mirror of https://github.com/astral-sh/ruff
Merge 8e25f88a84 into ad3de4e488
This commit is contained in:
commit
f31f6b6583
|
|
@ -402,40 +402,48 @@ python-version = "3.12"
|
|||
`generic_list.py`:
|
||||
|
||||
```py
|
||||
from typing import Literal
|
||||
from typing import Literal, Sequence
|
||||
|
||||
def f[T](x: T) -> list[T]:
|
||||
return [x]
|
||||
|
||||
a = f("a")
|
||||
reveal_type(a) # revealed: list[str]
|
||||
x1 = f("a")
|
||||
reveal_type(x1) # revealed: list[str]
|
||||
|
||||
b: list[int | Literal["a"]] = f("a")
|
||||
reveal_type(b) # revealed: list[int | Literal["a"]]
|
||||
x2: list[int | Literal["a"]] = f("a")
|
||||
reveal_type(x2) # revealed: list[int | Literal["a"]]
|
||||
|
||||
c: list[int | str] = f("a")
|
||||
reveal_type(c) # revealed: list[int | str]
|
||||
x3: list[int | str] = f("a")
|
||||
reveal_type(x3) # revealed: list[int | str]
|
||||
|
||||
d: list[int | tuple[int, int]] = f((1, 2))
|
||||
reveal_type(d) # revealed: list[int | tuple[int, int]]
|
||||
x4: list[int | tuple[int, int]] = f((1, 2))
|
||||
reveal_type(x4) # revealed: list[int | tuple[int, int]]
|
||||
|
||||
e: list[int] = f(True)
|
||||
reveal_type(e) # revealed: list[int]
|
||||
x5: list[int] = f(True)
|
||||
reveal_type(x5) # revealed: list[int]
|
||||
|
||||
# error: [invalid-assignment] "Object of type `list[int | str]` is not assignable to `list[int]`"
|
||||
g: list[int] = f("a")
|
||||
x6: list[int] = f("a")
|
||||
|
||||
# error: [invalid-assignment] "Object of type `list[str]` is not assignable to `tuple[int]`"
|
||||
h: tuple[int] = f("a")
|
||||
x7: tuple[int] = f("a")
|
||||
|
||||
def f2[T: int](x: T) -> T:
|
||||
return x
|
||||
|
||||
i: int = f2(True)
|
||||
reveal_type(i) # revealed: Literal[True]
|
||||
x8: int = f2(True)
|
||||
reveal_type(x8) # revealed: Literal[True]
|
||||
|
||||
j: int | str = f2(True)
|
||||
reveal_type(j) # revealed: Literal[True]
|
||||
x9: int | str = f2(True)
|
||||
reveal_type(x9) # revealed: Literal[True]
|
||||
|
||||
# TODO: We could choose a concrete type here.
|
||||
x10: list[int | str] | list[int | None] = [1, 2, 3]
|
||||
reveal_type(x10) # revealed: list[Unknown | int]
|
||||
|
||||
# TODO: And here similarly.
|
||||
x11: Sequence[int | str] | Sequence[int | None] = [1, 2, 3]
|
||||
reveal_type(x11) # revealed: list[Unknown | int]
|
||||
```
|
||||
|
||||
A function's arguments are also inferred using the type context:
|
||||
|
|
@ -600,6 +608,48 @@ reveal_type(x7) # revealed: Contravariant[Any]
|
|||
reveal_type(x8) # revealed: Invariant[Any]
|
||||
```
|
||||
|
||||
## Declared type preference sees through subtyping
|
||||
|
||||
```toml
|
||||
[environment]
|
||||
python-version = "3.12"
|
||||
```
|
||||
|
||||
```py
|
||||
from typing import Any, Iterable, Literal, MutableSequence, Sequence
|
||||
|
||||
x1: Sequence[Any] = [1, 2, 3]
|
||||
reveal_type(x1) # revealed: list[Any]
|
||||
|
||||
x2: MutableSequence[Any] = [1, 2, 3]
|
||||
reveal_type(x2) # revealed: list[Any]
|
||||
|
||||
x3: Iterable[Any] = [1, 2, 3]
|
||||
reveal_type(x3) # revealed: list[Any]
|
||||
|
||||
class X[T]:
|
||||
value: T
|
||||
|
||||
def __init__(self, value: T): ...
|
||||
|
||||
class A[T](X[T]): ...
