Never, T, list[Super]).satisfied_by_all_typevars())
# If we choose list[Base] as the materialization, then (T = list[Base]) is a valid
# specialization, which satisfies (T ≤ list[Base]).
static_assert(ConstraintSet.range(Never, T, list[Base]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Base]).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose list[Base] as the materialization, then all valid specializations must satisfy
# (T ≤ list[Base]).
static_assert(ConstraintSet.range(Never, T, list[Base]).satisfied_by_all_typevars())
# If we choose list[Sub] as the materialization, then (T = list[Sub]) is a valid specialization,
# which # satisfies (T ≤ list[Sub]).
static_assert(ConstraintSet.range(Never, T, list[Sub]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Sub]).satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Sub]).
static_assert(not ConstraintSet.range(Never, T, list[Sub]).satisfied_by_all_typevars())
@ -415,7 +415,7 @@ def constrained_by_gradual[T: (list[Base], list[Any])]():
# If we choose list[Unrelated] as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated]).
constraints = ConstraintSet.range(Never, T, list[Unrelated])
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Unrelated]).
static_assert(not constraints.satisfied_by_all_typevars())
@ -423,42 +423,42 @@ def constrained_by_gradual[T: (list[Base], list[Any])]():
# If we choose list[Unrelated] as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated] ∧ T ≠ Never).
constraints = constraints & ~ConstraintSet.range(Never, T, Never)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# There is no materialization that we can choose to satisfy this constraint set in non-inferable
# position. (T = Never) will be a valid assignment no matter what, and that does not satisfy
# (T ≤ list[Unrelated] ∧ T ≠ Never).
static_assert(not constraints.satisfied_by_all_typevars())
def constrained_by_two_gradual[T: (list[Any], list[Any])]():
static_assert(ConstraintSet.always().with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.always().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(ConstraintSet.always().satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.never().satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.never().satisfied_by_all_typevars())
# No matter which materialization we choose, every valid specialization will be of the form
# (T = list[X]). Because Unrelated is final, it is disjoint from all lists. There is therefore
# no materialization or specialization that satisfies (T ≤ Unrelated).
static_assert(not ConstraintSet.range(Never, T, Unrelated).with_inferable(T).satisfied_by_all_typevars())
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars(inferable=tuple[T]))
static_assert(not ConstraintSet.range(Never, T, Unrelated).satisfied_by_all_typevars())
# If we choose list[Super] as the materialization, then (T = list[Super]) is a valid
# specialization, which satisfies (T ≤ list[Super]).
static_assert(ConstraintSet.range(Never, T, list[Super]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Super]).satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Super]).
static_assert(ConstraintSet.range(Never, T, list[Super]).satisfied_by_all_typevars())
# If we choose list[Base] as the materialization, then (T = list[Base]) is a valid
# specialization, which satisfies (T ≤ list[Base]).
static_assert(ConstraintSet.range(Never, T, list[Base]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Base]).satisfied_by_all_typevars(inferable=tuple[T]))
# If we choose Base as the materialization, then all valid specializations must satisfy
# (T ≤ list[Base]).
static_assert(ConstraintSet.range(Never, T, list[Base]).satisfied_by_all_typevars())
# If we choose list[Sub] as the materialization, then (T = list[Sub]) is a valid specialization,
# which satisfies (T ≤ list[Sub]).
static_assert(ConstraintSet.range(Never, T, list[Sub]).with_inferable(T).satisfied_by_all_typevars())
static_assert(ConstraintSet.range(Never, T, list[Sub]).satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Sub]).
static_assert(ConstraintSet.range(Never, T, list[Sub]).satisfied_by_all_typevars())
@ -466,7 +466,7 @@ def constrained_by_two_gradual[T: (list[Any], list[Any])]():
# If we choose list[Unrelated] as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated]).
constraints = ConstraintSet.range(Never, T, list[Unrelated])
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# No matter which materialization we choose, (T = list[Base]) is a valid specialization, which
# does not satisfy (T ≤ list[Unrelated]).
static_assert(constraints.satisfied_by_all_typevars())
@ -474,7 +474,7 @@ def constrained_by_two_gradual[T: (list[Any], list[Any])]():
# If we choose list[Unrelated] as the materialization, then (T = list[Unrelated]) is a valid
# specialization, which satisfies (T ≤ list[Unrelated] ∧ T ≠ Never).
constraints = constraints & ~ConstraintSet.range(Never, T, Never)
static_assert(constraints.with_inferable(T).satisfied_by_all_typevars())
static_assert(constraints.satisfied_by_all_typevars(inferable=tuple[T]))
# There is no constraint that we can choose to satisfy this constraint set in non-inferable
# position. (T = Never) will be a valid assignment no matter what, and that does not satisfy
# (T ≤ list[Unrelated] ∧ T ≠ Never).

