## Summary
Fixes a bug observed by @AlexWaygood where `C[Any] <: C[object]` should
hold for a class that is covariant in its type parameter (and similar
subtyping relations involving dynamic types for other variance
configurations).
## Test Plan
New and updated Markdown tests
While working on #20093, I kept running into test failures due to
constraint sets not simplifying as much as they could, and therefore not
being easily testable against "always true" and "always false".
This PR updates our constraint set representation to use BDDs. Because
BDDs are reduced and ordered, they are canonical — equivalent boolean
formulas are represented by the same interned BDD node.
That said, there is a wrinkle, in that the "variables" that we use in
these BDDs — the individual constraints like `Lower ≤ T ≤ Upper` are not
always independent of each other.
As an example, given types `A ≤ B ≤ C ≤ D` and a typevar `T`, the
constraints `A ≤ T ≤ C` and `B ≤ T ≤ D` "overlap" — their intersection
is non-empty. So we should be able to simplify
```
(A ≤ T ≤ C) ∧ (B ≤ T ≤ D) == (B ≤ T ≤ C)
```
That's not a simplification that the BDD structure can perform itself,
since those three constraints are modeled as separate BDD variables, and
are therefore "opaque" to the BDD algorithms.
That means we need to perform this kind of simplification ourselves. We
look at pairs of constraints that appear in a BDD and see if they can be
simplified relative to each other, and if so, replace the pair with the
simplification. A large part of the toil of getting this PR to work was
identifying all of those patterns and getting that substitution logic
correct.
With this new representation, all existing tests pass, as well as some
new ones that represent test failures that were occuring on #20093.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Closes: https://github.com/astral-sh/ty/issues/551
This PR adds support for step 4 of the overload call evaluation
algorithm which states that:
> If the argument list is compatible with two or more overloads,
determine whether one or more of the overloads has a variadic parameter
(either `*args` or `**kwargs`) that maps to a corresponding argument
that supplies an indeterminate number of positional or keyword
arguments. If so, eliminate overloads that do not have a variadic
parameter.
And, with that, the overload call evaluation algorithm has been
implemented completely end to end as stated in the typing spec.
## Test Plan
Expand the overload call test suite.
## Summary
This removes a hack in the protocol satisfiability check that was
previously needed to work around missing assignability-modeling of
inferable type variables. Assignability of type variables is not
implemented fully, but some recent changes allow us to remove that hack
with limited impact on the ecosystem (and the test suite). The change in
the typing conformance test is favorable.
## Test Plan
* Adapted Markdown tests
* Made sure that this change works in combination with
https://github.com/astral-sh/ruff/pull/20517
## Summary
Closes: https://github.com/astral-sh/ty/issues/1236
This PR fixes a bug where the variadic argument wouldn't match against
the variadic parameter in certain scenarios.
This was happening because I didn't realize that the `all_elements`
iterator wouldn't keep on returning the variable element (which is
correct, I just didn't realize it back then).
I don't think we can use the `resize` method here because we don't know
how many parameters this variadic argument is matching against as this
is where the actual parameter matching occurs.
## Test Plan
Expand test cases to consider a few more combinations of arguments and
parameters which are variadic.
## Summary
This applies the trick that we use for `builtins.open` to similar
functions that have the same problem. The reason is that the problem
would otherwise become even more pronounced once we add understanding of
the implicit type of `self` parameters, because then something like
`(base_path / "test.bin").open("rb")` also leads to a wrong return type
and can result in false positives.
## Test Plan
New Markdown tests
## Summary
I found this bug while working on #20528.
The minimum reproducible code is:
```python
from __future__ import annotations
from typing import NamedTuple
from ty_extensions import is_disjoint_from, static_assert
class Path(NamedTuple):
prev: Path | None
key: str
static_assert(not is_disjoint_from(Path, Path))
```
A stack overflow occurs when a nominal instance type inherits from
`NamedTuple` and is defined recursively.
This PR fixes this bug.
## Test Plan
mdtest updated
### Summary
This PR includes two changes, both of which are necessary to resolve
https://github.com/astral-sh/ty/issues/1196:
* For a generic class `C[T]`, we previously used `C[Unknown]` as the
upper bound of the `Self` type variable. There were two problems with
this. For one, when `Self` appeared in contravariant position, we would
materialize its upper bound to `Bottom[C[Unknown]]` (which might
simplify to `C[Never]` if `C` is covariant in `T`) when accessing
methods on `Top[C[Unknown]]`. This would result in `invalid-argument`
errors on the `self` parameter. Also, using an upper bound of
`C[Unknown]` would mean that inside methods, references to `T` would be
treated as `Unknown`. This could lead to false negatives. To fix this,
we now use `C[T]` (with a "nested" typevar) as the upper bound for
`Self` on `C[T]`.