|
||||
|
||||
def a[T](value: T) -> A[T]:
|
||||
return A(value)
|
||||
|
||||
x4: A[object] = A(1)
|
||||
reveal_type(x4) # revealed: A[object]
|
||||
|
||||
x5: X[object] = A(1)
|
||||
reveal_type(x5) # revealed: A[object]
|
||||
|
||||
x6: X[object] | None = A(1)
|
||||
reveal_type(x6) # revealed: A[object]
|
||||
|
||||
x7: X[object] | None = a(1)
|
||||
reveal_type(x7) # revealed: A[object]
|
||||
```
|
||||
|
||||
## Narrow generic unions
|
||||
|
||||
```toml
|
||||
|
|
|
|||
|
|
@ -341,3 +341,58 @@ reveal_type(x21) # revealed: X[Literal[1]]
|
|||
x22: X[Literal[1]] | None = x(1)
|
||||
reveal_type(x22) # revealed: X[Literal[1]]
|
||||
```
|
||||
|
||||
## Literal annotations see through subtyping
|
||||
|
||||
```py
|
||||
from typing import Any, Iterable, Literal, MutableSequence, Sequence
|
||||
|
||||
x1: Sequence[Literal[1, 2, 3]] = [1, 2, 3]
|
||||
reveal_type(x1) # revealed: list[Literal[1, 2, 3]]
|
||||
|
||||
x2: MutableSequence[Literal[1, 2, 3]] = [1, 2, 3]
|
||||
reveal_type(x2) # revealed: list[Literal[1, 2, 3]]
|
||||
|
||||
x3: Iterable[Literal[1, 2, 3]] = [1, 2, 3]
|
||||
reveal_type(x3) # revealed: list[Literal[1, 2, 3]]
|
||||
|
||||
class Sup1[T]:
|
||||
value: T
|
||||
|
||||
class Sub1[T](Sup1[T]): ...
|
||||
|
||||
def sub1[T](value: T) -> Sub1[T]:
|
||||
return Sub1()
|
||||
|
||||
x4: Sub1[Literal[1]] = sub1(1)
|
||||
reveal_type(x4) # revealed: Sub1[Literal[1]]
|
||||
|
||||
x5: Sup1[Literal[1]] = sub1(1)
|
||||
reveal_type(x5) # revealed: Sub1[Literal[1]]
|
||||
|
||||
x6: Sup1[Literal[1]] | None = sub1(1)
|
||||
reveal_type(x6) # revealed: Sub1[Literal[1]]
|
||||
|
||||
x7: Sup1[Literal[1]] | None = sub1(1)
|
||||
reveal_type(x7) # revealed: Sub1[Literal[1]]
|
||||
|
||||
class Sup2A[T, U]:
|
||||
value: tuple[T, U]
|
||||
|
||||
class Sup2B[T, U]:
|
||||
value: tuple[T, U]
|
||||
|
||||
class Sub2[T, U](Sup2A[T, Any], Sup2B[Any, U]): ...
|
||||
|
||||
def sub2[T, U](x: T, y: U) -> Sub2[T, U]:
|
||||
return Sub2()
|
||||
|
||||
x8 = sub2(1, 2)
|
||||
reveal_type(x8) # revealed: Sub2[int, int]
|
||||
|
||||
x9: Sup2A[Literal[1], Literal[2]] = sub2(1, 2)
|
||||
reveal_type(x9) # revealed: Sub2[Literal[1], int]
|
||||
|
||||
x10: Sup2B[Literal[1], Literal[2]] = sub2(1, 2)
|
||||
reveal_type(x10) # revealed: Sub2[int, Literal[2]]
|
||||
```
|
||||
|
|
|
|||
|
|
@ -57,6 +57,9 @@ reveal_type(tuple((1, 2))) # revealed: tuple[Literal[1], Literal[2]]
|
|||
|
||||
reveal_type(tuple([1])) # revealed: tuple[Unknown | int, ...]
|
||||
|
||||
x1: tuple[int, ...] = tuple([1])
|
||||
reveal_type(x1) # revealed: tuple[int, ...]
|
||||
|
||||
# error: [invalid-argument-type]
|
||||
reveal_type(tuple[int]([1])) # revealed: tuple[int]
|
||||
|
||||
|
|
|
|||
|
|
@ -61,8 +61,8 @@ use crate::types::function::{
|
|||
};
|
||||
pub(crate) use crate::types::generics::GenericContext;
|
||||
use crate::types::generics::{
|
||||
InferableTypeVars, PartialSpecialization, Specialization, bind_typevar, typing_self,
|
||||
walk_generic_context,
|
||||
InferableTypeVars, PartialSpecialization, Specialization, SpecializationBuilder, bind_typevar,
|
||||
typing_self, walk_generic_context,
|
||||
};
|
||||
use crate::types::mro::{Mro, MroError, MroIterator};
|
||||
pub(crate) use crate::types::narrow::infer_narrowing_constraint;
|
||||
|
|
@ -1100,7 +1100,10 @@ impl<'db> Type<'db> {
|
|||
}
|
||||
|
||||
/// If this type is a class instance, returns its specialization.