File diff suppressed because it is too large Load Diff

View File

@ -36,9 +36,9 @@ use crate::types::tuple::{TupleLength, TupleType};
use crate::types::{
BoundMethodType, BoundTypeVarIdentity, ClassLiteral, DataclassFlags, DataclassParams,
FieldInstance, KnownBoundMethodType, KnownClass, KnownInstanceType, MemberLookupPolicy,
PropertyInstanceType, SpecialFormType, TrackedConstraintSet, TypeAliasType, TypeContext,
UnionBuilder, UnionType, WrapperDescriptorKind, enums, ide_support, infer_isolated_expression,
todo_type,
NominalInstanceType, PropertyInstanceType, SpecialFormType, TrackedConstraintSet,
TypeAliasType, TypeContext, UnionBuilder, UnionType, WrapperDescriptorKind, enums, ide_support,
infer_isolated_expression, todo_type,
};
use ruff_db::diagnostic::{Annotation, Diagnostic, SubDiagnostic, SubDiagnosticSeverity};
use ruff_python_ast::{self as ast, ArgOrKeyword, PythonVersion};
@ -181,7 +181,7 @@ impl<'db> Bindings<'db> {
}
}
self.evaluate_known_cases(db, argument_types, dataclass_field_specifiers);
self.evaluate_known_cases(db, dataclass_field_specifiers);
// In order of precedence:
//
@ -300,12 +300,7 @@ impl<'db> Bindings<'db> {
/// Evaluates the return type of certain known callables, where we have special-case logic to
/// determine the return type in a way that isn't directly expressible in the type system.
fn evaluate_known_cases(
&mut self,
db: &'db dyn Db,
argument_types: &CallArguments<'_, 'db>,
dataclass_field_specifiers: &[Type<'db>],
) {
fn evaluate_known_cases(&mut self, db: &'db dyn Db, dataclass_field_specifiers: &[Type<'db>]) {
let to_bool = |ty: &Option<Type<'_>>, default: bool| -> bool {
if let Some(Type::BooleanLiteral(value)) = ty {
*value
@ -1147,13 +1142,7 @@ impl<'db> Bindings<'db> {
else {
return;
};
let constraints = ConstraintSet::range(
db,
*lower,
*typevar,
*upper,
InferableTypeVars::none(),
);
let constraints = ConstraintSet::range(db, *lower, *typevar, *upper);
let tracked = TrackedConstraintSet::new(db, constraints);
overload.set_return_type(Type::KnownInstance(
KnownInstanceType::ConstraintSet(tracked),
@ -1164,7 +1153,7 @@ impl<'db> Bindings<'db> {
if !overload.parameter_types().is_empty() {
return;
}
let constraints = ConstraintSet::always(InferableTypeVars::none());
let constraints = ConstraintSet::from(true);
let tracked = TrackedConstraintSet::new(db, constraints);
overload.set_return_type(Type::KnownInstance(
KnownInstanceType::ConstraintSet(tracked),
@ -1175,40 +1164,13 @@ impl<'db> Bindings<'db> {
if !overload.parameter_types().is_empty() {
return;
}
let constraints = ConstraintSet::never(InferableTypeVars::none());
let constraints = ConstraintSet::from(false);
let tracked = TrackedConstraintSet::new(db, constraints);
overload.set_return_type(Type::KnownInstance(
KnownInstanceType::ConstraintSet(tracked),
));
}
Type::KnownBoundMethod(KnownBoundMethodType::ConstraintSetWithInferable(
tracked,
)) => {
let mut any_invalid = false;
let inferable = InferableTypeVars::from_bound_typevars(
db,
overload
.arguments_for_parameter(argument_types, 0)
.filter_map(|(_, ty)| {
let identity = ty
.as_typevar()
.map(|bound_typevar| bound_typevar.identity(db));
any_invalid |= identity.is_none();
identity
}),
);
if any_invalid {
continue;
}
let result = tracked.constraints(db).with_inferable(inferable);
let tracked = TrackedConstraintSet::new(db, result);
overload.set_return_type(Type::KnownInstance(
KnownInstanceType::ConstraintSet(tracked),
));
}
Type::KnownBoundMethod(
KnownBoundMethodType::ConstraintSetImpliesSubtypeOf(tracked),
) => {
@ -1216,7 +1178,12 @@ impl<'db> Bindings<'db> {
continue;
};
let result = ty_a.when_subtype_of_given(db, *ty_b, tracked.constraints(db));
let result = ty_a.when_subtype_of_given(
db,
*ty_b,
tracked.constraints(db),
InferableTypeVars::none(),
);
let tracked = TrackedConstraintSet::new(db, result);
overload.set_return_type(Type::KnownInstance(
KnownInstanceType::ConstraintSet(tracked),
@ -1246,7 +1213,35 @@ impl<'db> Bindings<'db> {
Type::KnownBoundMethod(
KnownBoundMethodType::ConstraintSetSatisfiedByAllTypeVars(tracked),
) => {
let result = tracked.constraints(db).satisfied_by_all_typevars(db);
let extract_inferable = |instance: &NominalInstanceType<'db>| {
if instance.has_known_class(db, KnownClass::NoneType) {
// Caller explicitly passed None, so no typevars are inferable.
return Some(InferableTypeVars::none());
}
Some(InferableTypeVars::from_bound_typevars(
db,
instance.tuple_spec(db)?.fixed_elements().filter_map(|ty| {
ty.as_typevar()
.map(|bound_typevar| bound_typevar.identity(db))
}),
))
};
let inferable = match overload.parameter_types() {
// Caller did not provide argument, so no typevars are inferable.
[None] => InferableTypeVars::none(),
[Some(Type::NominalInstance(instance))] => {
match extract_inferable(instance) {
Some(inferable) => inferable,
None => continue,
}
}
_ => continue,
};
let result = tracked
.constraints(db)
.satisfied_by_all_typevars(db, inferable);
overload.set_return_type(Type::BooleanLiteral(result));
}

View File

@ -531,8 +531,8 @@ impl<'db> ClassType<'db> {
other,
inferable,
TypeRelation::Subtyping,
&HasRelationToVisitor::from_inferable(inferable),
&IsDisjointVisitor::from_inferable(inferable),
&HasRelationToVisitor::default(),
&IsDisjointVisitor::default(),
)
}
@ -545,48 +545,45 @@ impl<'db> ClassType<'db> {
relation_visitor: &HasRelationToVisitor<'db>,
disjointness_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
self.iter_mro(db).when_any(db, inferable, |base| {
self.iter_mro(db).when_any(db, |base| {
match base {
ClassBase::Dynamic(_) => match relation {
TypeRelation::Subtyping
| TypeRelation::Redundancy
| TypeRelation::ConstraintImplication(_) => {
ConstraintSet::from_bool(other.is_object(db), inferable)
}
TypeRelation::Assignability => {
ConstraintSet::from_bool(!other.is_final(db), inferable)
ConstraintSet::from(other.is_object(db))
}
TypeRelation::Assignability => ConstraintSet::from(!other.is_final(db)),
},
// Protocol and Generic are not represented by a ClassType.
ClassBase::Protocol | ClassBase::Generic => ConstraintSet::never(inferable),
ClassBase::Protocol | ClassBase::Generic => ConstraintSet::from(false),
ClassBase::Class(base) => match (base, other) {
(ClassType::NonGeneric(base), ClassType::NonGeneric(other)) => {
ConstraintSet::from_bool(base == other, inferable)
ConstraintSet::from(base == other)
}
(ClassType::Generic(base), ClassType::Generic(other)) => {
ConstraintSet::from_bool(base.origin(db) == other.origin(db), inferable)
.and(db, || {
base.specialization(db).has_relation_to_impl(
db,
other.specialization(db),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
})
ConstraintSet::from(base.origin(db) == other.origin(db)).and(db, || {
base.specialization(db).has_relation_to_impl(
db,
other.specialization(db),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
})
}
(ClassType::Generic(_), ClassType::NonGeneric(_))
| (ClassType::NonGeneric(_), ClassType::Generic(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
},
ClassBase::TypedDict => {
// TODO: Implement subclassing and assignability for TypedDicts.
ConstraintSet::always(inferable)
ConstraintSet::from(true)
}
}
})
@ -600,28 +597,26 @@ impl<'db> ClassType<'db> {
visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
if self == other {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
match (self, other) {
// A non-generic class is never equivalent to a generic class.
// Two non-generic classes are only equivalent if they are equal (handled above).
(ClassType::NonGeneric(_), _) | (_, ClassType::NonGeneric(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
(ClassType::Generic(this), ClassType::Generic(other)) => ConstraintSet::from_bool(
this.origin(db) == other.origin(db),
inferable,
)
.and(db, || {
this.specialization(db).is_equivalent_to_impl(
db,
other.specialization(db),
inferable,
visitor,
)
}),
(ClassType::Generic(this), ClassType::Generic(other)) => {
ConstraintSet::from(this.origin(db) == other.origin(db)).and(db, || {
this.specialization(db).is_equivalent_to_impl(
db,
other.specialization(db),
inferable,
visitor,
)
})
}
}
}
@ -1780,10 +1775,7 @@ impl<'db> ClassLiteral<'db> {
specialization: Option<Specialization<'db>>,
other: ClassType<'db>,
) -> ConstraintSet<'db> {
ConstraintSet::from_bool(
self.is_subclass_of(db, specialization, other),
InferableTypeVars::none(),
)
ConstraintSet::from(self.is_subclass_of(db, specialization, other))
}
/// Return `true` if this class constitutes a typed dict specification (inherits from
@ -4701,7 +4693,7 @@ impl KnownClass {
db: &'db dyn Db,
other: ClassType<'db>,
) -> ConstraintSet<'db> {
ConstraintSet::from_bool(self.is_subclass_of(db, other), InferableTypeVars::none())
ConstraintSet::from(self.is_subclass_of(db, other))
}
/// Return the module in which we should look up the definition for this class