* In order to make this work, we needed to allow assignability/subtyping
of inferable typevars to other types, since we now check assignability
of e.g. `C[int]` to `C[T]` (when checking assignability to the upper
bound of `Self`) when calling an instance-method on `C[int]` whose
`self` parameter is annotated as `self: Self` (or implicitly `Self`,
following https://github.com/astral-sh/ruff/pull/18007).
closes https://github.com/astral-sh/ty/issues/1196
closes https://github.com/astral-sh/ty/issues/1208
### Test Plan
Regression tests for both issues.
## Summary
@ibraheemdev notes this example failed
```py
from typing import Callable
class X:
...
def f(callable: Callable[[], X]) -> X:
return callable()
x = f(X)
```
Resolves https://github.com/astral-sh/ty/issues/1210
The issue was that we set the `Self` to the class type instead of the
instance type of the class.
## Test Plan
Fix tests in `is_subtype_of.md`
## Summary
Fixes https://github.com/astral-sh/ty/issues/1218.
This bug doesn't currently cause us any real-world issues, because we
don't yet understand the signatures typeshed gives us for `isinstance()`
and `issubclass()` (typeshed's annotations there use PEP-613 type
aliases). #20107 demonstrates that this will start causing us issues as
soon as we add support for PEP-613 aliases, however, so it makes sense
to fix it now.
## Test Plan
Added mdtests
## Summary
This PR adds support for unpacking `**kwargs` argument.
This can be matched against any standard (positional or keyword),
keyword-only, or keyword variadic parameter that haven't been matched
yet.
This PR also takes care of special casing `TypedDict` because the key
names and the corresponding value type is known, so we can be more
precise in our matching and type checking step. In the future, this
special casing would be extended to include `ParamSpec` as well.
Part of astral-sh/ty#247
## Test Plan
Add test cases for various scenarios.
## Summary
Part of https://github.com/astral-sh/ty/issues/168. Infer more precise types for collection literals (currently, only `list` and `set`). For example,
```py
x = [1, 2, 3] # revealed: list[Unknown | int]
y: list[int] = [1, 2, 3] # revealed: list[int]
```
This could easily be extended to `dict` literals, but I am intentionally limiting scope for now.
Fixes: https://github.com/astral-sh/ty/issues/1173
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR will change the logic of binding Self type variables to bind
self to the immediate function that it's used on.
Since we are binding `self` to methods and not the class itself we need
to ensure that we bind self consistently.
The fix is to traverse scopes containing the self and find the first
function inside a class and use that function to bind the typevar for
self.
If no such scope is found we fallback to the normal behavior. Using Self
outside of a class scope is not legal anyway.
## Test Plan
Added a new mdtest.
Checked the diagnostics that are not emitted anymore in [primer
results](https://github.com/astral-sh/ruff/pull/20366#issuecomment-3289411424).
It looks good altough I don't completely understand what was wrong
before.
---------
Co-authored-by: Douglas Creager <dcreager@dcreager.net>
## Summary
Catch infinite recursion in binary-compare inference.
Fixes the stack overflow in `graphql-core` in mypy-primer.
## Test Plan
Added two tests that stack-overflowed before this PR.
## Summary
Use `Type::Divergent` to short-circuit diverging types in type
expressions. This avoids panicking in a wide variety of cases of
recursive type expressions.
Avoids many panics (but not yet all -- I'll be tracking down the rest)
from https://github.com/astral-sh/ty/issues/256 by falling back to
Divergent. For many of these recursive type aliases, we'd like to
support them properly (i.e. really understand the recursive nature of
the type, not just fall back to Divergent) but that will be future work.
This switches `Type::has_divergent_type` from using `any_over_type` to a
custom set of visit methods, because `any_over_type` visits more than we
need to visit, and exercises some lazy attributes of type, causing
significantly more work. This change means this diff doesn't regress
perf; it even reclaims some of the perf regression from
https://github.com/astral-sh/ruff/pull/20333.
## Test Plan
Added mdtest for recursive type alias that panics on main.