|
||||
pub(crate) fn class_specialization(self, db: &'db dyn Db) -> Option<Specialization<'db>> {
|
||||
pub(crate) fn class_specialization(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
) -> Option<(ClassLiteral<'db>, Specialization<'db>)> {
|
||||
self.specialization_of_optional(db, None)
|
||||
}
|
||||
|
||||
|
|
@ -1111,15 +1114,17 @@ impl<'db> Type<'db> {
|
|||
expected_class: ClassLiteral<'_>,
|
||||
) -> Option<Specialization<'db>> {
|
||||
self.specialization_of_optional(db, Some(expected_class))
|
||||
.map(|(_, specialization)| specialization)
|
||||
}
|
||||
|
||||
fn specialization_of_optional(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
expected_class: Option<ClassLiteral<'_>>,
|
||||
) -> Option<Specialization<'db>> {
|
||||
) -> Option<(ClassLiteral<'db>, Specialization<'db>)> {
|
||||
let class_type = match self {
|
||||
Type::NominalInstance(instance) => instance,
|
||||
Type::ProtocolInstance(instance) => instance.to_nominal_instance()?,
|
||||
Type::TypeAlias(alias) => alias.value_type(db).as_nominal_instance()?,
|
||||
_ => return None,
|
||||
}
|
||||
|
|
@ -1130,7 +1135,7 @@ impl<'db> Type<'db> {
|
|||
return None;
|
||||
}
|
||||
|
||||
specialization
|
||||
Some((class_literal, specialization?))
|
||||
}
|
||||
|
||||
/// Returns the top materialization (or upper bound materialization) of this type, which is the
|
||||
|
|
@ -4052,69 +4057,110 @@ impl<'db> Type<'db> {
|
|||
where
|
||||
F: FnMut(BoundTypeVarInstance<'db>, Type<'db>, TypeVarVariance, TypeContext<'db>),
|
||||
{
|
||||
self.visit_specialization_impl(
|
||||
let try_visit = &mut |type_var, ty, variance, tcx| -> Result<(), ()> {
|
||||
f(type_var, ty, variance, tcx);
|
||||
Ok(())
|
||||
};
|
||||
|
||||
let _ = self.try_visit_specialization(db, tcx, try_visit);
|
||||
}
|
||||
|
||||
pub(crate) fn try_visit_specialization<F, E>(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
tcx: TypeContext<'db>,
|
||||
mut f: F,
|
||||
) -> Result<(), E>
|
||||
where
|
||||
F: FnMut(
|
||||
BoundTypeVarInstance<'db>,
|
||||
Type<'db>,
|
||||
TypeVarVariance,
|
||||
TypeContext<'db>,
|
||||
) -> Result<(), E>,
|
||||
{
|
||||
self.try_visit_specialization_impl(
|
||||
db,
|
||||
tcx,
|
||||
TypeVarVariance::Covariant,
|
||||
&mut f,
|
||||
&SpecializationVisitor::default(),
|
||||
);
|
||||
)
|
||||
}
|
||||
|
||||
fn visit_specialization_impl(
|
||||
fn try_visit_specialization_impl<E>(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
tcx: TypeContext<'db>,
|
||||
polarity: TypeVarVariance,
|
||||
f: &mut dyn FnMut(BoundTypeVarInstance<'db>, Type<'db>, TypeVarVariance, TypeContext<'db>),
|
||||
f: &mut dyn FnMut(
|
||||
BoundTypeVarInstance<'db>,
|
||||
Type<'db>,
|
||||
TypeVarVariance,
|
||||
TypeContext<'db>,
|
||||
) -> Result<(), E>,
|
||||
visitor: &SpecializationVisitor<'db>,
|
||||
) {
|
||||
let Type::NominalInstance(instance) = self else {
|
||||
match self {
|
||||
Type::Union(union) => {
|
||||
for element in union.elements(db) {
|
||||
element.visit_specialization_impl(db, tcx, polarity, f, visitor);
|
||||
}
|
||||
) -> Result<(), E> {
|
||||
let instance = match self {
|
||||
Type::Union(union) => {
|
||||
for element in union.elements(db) {
|
||||
element.try_visit_specialization_impl(db, tcx, polarity, f, visitor)?;
|
||||
}
|
||||
Type::Intersection(intersection) => {
|
||||
for element in intersection.positive(db) {
|
||||
element.visit_specialization_impl(db, tcx, polarity, f, visitor);
|
||||
}
|
||||
return Ok(());
|
||||
}
|
||||
Type::Intersection(intersection) => {
|
||||
for element in intersection.positive(db) {
|
||||
element.try_visit_specialization_impl(db, tcx, polarity, f, visitor)?;
|
||||
}
|
||||
Type::TypeAlias(alias) => visitor.visit(self, || {
|
||||
return Ok(());
|
||||
}
|
||||
Type::TypeAlias(alias) => {
|
||||
visitor.try_visit(self, || {
|
||||
alias
|
||||
.value_type(db)
|
||||
.visit_specialization_impl(db, tcx, polarity, f, visitor);
|
||||
}),
|
||||
_ => {}
|
||||
}
|
||||
.try_visit_specialization_impl(db, tcx, polarity, f, visitor)
|
||||
})?;
|
||||
|
||||
return;
|
||||
return Ok(());
|
||||
}
|
||||
Type::NominalInstance(instance) => instance,
|
||||
Type::ProtocolInstance(protocol) => match protocol.to_nominal_instance() {
|
||||
Some(instance) => instance,
|
||||
None => return Ok(()),
|
||||
},
|
||||
_ => return Ok(()),
|
||||
};
|
||||
|
||||
let (class_literal, Some(specialization)) = instance.class(db).class_literal(db) else {
|
||||
return;
|
||||
return Ok(());
|
||||
};
|
||||
let generic_context = specialization.generic_context(db);
|
||||
|
||||
// Collect the type mappings used to narrow the type context.