View File

@ -74,41 +74,25 @@ use crate::types::{
pub(crate) trait OptionConstraintsExtension<T> {
/// Returns a constraint set that is always satisfiable if the option is `None`; otherwise
/// applies a function to determine under what constraints the value inside of it holds.
fn when_none_or<'db>(
self,
inferable: InferableTypeVars<'db>,
f: impl FnOnce(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db>;
fn when_none_or<'db>(self, f: impl FnOnce(T) -> ConstraintSet<'db>) -> ConstraintSet<'db>;
/// Returns a constraint set that is never satisfiable if the option is `None`; otherwise
/// applies a function to determine under what constraints the value inside of it holds.
fn when_some_and<'db>(
self,
inferable: InferableTypeVars<'db>,
f: impl FnOnce(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db>;
fn when_some_and<'db>(self, f: impl FnOnce(T) -> ConstraintSet<'db>) -> ConstraintSet<'db>;
}
impl<T> OptionConstraintsExtension<T> for Option<T> {
fn when_none_or<'db>(
self,
inferable: InferableTypeVars<'db>,
f: impl FnOnce(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db> {
fn when_none_or<'db>(self, f: impl FnOnce(T) -> ConstraintSet<'db>) -> ConstraintSet<'db> {
match self {
Some(value) => f(value),
None => ConstraintSet::always(inferable),
None => ConstraintSet::always(),
}
}
fn when_some_and<'db>(
self,
inferable: InferableTypeVars<'db>,
f: impl FnOnce(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db> {
fn when_some_and<'db>(self, f: impl FnOnce(T) -> ConstraintSet<'db>) -> ConstraintSet<'db> {
match self {
Some(value) => f(value),
None => ConstraintSet::never(inferable),
None => ConstraintSet::never(),
}
}
}
@ -123,7 +107,6 @@ pub(crate) trait IteratorConstraintsExtension<T> {
fn when_any<'db>(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
f: impl FnMut(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db>;
@ -135,7 +118,6 @@ pub(crate) trait IteratorConstraintsExtension<T> {
fn when_all<'db>(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
f: impl FnMut(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db>;
}
@ -147,10 +129,9 @@ where
fn when_any<'db>(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
mut f: impl FnMut(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db> {
let mut result = ConstraintSet::never(inferable);
let mut result = ConstraintSet::never();
for child in self {
if result.union(db, f(child)).is_always_satisfied(db) {
return result;
@ -162,10 +143,9 @@ where
fn when_all<'db>(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
mut f: impl FnMut(T) -> ConstraintSet<'db>,
) -> ConstraintSet<'db> {
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::always();
for child in self {
if result.intersect(db, f(child)).is_never_satisfied(db) {
return result;
@ -184,34 +164,18 @@ where
pub struct ConstraintSet<'db> {
/// The BDD representing this constraint set
node: Node<'db>,
/// The typevars that were inferable when constructing this constraint set
pub(crate) inferable: InferableTypeVars<'db>,
}
impl<'db> ConstraintSet<'db> {
pub(crate) fn never(inferable: InferableTypeVars<'db>) -> Self {
fn never() -> Self {
Self {
node: Node::AlwaysFalse,
inferable,
}
}
pub(crate) fn always(inferable: InferableTypeVars<'db>) -> Self {
fn always() -> Self {
Self {
node: Node::AlwaysTrue,
inferable,
}
}
pub(crate) fn from_bool(b: bool, inferable: InferableTypeVars<'db>) -> Self {
Self {
node: if b {
Node::AlwaysTrue
} else {
Node::AlwaysFalse
},
inferable,
}
}
@ -221,7 +185,6 @@ impl<'db> ConstraintSet<'db> {
typevar: BoundTypeVarInstance<'db>,
lower: Type<'db>,
upper: Type<'db>,
inferable: InferableTypeVars<'db>,
relation: TypeRelation<'db>,
) -> Self {
let (lower, upper) = match relation {
@ -239,14 +202,6 @@ impl<'db> ConstraintSet<'db> {
Self {
node: ConstrainedTypeVar::new_node(db, typevar, lower, upper),
inferable,
}
}
pub(crate) fn with_inferable(self, inferable: InferableTypeVars<'db>) -> Self {
Self {
node: self.node,
inferable,
}
}
@ -271,7 +226,6 @@ impl<'db> ConstraintSet<'db> {
) -> Self {
Self {
node: self.node.when_subtype_of_given(db, lhs, rhs),
inferable: self.inferable,
}
}
@ -289,8 +243,12 @@ impl<'db> ConstraintSet<'db> {
/// since the constraint set cannot be affected by any typevars that it does not mention. That
/// means that those additional typevars trivially satisfy the constraint set, regardless of
/// whether they are inferable or not.
pub(crate) fn satisfied_by_all_typevars(self, db: &'db dyn Db) -> bool {
self.node.satisfied_by_all_typevars(db, self.inferable)
pub(crate) fn satisfied_by_all_typevars(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
) -> bool {
self.node.satisfied_by_all_typevars(db, inferable)
}
/// Updates this constraint set to hold the union of itself and another constraint set.
@ -301,7 +259,6 @@ impl<'db> ConstraintSet<'db> {
/// only mention typevars that are inferable in the lhs, or which both sides consider
/// non-inferable.
pub(crate) fn union(&mut self, db: &'db dyn Db, other: Self) -> Self {
let other = other.reduce_inferable(db, self.inferable);
self.node = self.node.or(db, other.node);
*self
}
@ -314,7 +271,6 @@ impl<'db> ConstraintSet<'db> {
/// only mention typevars that are inferable in the lhs, or which both sides consider
/// non-inferable.
pub(crate) fn intersect(&mut self, db: &'db dyn Db, other: Self) -> Self {
let other = other.reduce_inferable(db, self.inferable);
self.node = self.node.and(db, other.node);
*self
}
@ -323,7 +279,6 @@ impl<'db> ConstraintSet<'db> {
pub(crate) fn negate(self, db: &'db dyn Db) -> Self {
Self {
node: self.node.negate(db),
inferable: self.inferable,
}
}
@ -355,7 +310,6 @@ impl<'db> ConstraintSet<'db> {
pub(crate) fn iff(self, db: &'db dyn Db, other: Self) -> Self {
ConstraintSet {
node: self.node.iff(db, other.node),
inferable: self.inferable.merge(db, other.inferable),
}
}
@ -364,14 +318,14 @@ impl<'db> ConstraintSet<'db> {
/// away. (That is, those typevars will be removed from the constraint set, and the constraint
/// set will return true whenever there was _any_ specialization of those typevars that
/// returned true before.)
/// XXX: fix docs
pub(crate) fn reduce_inferable(
self,
db: &'db dyn Db,
inferable: InferableTypeVars<'db>,
to_remove: impl IntoIterator<Item = BoundTypeVarIdentity<'db>>,
) -> Self {
let to_abstract = self.inferable.subtract(db, inferable);
let node = self.node.exists(db, to_abstract);
Self { node, inferable }
let node = self.node.exists(db, to_remove);
Self { node }
}
pub(crate) fn range(
@ -379,16 +333,8 @@ impl<'db> ConstraintSet<'db> {
lower: Type<'db>,
typevar: BoundTypeVarInstance<'db>,
upper: Type<'db>,
inferable: InferableTypeVars<'db>,
) -> Self {
Self::constrain_typevar(
db,
typevar,
lower,
upper,
inferable,
TypeRelation::Assignability,
)
Self::constrain_typevar(db, typevar, lower, upper, TypeRelation::Assignability)
}
pub(crate) fn display(self, db: &'db dyn Db) -> impl Display {
@ -396,6 +342,12 @@ impl<'db> ConstraintSet<'db> {
}
}
impl From<bool> for ConstraintSet<'_> {
fn from(b: bool) -> Self {
if b { Self::always() } else { Self::never() }
}
}
impl<'db> BoundTypeVarInstance<'db> {
/// Returns whether this typevar can be the lower or upper bound of another typevar in a
/// constraint set.
@ -2230,10 +2182,10 @@ mod tests {
let u = BoundTypeVarInstance::synthetic(&db, "U", TypeVarVariance::Invariant);
let bool_type = KnownClass::Bool.to_instance(&db);
let str_type = KnownClass::Str.to_instance(&db);
let t_str = ConstraintSet::range(&db, str_type, t, str_type, InferableTypeVars::none());
let t_bool = ConstraintSet::range(&db, bool_type, t, bool_type, InferableTypeVars::none());
let u_str = ConstraintSet::range(&db, str_type, u, str_type, InferableTypeVars::none());
let u_bool = ConstraintSet::range(&db, bool_type, u, bool_type, InferableTypeVars::none());
let t_str = ConstraintSet::range(&db, str_type, t, str_type);
let t_bool = ConstraintSet::range(&db, bool_type, t, bool_type);
let u_str = ConstraintSet::range(&db, str_type, u, str_type);
let u_bool = ConstraintSet::range(&db, bool_type, u, bool_type);
let constraints = (t_str.or(&db, || t_bool)).and(&db, || u_str.or(&db, || u_bool));
let actual = constraints.node.display_graph(&db, &"").to_string();
assert_eq!(actual, expected);