Verified that we can now type-check `packaging` (and projects depending
on it) without panic; this will allow moving a number of mypy-primer
projects from `bad.txt` to `good.txt` in a subsequent PR.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements F406
https://docs.astral.sh/ruff/rules/undefined-local-with-nested-import-star-usage/
as a semantic syntax error
## Test Plan
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Previously, we used a very fine-grained representation for individual
constraints: each constraint was _either_ a range constraint, a
not-equivalent constraint, or an incomparable constraint. These three
pieces are enough to represent all of the "real" constraints we need to
create — range constraints and their negation.
However, it meant that we weren't picking up as many chances to simplify
constraint sets as we could. Our simplification logic depends on being
able to look at _pairs_ of constraints or clauses to see if they
simplify relative to each other. With our fine-grained representation,
we could easily encounter situations that we should have been able to
simplify, but that would require looking at three or more individual
constraints.
For instance, negating a range constraint would produce:
```
¬(Base ≤ T ≤ Super) = ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨
((Super ≤ T) ∧ (T ≠ Super)) ∨ (T ≁ Super)
```
That is, `T` must be (strictly) less than `Base`, (strictly) greater
than `Super`, or incomparable to either.
If we tried to union those back together, we should get `always`, since
`x ∨ ¬x` should always be true, no matter what `x` is. But instead we
would get:
```
(Base ≤ T ≤ Super) ∨ ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨ ((Super ≤ T) ∧ (T ≠
Super)) ∨ (T ≁ Super)
```
Nothing would simplify relative to each other, because we'd have to look
at all five union elements to see that together they do in fact combine
to `always`.
The fine-grained representation was nice, because it made it easier to
[work out the math](https://dcreager.net/theory/constraints/) for
intersections and unions of each kind of constraint. But being able to
simplify is more important, since the example above comes up immediately
in #20093 when trying to handle constrained typevars.
The fix in this PR is to go back to a more coarse-grained
representation, where each individual constraint consists of a positive
range (which might be `always` / `Never ≤ T ≤ object`), and zero or more
negative ranges. The intuition is to think of a constraint as a region
of the type space (representable as a range) with zero or more "holes"
removed from it.
With this representation, negating a range constraint produces:
```
¬(Base ≤ T ≤ Super) = (always ∧ ¬(Base ≤ T ≤ Super))
```
(That looks trivial, because it is! We just move the positive range to
the negative side.)
The math is not that much harder than before, because there are only
three combinations to consider (each for intersection and union) —
though the fact that there can be multiple holes in a constraint does
require some nested loops. But the mdtest suite gives me confidence that
this is not introducing any new issues, and it definitely removes a
troublesome TODO.
(As an aside, this change also means that we are back to having each
clause contain no more than one individual constraint for any typevar.
This turned out to be important, because part of our simplification
logic was also depending on that!)
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Fixes https://github.com/astral-sh/ty/issues/1161
Include `NamedTupleFallback` members in `NamedTuple` instance
completions.
- Augment instance attribute completions when completing on NamedTuple
instances by merging members from
`_typeshed._type_checker_internals.NamedTupleFallback`
## Test Plan
Adds a minimal completion test `namedtuple_fallback_instance_methods`
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This project was [recently removed from
mypy_primer](https://github.com/astral-sh/ruff/pull/20378), so we need
to remove it from `good.txt` in order for ecosystem-analyzer to work
correctly.
## Test Plan
Run mypy_primer and ecosystem-analyzer on this branch.
## Summary
https://github.com/astral-sh/ruff/pull/20165 added a lot of false
positives around calls to `builtins.open()`, because our missing support
for PEP-613 type aliases means that we don't understand typeshed's
overloads for `builtins.open()` at all yet, and therefore always select
the first overload. This didn't use to matter very much, but now that we
have a much stricter implementation of protocol assignability/subtyping
it matters a lot, because most of the stdlib functions dealing with I/O
(`pickle`, `marshal`, `io`, `json`, etc.) are annotated in typeshed as
taking in protocols of some kind.
In lieu of full PEP-613 support, which is blocked on various things and
might not land in time for our next alpha release, this PR adds some
temporary special-casing for `builtins.open()` to avoid the false
positives. We just infer `Todo` for anything that isn't meant to match
typeshed's first `open()` overload. This should be easy to rip out again
once we have proper support for PEP-613 type aliases, which hopefully
should be pretty soon!
## Test Plan
Added an mdtest
## Summary
Fixes https://github.com/astral-sh/ty/issues/377.