|
||||
let tcx_mappings = {
|
||||
let mut builder =
|
||||
SpecializationBuilder::new(db, generic_context.inferable_typevars(db));
|
||||
|
||||
if let Some(tcx) = tcx.annotation {
|
||||
let alias_instance = Type::instance(db, class_literal.identity_specialization(db));
|
||||
let _ = builder.infer_reverse(tcx, alias_instance);
|
||||
}
|
||||
|
||||
builder.into_type_mappings()
|
||||
};
|
||||
|
||||
let tcx_specialization = tcx.annotation.and_then(|tcx| {
|
||||
tcx.filter_union(db, |ty| ty.specialization_of(db, class_literal).is_some())
|
||||
.specialization_of(db, class_literal)
|
||||
});
|
||||
for (type_var, ty) in generic_context.variables(db).zip(specialization.types(db)) {
|
||||
let variance = type_var.variance_with_polarity(db, polarity);
|
||||
let narrowed_tcx = TypeContext::new(tcx_mappings.get(&type_var.identity(db)).copied());
|
||||
|
||||
for (typevar, ty) in specialization
|
||||
.generic_context(db)
|
||||
.variables(db)
|
||||
.zip(specialization.types(db))
|
||||
{
|
||||
let variance = typevar.variance_with_polarity(db, polarity);
|
||||
let tcx = TypeContext::new(tcx_specialization.and_then(|spec| spec.get(db, typevar)));
|
||||
f(type_var, *ty, variance, narrowed_tcx)?;
|
||||
|
||||
f(typevar, *ty, variance, tcx);
|
||||
|
||||
visitor.visit(*ty, || {
|
||||
ty.visit_specialization_impl(db, tcx, variance, f, visitor);
|
||||
});
|
||||
visitor.try_visit(*ty, || {
|
||||
ty.try_visit_specialization_impl(db, narrowed_tcx, variance, f, visitor)
|
||||
})?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Return true if there is just a single inhabitant for this type.
|
||||
|
|
@ -6313,30 +6359,35 @@ impl<'db> Type<'db> {
|
|||
}
|
||||
|
||||
Some(KnownClass::Tuple) => {
|
||||
let object = Type::object();
|
||||
let element_ty =
|
||||
BoundTypeVarInstance::synthetic(db, "T", TypeVarVariance::Covariant);
|
||||
|
||||
// ```py
|
||||
// class tuple:
|
||||
// class tuple(Sequence[_T_co]):
|
||||
// @overload
|
||||
// def __new__(cls) -> tuple[()]: ...
|
||||
// @overload
|
||||
// def __new__(cls, iterable: Iterable[object]) -> tuple[object, ...]: ...
|
||||
// def __new__(cls, iterable: Iterable[_T_co]) -> tuple[_T_co, ...]: ...