View File

@ -532,9 +532,6 @@ impl Display for DisplayRepresentation<'_> {
Type::KnownBoundMethod(KnownBoundMethodType::ConstraintSetNever) => {
f.write_str("bound method `ConstraintSet.never`")
}
Type::KnownBoundMethod(KnownBoundMethodType::ConstraintSetWithInferable(_)) => {
f.write_str("bound method `ConstraintSet.with_inferable`")
}
Type::KnownBoundMethod(KnownBoundMethodType::ConstraintSetImpliesSubtypeOf(_)) => {
f.write_str("bound method `ConstraintSet.implies_subtype_of`")
}

View File

@ -986,11 +986,11 @@ impl<'db> FunctionType<'db> {
| TypeRelation::ConstraintImplication(_)
) && self.normalized(db) == other.normalized(db)
{
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
if self.literal(db) != other.literal(db) {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
let self_signature = self.signature(db);
@ -1013,10 +1013,10 @@ impl<'db> FunctionType<'db> {
visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
if self.normalized(db) == other.normalized(db) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
if self.literal(db) != other.literal(db) {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
let self_signature = self.signature(db);
let other_signature = other.signature(db);

View File

@ -2,7 +2,7 @@ use std::cell::RefCell;
use std::collections::hash_map::Entry;
use std::fmt::Display;
use itertools::{Either, EitherOrBoth, Itertools};
use itertools::Itertools;
use ruff_python_ast as ast;
use rustc_hash::FxHashMap;
use smallvec::{SmallVec, smallvec};
@ -119,7 +119,7 @@ pub(crate) fn typing_self<'db>(
.map(Type::TypeVar)
}
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, get_size2::GetSize, salsa::Update)]
#[derive(Clone, Copy, Debug)]
pub(crate) struct InferableTypeVars<'db> {
inner: Option<InferableTypeVarsInner<'db>>,
}
@ -168,36 +168,19 @@ impl<'db> InferableTypeVars<'db> {
(None, None) => self,
(Some(_), None) => self,
(None, Some(_)) => other,
(Some(self_inner), Some(other_inner)) if self_inner == other_inner => self,
(Some(self_inner), Some(other_inner)) => InferableTypeVars {
inner: Some(self_inner.merge(db, other_inner)),
},
}
}
/// Returns an iterator of the typevars that are in this inferable set but not in another.
pub(crate) fn subtract(
pub(crate) fn iter(
self,
db: &'db dyn Db,
other: Self,
) -> impl Iterator<Item = BoundTypeVarIdentity<'db>> + 'db {
let (self_inner, other_inner) = match (self.inner, other.inner) {
(None, _) => return Either::Left(Either::Left(std::iter::empty())),
(Some(self_inner), None) => {
return Either::Left(Either::Right(self_inner.inferable(db).into_iter().copied()));
}
(Some(self_inner), Some(other_inner)) => (self_inner, other_inner),
};
let self_inferable = self_inner.inferable(db).into_iter().copied();
let other_inferable = other_inner.inferable(db).into_iter().copied();
Either::Right(
self_inferable
.merge_join_by(other_inferable, BoundTypeVarIdentity::cmp)
.filter_map(|merged| match merged {
EitherOrBoth::Left(bound_typevar) => Some(bound_typevar),
EitherOrBoth::Right(_) | EitherOrBoth::Both(_, _) => None,
}),
)
self.inner
.into_iter()
.flat_map(|inner| inner.inferable(db).iter().copied())
}
// Keep this around for debugging purposes
@ -770,12 +753,12 @@ fn is_subtype_in_invariant_position<'db>(
// This should be removed and properly handled in the respective
// `(Type::TypeVar(_), _) | (_, Type::TypeVar(_))` branch of
// `Type::has_relation_to_impl`. Right now, we cannot generally
// return `ConstraintSet::always(inferable)` from that branch, as that
// return `ConstraintSet::from(true)` from that branch, as that
// leads to union simplification, which means that we lose track
// of type variables without recording the constraints under which
// the relation holds.
if matches!(base, Type::TypeVar(_)) || matches!(derived, Type::TypeVar(_)) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
derived.has_relation_to_impl(
@ -1189,7 +1172,7 @@ impl<'db> Specialization<'db> {
) -> ConstraintSet<'db> {
let generic_context = self.generic_context(db);
if generic_context != other.generic_context(db) {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if let (Some(self_tuple), Some(other_tuple)) = (self.tuple_inner(db), other.tuple_inner(db))
@ -1207,7 +1190,7 @@ impl<'db> Specialization<'db> {
let self_materialization_kind = self.materialization_kind(db);
let other_materialization_kind = other.materialization_kind(db);
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
for ((bound_typevar, self_type), other_type) in (generic_context.variables(db))
.zip(self.types(db))
.zip(other.types(db))
@ -1246,7 +1229,7 @@ impl<'db> Specialization<'db> {
relation_visitor,
disjointness_visitor,
),
TypeVarVariance::Bivariant => ConstraintSet::always(inferable),
TypeVarVariance::Bivariant => ConstraintSet::from(true),
};
if result.intersect(db, compatible).is_never_satisfied(db) {
return result;
@ -1264,14 +1247,14 @@ impl<'db> Specialization<'db> {
visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
if self.materialization_kind(db) != other.materialization_kind(db) {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
let generic_context = self.generic_context(db);
if generic_context != other.generic_context(db) {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
for ((bound_typevar, self_type), other_type) in (generic_context.variables(db))
.zip(self.types(db))
.zip(other.types(db))
@ -1288,7 +1271,7 @@ impl<'db> Specialization<'db> {
| TypeVarVariance::Contravariant => {
self_type.is_equivalent_to_impl(db, *other_type, inferable, visitor)
}
TypeVarVariance::Bivariant => ConstraintSet::always(inferable),
TypeVarVariance::Bivariant => ConstraintSet::from(true),
};
if result.intersect(db, compatible).is_never_satisfied(db) {
return result;
@ -1296,7 +1279,7 @@ impl<'db> Specialization<'db> {
}
match (self.tuple_inner(db), other.tuple_inner(db)) {
(Some(_), None) | (None, Some(_)) => return ConstraintSet::never(inferable),
(Some(_), None) | (None, Some(_)) => return ConstraintSet::from(false),
(None, None) => {}
(Some(self_tuple), Some(other_tuple)) => {
let compatible =