We were treating any function as being assignable to any callback
protocol, because we were trying to figure out a type's `Callable`
supertype by looking up the `__call__` attribute on the type's
meta-type. But a function-literal's meta-type is `types.FunctionType`,
and `types.FunctionType.__call__` is `(...) -> Any`, which is not very
helpful!
While working on this PR, I also realised that assignability between
class-literals and callback protocols was somewhat broken too, so I
fixed that at the same time.
## Test Plan
Added mdtests
## Summary
This PR addresses an issue for a variadic argument when involved in
argument type expansion of overload call evaluation.
The issue is that the expansion of the variadic argument could result in
argument list of different arity. For example, in `*args: tuple[int] |
tuple[int, str]`, the expansion would lead to the variadic argument
being unpacked into 1 and 2 element respectively. This means that the
parameter matching that was performed initially isn't sufficient and
each expanded argument list would need to redo the parameter matching
again.
This is currently done by redoing the parameter matching directly,
maintaining the state of argument forms (and the conflicting forms), and
updating the `Bindings` values if it changes.
Closes: astral-sh/ty#735
## Test Plan
Update existing mdtest.
## Summary
Use `Type::Divergent` to avoid "too many iterations" panic on an
infinitely-nested tuple in an implicit instance attribute.
The regression here is from checking all tuple elements to see if they
contain a Divergent type. It's 5% on one project, 1% on another, and
zero on the rest. I spent some time looking into eliminating this
regression by tracking a flag on inference results to note if they could
possibly contain any Divergent type, but this doesn't really work --
there are too many different ways a type containing a Divergent type
could enter an inference result. Still thinking about whether there are
other ways to reduce this. One option is if we see certain kinds of
non-atomic types that are commonly expensive to check for Divergent, we
could make `has_divergent_type` a Salsa query on those types.
## Test Plan
Added mdtest.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
`CallableTypeOf[bound_method]` would previously bind `self` to the
bound method type itself, instead of binding it to the instance type
stored inside the bound method type.
## Test Plan
Added regression test
This PR adds a new `ty_extensions.ConstraintSet` class, which is used to
expose constraint sets to our mdtest framework. This lets us write a
large collection of unit tests that exercise the invariants and rewrite
rules of our constraint set implementation.
As part of this, `is_assignable_to` and friends are updated to return a
`ConstraintSet` instead of a `bool`, and we implement
`ConstraintSet.__bool__` to return when a constraint set is always
satisfied. That lets us still use
`static_assert(is_assignable_to(...))`, since the assertion will coerce
the constraint set to a bool, and also lets us
`reveal_type(is_assignable_to(...))` to see more detail about
whether/when the two types are assignable. That lets us get rid of
`reveal_when_assignable_to` and friends, since they are now redundant
with the expanded capabilities of `is_assignable_to`.
## Summary
When adding an enum literal `E = Literal[Color.RED]` to a union which
already contained a subtype of that enum literal(!), we were previously
not simplifying the union correctly. My assumption is that our property
tests didn't catch that earlier, because the only possible non-trivial
subytpe of an enum literal that I can think of is `Any & E`. And in
order for that to be detected by the property tests, it would have to
randomly generate `Any & E | E` and then also compare that with `E` on
the other side (in an equivalence test, or the subtyping-antisymmetry
test).
closes https://github.com/astral-sh/ty/issues/1155
## Test Plan
* Added a regression test.
* I also ran the property tests for a while, but probably not for two
months worth of daily CI runs.
## Summary
This is a follow-up to https://github.com/astral-sh/ruff/pull/19321.
Now lazy snapshots are updated to take into account new bindings on
every symbol reassignment.
```python
def outer(x: A | None):
if x is None:
x = A()
reveal_type(x) # revealed: A
def inner() -> None:
# lazy snapshot: {x: A}
reveal_type(x) # revealed: A
inner()
def outer() -> None:
x = None
x = 1
def inner() -> None:
# lazy snapshot: {x: Literal[1]} -> {x: Literal[1, 2]}
reveal_type(x) # revealed: Literal[1, 2]
inner()
x = 2
```
Closesastral-sh/ty#559.
## Test Plan
Some TODOs in `public_types.md` now work properly.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Adds support for generic PEP695 type aliases, e.g.,
```python
type A[T] = T
reveal_type(A[int]) # A[int]
```
Resolves https://github.com/astral-sh/ty/issues/677.