|
||||
// ```
|
||||
CallableBinding::from_overloads(
|
||||
self,
|
||||
[
|
||||
Signature::new(Parameters::empty(), Some(Type::empty_tuple(db))),
|
||||
Signature::new(
|
||||
Signature::new_generic(
|
||||
Some(GenericContext::from_typevar_instances(db, [element_ty])),
|
||||
Parameters::new(
|
||||
db,
|
||||
[Parameter::positional_only(Some(Name::new_static(
|
||||
"iterable",
|
||||
)))
|
||||
.with_annotated_type(
|
||||
KnownClass::Iterable.to_specialized_instance(db, [object]),
|
||||
KnownClass::Iterable.to_specialized_instance(
|
||||
db,
|
||||
[Type::TypeVar(element_ty)],
|
||||
),
|
||||
)],
|
||||
),
|
||||
Some(Type::homogeneous_tuple(db, object)),
|
||||
Some(Type::homogeneous_tuple(db, Type::TypeVar(element_ty))),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
|
@ -7825,6 +7876,7 @@ impl<'db> Type<'db> {
|
|||
}
|
||||
TypeMapping::Specialization(_) |
|
||||
TypeMapping::PartialSpecialization(_) |
|
||||
TypeMapping::IdentitySpecialization |
|
||||
TypeMapping::PromoteLiterals(_) |
|
||||
TypeMapping::BindSelf { .. } |
|
||||
TypeMapping::ReplaceSelf { .. } |
|
||||
|
|
@ -8001,6 +8053,7 @@ impl<'db> Type<'db> {
|
|||
| Type::EnumLiteral(_) => match type_mapping {
|
||||
TypeMapping::Specialization(_) |
|
||||
TypeMapping::PartialSpecialization(_) |
|
||||
TypeMapping::IdentitySpecialization |
|
||||
TypeMapping::BindLegacyTypevars(_) |
|
||||
TypeMapping::BindSelf { .. } |
|
||||
TypeMapping::ReplaceSelf { .. } |
|
||||
|
|
@ -8014,6 +8067,7 @@ impl<'db> Type<'db> {
|
|||
Type::Dynamic(_) => match type_mapping {
|
||||
TypeMapping::Specialization(_) |
|
||||
TypeMapping::PartialSpecialization(_) |
|
||||
TypeMapping::IdentitySpecialization |
|
||||
TypeMapping::BindLegacyTypevars(_) |
|
||||
TypeMapping::BindSelf { .. } |
|
||||
TypeMapping::ReplaceSelf { .. } |
|
||||
|
|
@ -8725,6 +8779,8 @@ pub enum TypeMapping<'a, 'db> {
|
|||
Specialization(Specialization<'db>),
|
||||
/// Applies a partial specialization to the type
|
||||
PartialSpecialization(PartialSpecialization<'a, 'db>),
|
||||
/// Resets any specializations to their identity.
|
||||
IdentitySpecialization,
|
||||
/// Replaces any literal types with their corresponding promoted type form (e.g. `Literal["string"]`
|
||||
/// to `str`, or `def _() -> int` to `Callable[[], int]`).
|
||||
PromoteLiterals(PromoteLiteralsMode),
|
||||
|
|
@ -8758,6 +8814,7 @@ impl<'db> TypeMapping<'_, 'db> {
|
|||
match self {
|
||||
TypeMapping::Specialization(_)
|
||||
| TypeMapping::PartialSpecialization(_)
|
||||
| TypeMapping::IdentitySpecialization
|
||||
| TypeMapping::PromoteLiterals(_)
|
||||
| TypeMapping::BindLegacyTypevars(_)
|
||||
| TypeMapping::Materialize(_)
|
||||
|
|
@ -8792,6 +8849,7 @@ impl<'db> TypeMapping<'_, 'db> {
|
|||
TypeMapping::PromoteLiterals(mode) => TypeMapping::PromoteLiterals(mode.flip()),
|
||||
TypeMapping::Specialization(_)
|
||||
| TypeMapping::PartialSpecialization(_)
|
||||
| TypeMapping::IdentitySpecialization
|
||||
| TypeMapping::BindLegacyTypevars(_)
|
||||
| TypeMapping::BindSelf { .. }
|
||||
| TypeMapping::ReplaceSelf { .. }
|
||||
|
|
@ -10381,6 +10439,7 @@ impl<'db> BoundTypeVarInstance<'db> {
|
|||
})
|
||||
.unwrap_or(Type::TypeVar(self))
|
||||
}
|
||||
TypeMapping::IdentitySpecialization => Type::TypeVar(self),
|
||||
TypeMapping::PartialSpecialization(partial) => {
|
||||
let typevar = if self.is_paramspec(db) {
|
||||
self.without_paramspec_attr(db)
|
||||
|
|
|
|||
|
|
@ -321,7 +321,7 @@ impl<'db> BoundSuperType<'db> {
|
|||
Type::NominalInstance(instance) => SuperOwnerKind::Instance(instance),
|
||||
|
||||
Type::ProtocolInstance(protocol) => {
|
||||
if let Some(nominal_instance) = protocol.as_nominal_type() {
|
||||
if let Some(nominal_instance) = protocol.to_nominal_instance() {
|
||||
SuperOwnerKind::Instance(nominal_instance)
|
||||
} else {
|
||||
return Err(BoundSuperError::AbstractOwnerType {
|
||||
|
|
|
|||
|
|