View File

@ -141,7 +141,7 @@ impl<'db> Type<'db> {
.inner
.interface(db)
.members(db)
.when_all(db, inferable, |member| {
.when_all(db, |member| {
member.is_satisfied_by(
db,
self,
@ -161,7 +161,7 @@ impl<'db> Type<'db> {
// recognise `str` as a subtype of `Container[str]`.
structurally_satisfied.or(db, || {
let Some(nominal_instance) = protocol.as_nominal_type() else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
// if `self` and `other` are *both* protocols, we also need to treat `self` as if it
@ -371,7 +371,7 @@ impl<'db> NominalInstanceType<'db> {
disjointness_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
match (self.0, other.0) {
(_, NominalInstanceInner::Object) => ConstraintSet::always(inferable),
(_, NominalInstanceInner::Object) => ConstraintSet::from(true),
(
NominalInstanceInner::ExactTuple(tuple1),
NominalInstanceInner::ExactTuple(tuple2),
@ -407,12 +407,12 @@ impl<'db> NominalInstanceType<'db> {
NominalInstanceInner::ExactTuple(tuple2),
) => tuple1.is_equivalent_to_impl(db, tuple2, inferable, visitor),
(NominalInstanceInner::Object, NominalInstanceInner::Object) => {
ConstraintSet::always(inferable)
ConstraintSet::from(true)
}
(NominalInstanceInner::NonTuple(class1), NominalInstanceInner::NonTuple(class2)) => {
class1.is_equivalent_to_impl(db, class2, inferable, visitor)
}
_ => ConstraintSet::never(inferable),
_ => ConstraintSet::from(false),
}
}
@ -425,9 +425,9 @@ impl<'db> NominalInstanceType<'db> {
relation_visitor: &HasRelationToVisitor<'db>,
) -> ConstraintSet<'db> {
if self.is_object() || other.is_object() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
let mut result = ConstraintSet::never(inferable);
let mut result = ConstraintSet::from(false);
if let Some(self_spec) = self.tuple_spec(db) {
if let Some(other_spec) = other.tuple_spec(db) {
let compatible = self_spec.is_disjoint_from_impl(
@ -443,10 +443,7 @@ impl<'db> NominalInstanceType<'db> {
}
}
result.or(db, || {
ConstraintSet::from_bool(
!(self.class(db)).could_coexist_in_mro_with(db, other.class(db)),
inferable,
)
ConstraintSet::from(!(self.class(db)).could_coexist_in_mro_with(db, other.class(db)))
})
}
@ -671,8 +668,8 @@ impl<'db> ProtocolInstanceType<'db> {
protocol,
InferableTypeVars::none(),
TypeRelation::Subtyping,
&HasRelationToVisitor::from_inferable(InferableTypeVars::none()),
&IsDisjointVisitor::from_inferable(InferableTypeVars::none()),
&HasRelationToVisitor::default(),
&IsDisjointVisitor::default(),
)
.is_always_satisfied(db)
}
@ -722,17 +719,17 @@ impl<'db> ProtocolInstanceType<'db> {
self,
db: &'db dyn Db,
other: Self,
inferable: InferableTypeVars<'db>,
_inferable: InferableTypeVars<'db>,
_visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
if self == other {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
let self_normalized = self.normalized(db);
if self_normalized == Type::ProtocolInstance(other) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
ConstraintSet::from_bool(self_normalized == other.normalized(db), inferable)
ConstraintSet::from(self_normalized == other.normalized(db))
}
/// Return `true` if this protocol type is disjoint from the protocol `other`.
@ -744,10 +741,10 @@ impl<'db> ProtocolInstanceType<'db> {
self,
_db: &'db dyn Db,
_other: Self,
inferable: InferableTypeVars<'db>,
_inferable: InferableTypeVars<'db>,
_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
pub(crate) fn instance_member(self, db: &'db dyn Db, name: &str) -> PlaceAndQualifiers<'db> {

View File

@ -3,7 +3,6 @@ use std::collections::BTreeSet;
use crate::Db;
use crate::semantic_index::definition::{Definition, DefinitionKind};
use crate::types::constraints::ConstraintSet;
use crate::types::generics::InferableTypeVars;
use crate::types::{ClassType, Type, definition_expression_type, visitor};
use ruff_db::parsed::parsed_module;
use ruff_python_ast as ast;
@ -116,37 +115,26 @@ impl<'db> NewType<'db> {
// Since a regular class can't inherit from a newtype, the only way for one newtype to be a
// subtype of another is to have the other in its chain of newtype bases. Once we reach the
// base class, we don't have to keep looking.
pub(crate) fn has_relation_to_impl(
self,
db: &'db dyn Db,
other: Self,
inferable: InferableTypeVars<'db>,
) -> ConstraintSet<'db> {
pub(crate) fn has_relation_to_impl(self, db: &'db dyn Db, other: Self) -> ConstraintSet<'db> {
if self.is_equivalent_to_impl(db, other) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
for base in self.iter_bases(db) {
if let NewTypeBase::NewType(base_newtype) = base {
if base_newtype.is_equivalent_to_impl(db, other) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
}
}
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
pub(crate) fn is_disjoint_from_impl(
self,
db: &'db dyn Db,
other: Self,
inferable: InferableTypeVars<'db>,
) -> ConstraintSet<'db> {
pub(crate) fn is_disjoint_from_impl(self, db: &'db dyn Db, other: Self) -> ConstraintSet<'db> {
// Two NewTypes are disjoint if they're not equal and neither inherits from the other.
// NewTypes have single inheritance, and a regular class can't inherit from a NewType, so
// it's not possible for some third type to multiply-inherit from both.
let mut self_not_subtype_of_other =
self.has_relation_to_impl(db, other, inferable).negate(db);
let other_not_subtype_of_self = other.has_relation_to_impl(db, self, inferable).negate(db);
let mut self_not_subtype_of_other = self.has_relation_to_impl(db, other).negate(db);
let other_not_subtype_of_self = other.has_relation_to_impl(db, self).negate(db);
self_not_subtype_of_other.intersect(db, other_not_subtype_of_self)
}