## Summary
Support cases like the following, where we need the generic context to
include both `Self` and `T` (not just `T`):
```py
from typing import Self
class C:
def method[T](self: Self, arg: T): ...
C().method(1)
```
closes https://github.com/astral-sh/ty/issues/1131
## Test Plan
Added regression test
## Summary
The sub-checks for assignability and subtyping of materializations
performed in `has_relation_in_invariant_position` and
`is_subtype_in_invariant_position` need to propagate the
`HasRelationToVisitor`, or we can stack overflow.
A side effect of this change is that we also propagate the
`ConstraintSet` through, rather than using `C::from_bool`, which I think
may also become important for correctness in cases involving type
variables (though it isn't testable yet, since we aren't yet actually
creating constraints other than always-true and always-false.)
## Test Plan
Added mdtest (derived from code found in pydantic) which
stack-overflowed before this PR.
With this change incorporated, pydantic now checks successfully on my
draft PR for PEP 613 TypeAlias support.
Now that https://github.com/astral-sh/ruff/pull/20263 is merged, we can
update mypy_primer and add the new `egglog-python` project to
`good.txt`. The ecosystem-analyzer run shows that we now add 1,356
diagnostics (where we had over 5,000 previously, due to the unsupported
project layout).
## Summary
Add backreferences to the original item declaration in TypedDict
diagnostics.
Thanks to @AlexWaygood for the suggestion.
## Test Plan
Updated snapshots
## Summary
An annotated assignment `name: annotation` without a right-hand side was
previously not covered by the range returned from
`DefinitionKind::full_range`, because we did expand the range to include
the right-hand side (if there was one), but failed to include the
annotation.
## Test Plan
Updated snapshot tests
## Summary
Add support for `typing.ReadOnly` as a type qualifier to mark
`TypedDict` fields as being read-only. If you try to mutate them, you
get a new diagnostic:
<img width="787" height="234" alt="image"
src="https://github.com/user-attachments/assets/f62fddf9-4961-4bcd-ad1c-747043ebe5ff"
/>
## Test Plan
* New Markdown tests
* The typing conformance changes are all correct. There are some false
negatives, but those are related to the missing support for the
functional form of `TypedDict`, or to overriding of fields via
inheritance. Both of these topics are tracked in
https://github.com/astral-sh/ty/issues/154
Closesastral-sh/ty#456. Part of astral-sh/ty#994.
After all the foundational work, this is only a small change, but let's
see if it exposes any unresolved issues.
## Summary
Part of astral-sh/ty#994. The goal of this PR was to add correct
behavior for attribute access on the top and bottom materializations.
This is necessary for the end goal of using the top materialization for
narrowing generics (`isinstance(x, list)`): we want methods like
`x.append` to work correctly in that case.
It turned out to be convenient to represent materialization as a
TypeMapping, so it can be stashed in the `type_mappings` list of a
function object. This also allowed me to remove most concrete
`materialize` methods, since they usually just delegate to the subparts
of the type, the same as other type mappings. That is why the net effect
of this PR is to remove a few hundred lines.
## Test Plan
I added a few more tests. Much of this PR is refactoring and covered by
existing tests.
## Followups
Assigning to attributes of top materializations is not yet covered. This
seems less important so I'd like to defer it.
I noticed that the `materialize` implementation of `Parameters` was
wrong; it did the same for the top and bottom materializations. This PR
makes the bottom materialization slightly more reasonable, but
implementing this correctly will require extending the struct.
## Summary
A small set of additional tests for `TypedDict` that I wrote while going
through the spec. Note that this certainly doesn't make the test suite
exhaustive (see remaining open points in the updated list here:
https://github.com/astral-sh/ty/issues/154).
This PR adds two new `ty_extensions` functions,
`reveal_when_assignable_to` and `reveal_when_subtype_of`. These are
closely related to the existing `is_assignable_to` and `is_subtype_of`,
but instead of returning when the property (always) holds, it produces a
diagnostic that describes _when_ the property holds. (This will let us
construct mdtests that print out constraints that are not always true or
always false — though we don't currently have any instances of those.)
I did not replace _every_ occurrence of the `is_property` variants in
the mdtest suite, instead focusing on the generics-related tests where
it will be important to see the full detail of the constraint sets.