@ -3004,7 +3004,7 @@ impl<'a, 'db> ArgumentTypeChecker<'a, 'db> {
|
|||
tcx.filter_union(self.db, |ty| ty.class_specialization(self.db).is_some())
|
||||
.class_specialization(self.db)?;
|
||||
|
||||
builder.infer(return_ty, tcx).ok()?;
|
||||
builder.infer_reverse(tcx, return_ty).ok()?;
|
||||
Some(builder.type_mappings().clone())
|
||||
});
|
||||
|
||||
|
|
|
|||
|
|
@ -122,14 +122,14 @@ impl<Tag, T: Hash + Eq + Clone, R: Clone> CycleDetector<Tag, T, R> {
|
|||
ret
|
||||
}
|
||||
|
||||
pub fn try_visit(&self, item: T, func: impl FnOnce() -> Option<R>) -> Option<R> {
|
||||
pub fn try_visit<E>(&self, item: T, func: impl FnOnce() -> Result<R, E>) -> Result<R, E> {
|
||||
if let Some(val) = self.cache.borrow().get(&item) {
|
||||
return Some(val.clone());
|
||||
return Ok(val.clone());
|
||||
}
|
||||
|
||||
// We hit a cycle
|
||||
if !self.seen.borrow_mut().insert(item.clone()) {
|
||||
return Some(self.fallback.clone());
|
||||
return Ok(self.fallback.clone());
|
||||
}
|
||||
|
||||
// Check depth limit to prevent stack overflow from recursive generic protocols
|
||||
|
|
@ -137,7 +137,7 @@ impl<Tag, T: Hash + Eq + Clone, R: Clone> CycleDetector<Tag, T, R> {
|
|||
let current_depth = self.depth.get();
|
||||
if current_depth >= MAX_RECURSION_DEPTH {
|
||||
self.seen.borrow_mut().pop();
|
||||
return Some(self.fallback.clone());
|
||||
return Ok(self.fallback.clone());
|
||||
}
|
||||
self.depth.set(current_depth + 1);
|
||||
|
||||
|
|
@ -147,7 +147,7 @@ impl<Tag, T: Hash + Eq + Clone, R: Clone> CycleDetector<Tag, T, R> {
|
|||
self.seen.borrow_mut().pop();
|
||||
self.cache.borrow_mut().insert(item, ret.clone());
|
||||
|
||||
Some(ret)
|
||||
Ok(ret)
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1046,6 +1046,10 @@ impl<'db> Specialization<'db> {
|
|||
return self.materialize_impl(db, *materialization_kind, visitor);
|
||||
}
|
||||
|
||||
if *type_mapping == TypeMapping::IdentitySpecialization {
|
||||
return self.generic_context(db).identity_specialization(db);
|
||||
}
|
||||
|
||||
let types: Box<[_]> = self
|
||||
.types(db)
|
||||
.iter()
|
||||
|
|
@ -1505,6 +1509,11 @@ impl<'db> SpecializationBuilder<'db> {
|
|||
&self.types
|
||||
}
|
||||
|
||||
/// Returns the current set of type mappings for this specialization.
|
||||
pub(crate) fn into_type_mappings(self) -> FxHashMap<BoundTypeVarIdentity<'db>, Type<'db>> {
|
||||
self.types
|
||||
}
|
||||
|
||||
/// Map the types that have been assigned in this specialization.
|
||||
pub(crate) fn mapped(
|
||||
&self,
|
||||
|
|
@ -1964,12 +1973,61 @@ impl<'db> SpecializationBuilder<'db> {
|
|||
}
|
||||
}
|
||||
|
||||
(_, Type::TypeAlias(alias)) => {
|
||||
return self.infer_map_impl(formal, alias.value_type(self.db), polarity, f);
|
||||
}
|
||||
|
||||
// TODO: Add more forms that we can structurally induct into: type[C], callables
|
||||
_ => {}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Infer type mappings for the specialization in the reverse direction, i.e., where the given type, not the
|
||||
/// declared type, contains inferable type variables.
|
||||
pub(crate) fn infer_reverse(
|
||||
&mut self,
|
||||
formal: Type<'db>,
|
||||
actual: Type<'db>,
|
||||
) -> Result<(), SpecializationError<'db>> {
|
||||
let identity_formal = formal.apply_type_mapping(
|
||||
self.db,
|
||||
&TypeMapping::IdentitySpecialization,
|
||||
TypeContext::default(),
|
||||
);
|
||||
|
||||
// Collect any type variables on the formal type.
|
||||
let mut formal_type_vars = Vec::new();
|
||||
formal.visit_specialization(self.db, TypeContext::default(), |typevar, _, _, _| {
|
||||
formal_type_vars.push(typevar);
|
||||
});
|
||||
|
||||
let inferable_type_vars = GenericContext::from_typevar_instances(self.db, formal_type_vars)
|
||||
.inferable_typevars(self.db);
|
||||
|
||||
// Perform type inference in the forward direction with the inferable identity types,
|
||||
// collecting the forward type mappings.