View File

@ -238,14 +238,13 @@ impl<'db> ProtocolInterface<'db> {
relation_visitor: &HasRelationToVisitor<'db>,
disjointness_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
other.members(db).when_all(db, inferable, |other_member| {
self.member_by_name(db, other_member.name).when_some_and(
inferable,
|our_member| match (our_member.kind, other_member.kind) {
other.members(db).when_all(db, |other_member| {
self.member_by_name(db, other_member.name)
.when_some_and(|our_member| match (our_member.kind, other_member.kind) {
// Method members are always immutable;
// they can never be subtypes of/assignable to mutable attribute members.
(ProtocolMemberKind::Method(_), ProtocolMemberKind::Other(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
// A property member can only be a subtype of an attribute member
@ -253,16 +252,15 @@ impl<'db> ProtocolInterface<'db> {
//
// TODO: this should also consider the types of the members on both sides.
(ProtocolMemberKind::Property(property), ProtocolMemberKind::Other(_)) => {
ConstraintSet::from_bool(
ConstraintSet::from(
property.getter(db).is_some() && property.setter(db).is_some(),
inferable,
)
}
// A `@property` member can never be a subtype of a method member, as it is not necessarily
// accessible on the meta-type, whereas a method member must be.
(ProtocolMemberKind::Property(_), ProtocolMemberKind::Method(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
// But an attribute member *can* be a subtype of a method member,
@ -270,9 +268,8 @@ impl<'db> ProtocolInterface<'db> {
(
ProtocolMemberKind::Other(our_type),
ProtocolMemberKind::Method(other_type),
) => ConstraintSet::from_bool(
) => ConstraintSet::from(
our_member.qualifiers.contains(TypeQualifiers::CLASS_VAR),
inferable,
)
.and(db, || {
our_type.has_relation_to_impl(
@ -327,9 +324,8 @@ impl<'db> ProtocolInterface<'db> {
| ProtocolMemberKind::Method(_)
| ProtocolMemberKind::Other(_),
ProtocolMemberKind::Property(_),
) => ConstraintSet::always(inferable),
},
)
) => ConstraintSet::from(true),
})
})
}
@ -619,7 +615,7 @@ impl<'a, 'db> ProtocolMember<'a, 'db> {
match &self.kind {
// TODO: implement disjointness for property/method members as well as attribute members
ProtocolMemberKind::Property(_) | ProtocolMemberKind::Method(_) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
ProtocolMemberKind::Other(ty) => ty.is_disjoint_from_impl(
db,
@ -655,7 +651,7 @@ impl<'a, 'db> ProtocolMember<'a, 'db> {
// complex interaction between `__new__`, `__init__` and metaclass `__call__`.
let attribute_type = if self.name == "__call__" {
let Some(attribute_type) = other.try_upcast_to_callable(db) else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
attribute_type
} else {
@ -669,7 +665,7 @@ impl<'a, 'db> ProtocolMember<'a, 'db> {
)
.place
else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
attribute_type
};
@ -684,18 +680,15 @@ impl<'a, 'db> ProtocolMember<'a, 'db> {
)
}
// TODO: consider the types of the attribute on `other` for property members
ProtocolMemberKind::Property(_) => ConstraintSet::from_bool(
matches!(
other.member(db, self.name).place,
Place::Defined(_, _, Definedness::AlwaysDefined)
),
inferable,
),
ProtocolMemberKind::Property(_) => ConstraintSet::from(matches!(
other.member(db, self.name).place,
Place::Defined(_, _, Definedness::AlwaysDefined)
)),
ProtocolMemberKind::Other(member_type) => {
let Place::Defined(attribute_type, _, Definedness::AlwaysDefined) =
other.member(db, self.name).place
else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
member_type
.has_relation_to_impl(

View File

@ -224,8 +224,8 @@ impl<'db> CallableSignature<'db> {
other,
inferable,
TypeRelation::Subtyping,
&HasRelationToVisitor::from_inferable(inferable),
&IsDisjointVisitor::from_inferable(inferable),
&HasRelationToVisitor::default(),
&IsDisjointVisitor::default(),
)
}
@ -274,49 +274,43 @@ impl<'db> CallableSignature<'db> {
}
// `self` is possibly overloaded while `other` is definitely not overloaded.
(_, [_]) => self_signatures
.iter()
.when_any(db, inferable, |self_signature| {
Self::has_relation_to_inner(
db,
std::slice::from_ref(self_signature),
other_signatures,
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
(_, [_]) => self_signatures.iter().when_any(db, |self_signature| {
Self::has_relation_to_inner(
db,
std::slice::from_ref(self_signature),
other_signatures,
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
// `self` is definitely not overloaded while `other` is possibly overloaded.
([_], _) => other_signatures
.iter()
.when_all(db, inferable, |other_signature| {
Self::has_relation_to_inner(
db,
self_signatures,
std::slice::from_ref(other_signature),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
([_], _) => other_signatures.iter().when_all(db, |other_signature| {
Self::has_relation_to_inner(
db,
self_signatures,
std::slice::from_ref(other_signature),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
// `self` is definitely overloaded while `other` is possibly overloaded.
(_, _) => other_signatures
.iter()
.when_all(db, inferable, |other_signature| {
Self::has_relation_to_inner(
db,
self_signatures,
std::slice::from_ref(other_signature),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
(_, _) => other_signatures.iter().when_all(db, |other_signature| {
Self::has_relation_to_inner(
db,
self_signatures,
std::slice::from_ref(other_signature),
inferable,
relation,
relation_visitor,
disjointness_visitor,
)
}),
}
}
@ -338,7 +332,7 @@ impl<'db> CallableSignature<'db> {
}
(_, _) => {
if self == other {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
self.is_subtype_of_impl(db, other, inferable)
.and(db, || other.is_subtype_of_impl(db, self, inferable))
@ -651,7 +645,7 @@ impl<'db> Signature<'db> {
inferable: InferableTypeVars<'db>,
visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
let mut check_types = |self_type: Option<Type<'db>>, other_type: Option<Type<'db>>| {
let self_type = self_type.unwrap_or(Type::unknown());
let other_type = other_type.unwrap_or(Type::unknown());
@ -664,11 +658,11 @@ impl<'db> Signature<'db> {
};
if self.parameters.is_gradual() != other.parameters.is_gradual() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if self.parameters.len() != other.parameters.len() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if !check_types(self.return_ty, other.return_ty) {
@ -716,7 +710,7 @@ impl<'db> Signature<'db> {
(ParameterKind::KeywordVariadic { .. }, ParameterKind::KeywordVariadic { .. }) => {}
_ => return ConstraintSet::never(inferable),
_ => return ConstraintSet::from(false),
}
if !check_types(
@ -740,9 +734,17 @@ impl<'db> Signature<'db> {
relation_visitor: &HasRelationToVisitor<'db>,
disjointness_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
// If this callable is generic, then `inner` will add all of our typevars to the
// `inferable` set, since we only need to find one specialization that causes the check to
// succeed.
// If either signature is generic, their typevars should also be considered inferable when
// checking whether the signatures are equivalent, since we only need to find one
// specialization that causes the check to succeed.
let self_inferable = self.inferable_typevars(db);
let other_inferable = other.inferable_typevars(db);
let new_inferable = InferableTypeVars::none()
.merge(db, self_inferable)
.merge(db, other_inferable);
let inferable = inferable.merge(db, new_inferable);
// `inner` will create a constraint set that references these newly inferable typevars.
let when = self.has_relation_to_inner(
db,
other,
@ -756,7 +758,7 @@ impl<'db> Signature<'db> {
// we produce, we reduce it back down to the inferable set that the caller asked about.
// If we introduced new inferable typevars, those will be existentially quantified away
// before returning.
when.reduce_inferable(db, inferable)
when.reduce_inferable(db, new_inferable.iter(db))
}
fn has_relation_to_inner(
@ -829,12 +831,7 @@ impl<'db> Signature<'db> {
}
}
// The typevars in self and other should also be considered inferable when checking whether
// two signatures are equivalent.
let inferable = inferable.merge(db, self.inferable_typevars(db));
let inferable = inferable.merge(db, other.inferable_typevars(db));
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
let mut check_types = |type1: Option<Type<'db>>, type2: Option<Type<'db>>| {
let type1 = type1.unwrap_or(Type::unknown());
let type2 = type2.unwrap_or(Type::unknown());
@ -870,13 +867,13 @@ impl<'db> Signature<'db> {
.keyword_variadic()
.is_some_and(|(_, param)| param.annotated_type().is_some_and(|ty| ty.is_object()))
{
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
// If either of the parameter lists is gradual (`...`), then it is assignable to and from
// any other parameter list, but not a subtype or supertype of any other parameter list.
if self.parameters.is_gradual() || other.parameters.is_gradual() {
return ConstraintSet::from_bool(relation.is_assignability(), inferable);
return ConstraintSet::from(relation.is_assignability());
}
let mut parameters = ParametersZip {
@ -914,7 +911,7 @@ impl<'db> Signature<'db> {
// `other`, then the non-variadic parameters in `self` must have a default
// value.
if default_type.is_none() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
}
ParameterKind::Variadic { .. } | ParameterKind::KeywordVariadic { .. } => {
@ -926,7 +923,7 @@ impl<'db> Signature<'db> {
EitherOrBoth::Right(_) => {
// If there are more parameters in `other` than in `self`, then `self` is not a
// subtype of `other`.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
EitherOrBoth::Both(self_parameter, other_parameter) => {
@ -946,7 +943,7 @@ impl<'db> Signature<'db> {
},
) => {
if self_default.is_none() && other_default.is_some() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if !check_types(
other_parameter.annotated_type(),
@ -967,11 +964,11 @@ impl<'db> Signature<'db> {
},
) => {
if self_name != other_name {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
// The following checks are the same as positional-only parameters.
if self_default.is_none() && other_default.is_some() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if !check_types(
other_parameter.annotated_type(),
@ -1056,7 +1053,7 @@ impl<'db> Signature<'db> {
break;
}
_ => return ConstraintSet::never(inferable),
_ => return ConstraintSet::from(false),
}
}
}
@ -1090,7 +1087,7 @@ impl<'db> Signature<'db> {
// previous loop. They cannot be matched against any parameter in `other` which
// only contains keyword-only and keyword-variadic parameters so the subtype
// relation is invalid.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
ParameterKind::Variadic { .. } => {}
}
@ -1117,7 +1114,7 @@ impl<'db> Signature<'db> {
..
} => {
if self_default.is_none() && other_default.is_some() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
if !check_types(
other_parameter.annotated_type(),
@ -1138,14 +1135,14 @@ impl<'db> Signature<'db> {
return result;
}
} else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
}
ParameterKind::KeywordVariadic { .. } => {
let Some(self_keyword_variadic_type) = self_keyword_variadic else {
// For a `self <: other` relationship, if `other` has a keyword variadic
// parameter, `self` must also have a keyword variadic parameter.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
if !check_types(other_parameter.annotated_type(), self_keyword_variadic_type) {
return result;
@ -1153,7 +1150,7 @@ impl<'db> Signature<'db> {
}
_ => {
// This can only occur in case of a syntax error.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
}
}
@ -1162,7 +1159,7 @@ impl<'db> Signature<'db> {
// optional otherwise the subtype relation is invalid.
for (_, self_parameter) in self_keywords {
if self_parameter.default_type().is_none() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
}

View File

@ -143,16 +143,13 @@ impl<'db> SubclassOfType<'db> {
) -> ConstraintSet<'db> {
match (self.subclass_of, other.subclass_of) {
(SubclassOfInner::Dynamic(_), SubclassOfInner::Dynamic(_)) => {
ConstraintSet::from_bool(!relation.is_subtyping(), inferable)
ConstraintSet::from(!relation.is_subtyping())
}
(SubclassOfInner::Dynamic(_), SubclassOfInner::Class(other_class)) => {
ConstraintSet::from_bool(
other_class.is_object(db) || relation.is_assignability(),
inferable,
)
ConstraintSet::from(other_class.is_object(db) || relation.is_assignability())
}
(SubclassOfInner::Class(_), SubclassOfInner::Dynamic(_)) => {
ConstraintSet::from_bool(relation.is_assignability(), inferable)
ConstraintSet::from(relation.is_assignability())
}
// For example, `type[bool]` describes all possible runtime subclasses of the class `bool`,
@ -177,18 +174,15 @@ impl<'db> SubclassOfType<'db> {
self,
db: &'db dyn Db,
other: Self,
inferable: InferableTypeVars<'db>,
_inferable: InferableTypeVars<'db>,
_visitor: &IsDisjointVisitor<'db>,
) -> ConstraintSet<'db> {
match (self.subclass_of, other.subclass_of) {
(SubclassOfInner::Dynamic(_), _) | (_, SubclassOfInner::Dynamic(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
(SubclassOfInner::Class(self_class), SubclassOfInner::Class(other_class)) => {
ConstraintSet::from_bool(
!self_class.could_coexist_in_mro_with(db, other_class),
inferable,
)
ConstraintSet::from(!self_class.could_coexist_in_mro_with(db, other_class))
}
}
}