|
||||
let forward_type_mappings = {
|
||||
let mut builder = SpecializationBuilder::new(self.db, inferable_type_vars);
|
||||
builder.infer(identity_formal, actual)?;
|
||||
builder.type_mappings().clone()
|
||||
};
|
||||
|
||||
// If there are no forward type mappings, try the other direction.
|
||||
if forward_type_mappings.is_empty() {
|
||||
return self.infer(actual, formal);
|
||||
}
|
||||
|
||||
formal.try_visit_specialization(self.db, TypeContext::default(), |type_var, ty, _, _| {
|
||||
// Reverse the type mappings and specialize them to their assigned types.
|
||||
if let Some(formal) = forward_type_mappings.get(&type_var.identity(self.db)) {
|
||||
self.infer(*formal, ty)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Eq, PartialEq)]
|
||||
|
|
|
|||
|
|
@ -7808,16 +7808,23 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
|
|||
{
|
||||
// Extract the type variable `T` from `list[T]` in typeshed.
|
||||
let elt_tys = |collection_class: KnownClass| {
|
||||
let class_literal = collection_class.try_to_class_literal(self.db())?;
|
||||
let generic_context = class_literal.generic_context(self.db())?;
|
||||
let collection_alias = collection_class
|
||||
.try_to_class_literal(self.db())?
|
||||
.identity_specialization(self.db())
|
||||
.into_generic_alias()?;
|
||||
|
||||
let generic_context = collection_alias
|
||||
.specialization(self.db())
|
||||
.generic_context(self.db());
|
||||
|
||||
Some((
|
||||
class_literal,
|
||||
collection_alias,
|
||||
generic_context,
|
||||
generic_context.variables(self.db()),
|
||||
))
|
||||
};
|
||||
|
||||
let Some((class_literal, generic_context, elt_tys)) = elt_tys(collection_class) else {
|
||||
let Some((collection_alias, generic_context, elt_tys)) = elt_tys(collection_class) else {
|
||||
// Infer the element types without type context, and fallback to unknown for
|
||||
// custom typesheds.
|
||||
for elt in elts.flatten().flatten() {
|
||||
|
|
@ -7838,41 +7845,47 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
|
|||
annotation.filter_disjoint_elements(self.db(), collection_ty, inferable)
|
||||
});
|
||||
|
||||
// Extract the annotated type of `T`, if provided.
|
||||
let annotated_elt_tys = tcx
|
||||
.known_specialization(self.db(), collection_class)
|
||||
.map(|specialization| specialization.types(self.db()));
|
||||
// Collect type constraints from the declared element types.
|
||||
let elt_tcx_constraints = {
|
||||
let mut builder = SpecializationBuilder::new(
|
||||
self.db(),
|
||||
generic_context.inferable_typevars(self.db()),
|
||||
);
|
||||
|
||||
if let Some(tcx) = tcx.annotation
|
||||
// If there are multiple potential type contexts, we fallback to `Unknown`.
|
||||
// TODO: We could perform multi-inference here.
|
||||
&& tcx
|
||||
.filter_union(self.db(), |ty| ty.class_specialization(self.db()).is_some())
|
||||
.class_specialization(self.db())
|
||||
.is_some()
|
||||
{
|
||||
let collection_instance =
|
||||
Type::instance(self.db(), ClassType::Generic(collection_alias));
|
||||
builder.infer_reverse(tcx, collection_instance).ok()?;
|
||||
}
|
||||
|
||||
builder.into_type_mappings()
|
||||
};
|
||||
|
||||
// Create a set of constraints to infer a precise type for `T`.
|
||||
let mut builder = SpecializationBuilder::new(self.db(), inferable);
|
||||
|
||||
match annotated_elt_tys {
|
||||
// The annotated type acts as a constraint for `T`.
|
||||
//
|
||||
// Note that we infer the annotated type _before_ the elements, to more closely match the
|
||||
// order of any unions as written in the type annotation.
|
||||
Some(annotated_elt_tys) => {
|
||||
for (elt_ty, annotated_elt_ty) in iter::zip(elt_tys.clone(), annotated_elt_tys) {
|
||||
builder
|
||||
.infer(Type::TypeVar(elt_ty), *annotated_elt_ty)
|
||||
.ok()?;
|
||||
}
|
||||
}
|
||||
for elt_ty in elt_tys.clone() {
|
||||
let elt_tcx = elt_tcx_constraints
|
||||
// The annotated type acts as a constraint for `T`.
|
||||
//
|
||||
// Note that we infer the annotated type _before_ the elements, to more closely match the
|
||||
// order of any unions as written in the type annotation.
|
||||
.get(&elt_ty.identity(self.db()))
|
||||
.copied()
|
||||
// If a valid type annotation was not provided, avoid restricting the type of the collection
|
||||
// by unioning the inferred type with `Unknown`.
|
||||
.unwrap_or(Type::unknown());
|
||||
|
||||
// If a valid type annotation was not provided, avoid restricting the type of the collection
|
||||
// by unioning the inferred type with `Unknown`.
|
||||
None => {
|
||||
for elt_ty in elt_tys.clone() {
|
||||
builder.infer(Type::TypeVar(elt_ty), Type::unknown()).ok()?;
|
||||
}
|
||||
}
|
||||
builder.infer(Type::TypeVar(elt_ty), elt_tcx).ok()?;
|
||||
}
|
||||
|
||||
let elt_tcxs = match annotated_elt_tys {
|
||||
None => Either::Left(iter::repeat(TypeContext::default())),
|
||||
Some(tys) => Either::Right(tys.iter().map(|ty| TypeContext::new(Some(*ty)))),
|
||||
};
|
||||
|
||||
for elts in elts {
|
||||
// An unpacking expression for a dictionary.
|
||||
if let &[None, Some(value)] = elts.as_slice() {
|
||||
|
|
@ -7895,10 +7908,14 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
|
|||
}
|
||||
|
||||
// The inferred type of each element acts as an additional constraint on `T`.
|
||||
for (elt, elt_ty, elt_tcx) in itertools::izip!(elts, elt_tys.clone(), elt_tcxs.clone())
|
||||
{
|
||||
for (elt, elt_ty) in iter::zip(elts, elt_tys.clone()) {
|
||||
let Some(elt) = elt else { continue };
|
||||
|
||||
let elt_tcx = TypeContext::new(
|
||||
elt_tcx_constraints
|
||||
.get(&elt_ty.identity(self.db()))
|
||||
.copied(),
|
||||
);
|
||||
let inferred_elt_ty = infer_elt_expression(self, elt, elt_tcx);
|
||||
|
||||
// Simplify the inference based on the declared type of the element.
|
||||
|
|
@ -7916,8 +7933,9 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
|
|||
}
|
||||
}
|
||||
|
||||
let class_type =
|
||||
class_literal.apply_specialization(self.db(), |_| builder.build(generic_context));
|
||||
let class_type = collection_alias
|
||||
.origin(self.db())
|
||||
.apply_specialization(self.db(), |_| builder.build(generic_context));
|
||||
|
||||
Type::from(class_type).to_instance(self.db())
|
||||
}
|
||||
|
|
@ -8398,7 +8416,6 @@ impl<'db, 'ast> TypeInferenceBuilder<'db, 'ast> {
|
|||
call_expression: &ast::ExprCall,
|
||||
tcx: TypeContext<'db>,
|
||||
) -> Type<'db> {
|
||||
// TODO: Use the type context for more precise inference.
|
||||
let callable_type =
|
||||
self.infer_maybe_standalone_expression(&call_expression.func, TypeContext::default());
|
||||
|
||||
|
|
|
|||
|
|
@ -165,7 +165,7 @@ impl<'db> Type<'db> {
|
|||
// This matches the behaviour of other type checkers, and is required for us to
|
||||
// recognise `str` as a subtype of `Container[str]`.
|
||||
structurally_satisfied.or(db, || {
|
||||
let Some(nominal_instance) = protocol.as_nominal_type() else {
|
||||
let Some(nominal_instance) = protocol.to_nominal_instance() else {
|
||||
return ConstraintSet::from(false);
|
||||
};
|
||||
|
||||
|
|
@ -175,7 +175,7 @@ impl<'db> Type<'db> {
|
|||
// `Q`'s members in a Liskov-incompatible way.
|
||||
let type_to_test = self
|
||||
.as_protocol_instance()
|
||||
.and_then(ProtocolInstanceType::as_nominal_type)
|
||||
.and_then(ProtocolInstanceType::to_nominal_instance)
|
||||
.map(Type::NominalInstance)
|
||||
.unwrap_or(self);
|
||||
|
||||
|
|
@ -658,7 +658,7 @@ impl<'db> ProtocolInstanceType<'db> {
|
|||
/// If this is a synthesized protocol that does not correspond to a class definition
|
||||
/// in source code, return `None`. These are "pure" abstract types, that cannot be
|
||||
/// treated in a nominal way.
|
||||
pub(super) fn as_nominal_type(self) -> Option<NominalInstanceType<'db>> {
|
||||
pub(super) fn to_nominal_instance(self) -> Option<NominalInstanceType<'db>> {
|
||||
match self.inner {
|
||||
Protocol::FromClass(class) => {
|
||||
Some(NominalInstanceType(NominalInstanceInner::NonTuple(*class)))
|
||||
|
|
|
|||
Loading…
Reference in New Issue