View File

@ -448,8 +448,8 @@ impl<'db> FixedLengthTuple<Type<'db>> {
) -> ConstraintSet<'db> {
match other {
Tuple::Fixed(other) => {
ConstraintSet::from_bool(self.0.len() == other.0.len(), inferable).and(db, || {
(self.0.iter().zip(&other.0)).when_all(db, inferable, |(self_ty, other_ty)| {
ConstraintSet::from(self.0.len() == other.0.len()).and(db, || {
(self.0.iter().zip(&other.0)).when_all(db, |(self_ty, other_ty)| {
self_ty.has_relation_to_impl(
db,
*other_ty,
@ -465,11 +465,11 @@ impl<'db> FixedLengthTuple<Type<'db>> {
Tuple::Variable(other) => {
// This tuple must have enough elements to match up with the other tuple's prefix
// and suffix, and each of those elements must pairwise satisfy the relation.
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
let mut self_iter = self.0.iter();
for other_ty in &other.prefix {
let Some(self_ty) = self_iter.next() else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
let element_constraints = self_ty.has_relation_to_impl(
db,
@ -488,7 +488,7 @@ impl<'db> FixedLengthTuple<Type<'db>> {
}
for other_ty in other.suffix.iter().rev() {
let Some(self_ty) = self_iter.next_back() else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
let element_constraints = self_ty.has_relation_to_impl(
db,
@ -509,7 +509,7 @@ impl<'db> FixedLengthTuple<Type<'db>> {
// In addition, any remaining elements in this tuple must satisfy the
// variable-length portion of the other tuple.
result.and(db, || {
self_iter.when_all(db, inferable, |self_ty| {
self_iter.when_all(db, |self_ty| {
self_ty.has_relation_to_impl(
db,
other.variable,
@ -531,10 +531,10 @@ impl<'db> FixedLengthTuple<Type<'db>> {
inferable: InferableTypeVars<'db>,
visitor: &IsEquivalentVisitor<'db>,
) -> ConstraintSet<'db> {
ConstraintSet::from_bool(self.0.len() == other.0.len(), inferable).and(db, || {
ConstraintSet::from(self.0.len() == other.0.len()).and(db, || {
(self.0.iter())
.zip(&other.0)
.when_all(db, inferable, |(self_ty, other_ty)| {
.when_all(db, |(self_ty, other_ty)| {
self_ty.is_equivalent_to_impl(db, *other_ty, inferable, visitor)
})
})
@ -816,17 +816,17 @@ impl<'db> VariableLengthTuple<Type<'db>> {
// possible lengths. This means that `tuple[Any, ...]` can match any tuple of any
// length.
if !relation.is_assignability() || !self.variable.is_dynamic() {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
// In addition, the other tuple must have enough elements to match up with this
// tuple's prefix and suffix, and each of those elements must pairwise satisfy the
// relation.
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
let mut other_iter = other.elements().copied();
for self_ty in self.prenormalized_prefix_elements(db, None) {
let Some(other_ty) = other_iter.next() else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
let element_constraints = self_ty.has_relation_to_impl(
db,
@ -846,7 +846,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
let suffix: Vec<_> = self.prenormalized_suffix_elements(db, None).collect();
for self_ty in suffix.iter().rev() {
let Some(other_ty) = other_iter.next_back() else {
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
};
let element_constraints = self_ty.has_relation_to_impl(
db,
@ -882,7 +882,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
// The overlapping parts of the prefixes and suffixes must satisfy the relation.
// Any remaining parts must satisfy the relation with the other tuple's
// variable-length part.
let mut result = ConstraintSet::always(inferable);
let mut result = ConstraintSet::from(true);
let pairwise = (self.prenormalized_prefix_elements(db, self_prenormalize_variable))
.zip_longest(
other.prenormalized_prefix_elements(db, other_prenormalize_variable),
@ -908,7 +908,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
EitherOrBoth::Right(_) => {
// The rhs has a required element that the lhs is not guaranteed to
// provide.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
};
if result
@ -947,7 +947,7 @@ impl<'db> VariableLengthTuple<Type<'db>> {
EitherOrBoth::Right(_) => {
// The rhs has a required element that the lhs is not guaranteed to
// provide.
return ConstraintSet::never(inferable);
return ConstraintSet::from(false);
}
};
if result
@ -985,24 +985,24 @@ impl<'db> VariableLengthTuple<Type<'db>> {
.and(db, || {
(self.prenormalized_prefix_elements(db, None))
.zip_longest(other.prenormalized_prefix_elements(db, None))
.when_all(db, inferable, |pair| match pair {
.when_all(db, |pair| match pair {
EitherOrBoth::Both(self_ty, other_ty) => {
self_ty.is_equivalent_to_impl(db, other_ty, inferable, visitor)
}
EitherOrBoth::Left(_) | EitherOrBoth::Right(_) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
})
})
.and(db, || {
(self.prenormalized_suffix_elements(db, None))
.zip_longest(other.prenormalized_suffix_elements(db, None))
.when_all(db, inferable, |pair| match pair {
.when_all(db, |pair| match pair {
EitherOrBoth::Both(self_ty, other_ty) => {
self_ty.is_equivalent_to_impl(db, other_ty, inferable, visitor)
}
EitherOrBoth::Left(_) | EitherOrBoth::Right(_) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
})
})
@ -1230,7 +1230,7 @@ impl<'db> Tuple<Type<'db>> {
self_tuple.is_equivalent_to_impl(db, other_tuple, inferable, visitor)
}
(Tuple::Fixed(_), Tuple::Variable(_)) | (Tuple::Variable(_), Tuple::Fixed(_)) => {
ConstraintSet::never(inferable)
ConstraintSet::from(false)
}
}
}
@ -1247,10 +1247,10 @@ impl<'db> Tuple<Type<'db>> {
let (self_min, self_max) = self.len().size_hint();
let (other_min, other_max) = other.len().size_hint();
if self_max.is_some_and(|max| max < other_min) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
if other_max.is_some_and(|max| max < self_min) {
return ConstraintSet::always(inferable);
return ConstraintSet::from(true);
}
// If any of the required elements are pairwise disjoint, the tuples are disjoint as well.
@ -1266,7 +1266,7 @@ impl<'db> Tuple<Type<'db>> {
where
'db: 's,
{
(a.into_iter().zip(b)).when_any(db, inferable, |(self_element, other_element)| {
(a.into_iter().zip(b)).when_any(db, |(self_element, other_element)| {
self_element.is_disjoint_from_impl(
db,
*other_element,

View File

@ -59,12 +59,6 @@ class ConstraintSet:
def never() -> Self:
"""Returns a constraint set that is never satisfied"""
def with_inferable(self, *inferable: Any) -> Self:
"""
Returns a copy of this constraint set with some typevars marked as being
in inferable position.
"""
def implies_subtype_of(self, ty: Any, of: Any) -> Self:
"""
Returns a constraint set that is satisfied when `ty` is a `subtype`_ of