As part of this, I also updated the mdtest harness to accept the shorter
`# revealed:` assertion format for more than just `reveal_type`, and
updated the existing uses of `reveal_protocol_interface` to take
advantage of this.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements
https://docs.astral.sh/ruff/rules/yield-from-in-async-function/ as a
syntax semantic error
## Test Plan
<!-- How was it tested? -->
I have written a simple inline test as directed in
[https://github.com/astral-sh/ruff/issues/17412](https://github.com/astral-sh/ruff/issues/17412)
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
Thread visitors through the rest of `apply_type_mapping`: callable and
protocol types.
## Test Plan
Added mdtest that previously stack overflowed.
## Summary
We have the ability to defer type inference of some parts of
definitions, so as to allow us to create a type that may need to be
recursively referenced in those other parts of the definition.
We also have the ability to do type inference in a context where all
name resolution should be deferred (that is, names should be looked up
from all-reachable-definitions rather than from the location of use.)
This is used for all annotations in stubs, or if `from __future__ import
annotations` is active.
Previous to this PR, these two concepts were linked: deferred-inference
always implied deferred-name-resolution, though we also supported
deferred-name-resolution without deferred-inference, via
`DeferredExpressionState`.
For the upcoming `typing.TypeAlias` support, I will defer inference of
the entire RHS of the alias (so as to support cycles), but that doesn't
imply deferred name resolution; at runtime, the RHS of a name annotated
as `typing.TypeAlias` is executed eagerly.
So this PR fully de-couples the two concepts, instead explicitly setting
the `DeferredExpressionState` in those cases where we should defer name
resolution.
It also fixes a long-standing related bug, where we were deferring name
resolution of all names in class bases, if any of the class bases
contained a stringified annotation.
## Test Plan
Added test that failed before this PR.
Reverts astral-sh/ruff#20156. As @sharkdp noted in his post-merge
review, there were several issues with that PR that I didn't spot before
merging — but I'm out for four days now, and would rather not leave
things in an inconsistent state for that long. I'll revisit this on
Wednesday.
## Summary
These projects all check successfully now.
(Pandas still takes 9s, as the comment in `bad.txt` said, but I don't
think this is slow enough to exclude it; mypy-primer overall still runs
in 4 minutes, faster than e.g. the test suite on Windows.)
## Test Plan
mypy-primer CI.
## Summary
This error is about assigning to attributes rather than reading
attributes, so I think `invalid-assignment` makes more sense than
`invalid-attribute-access`
## Test Plan
existing mdtests updated
## Summary
Now that we have `Type::TypeAlias`, which can wrap a union, and the
possibility of unions including non-unpacked type aliases (which is
necessary to support recursive type aliases), we can no longer assume in
`UnionType::normalized_impl` that normalizing each element of an
existing union will result in a set of elements that we can order and
then place raw into `UnionType` to create a normalized union. It's now
possible for those elements to themselves include union types (unpacked
from an alias). So instead, we need to feed those elements into the full
`UnionBuilder` (with alias-unpacking turned on) to flatten/normalize
them, and then order them.
## Test Plan
Added mdtest.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR fixes various TODOs around overload call when a variadic
argument is used.
The reason this bug existed is because the specialization wouldn't
account for unpacking the type of the variadic argument.
This is fixed by expanding `MatchedArgument` to contain the type of that
argument _only_ when it is a variadic argument. The reason is that
there's a split for when the argument type is inferred -- the
non-variadic arguments are inferred using `infer_argument_types` _after_
parameter matching while the variadic argument type is inferred _during_
the parameter matching. And, the `MatchedArgument` is populated _during_
parameter matching which means the unpacking would need to happen during
parameter matching.
This split seems a bit inconsistent but I don't want to spend a lot of
time on trying to merge them such that all argument type inference
happens in a single place. I might look into it while adding support for
`**kwargs`.
## Test Plan
Update existing tests by resolving the todos.
The ecosystem changes looks correct to me except for the `slice` call
but it seems that it's unrelated to this PR as we infer `slice[Any, Any,
Any]` for a `slice(1, 2, 3)` call on `main` as well
([playground](https://play.ty.dev/9eacce00-c7d5-4dd5-a932-4265cb2bb4f6)).
## Summary
Decrease the maximum number of literals in a union before we collapse to
the supertype. The better fix for this will be
https://github.com/astral-sh/ty/issues/957, but it is very tempting to
solve this for now by simply decreasing the limit by one, to get below
the salsa limit of 200.
closes https://github.com/astral-sh/ty/issues/660
## Test Plan
Added a regression test that would previously lead to a "too many cycle
iterations" panic.
## Summary
With this PR, we stop performing boundness analysis for implicit
instance attributes:
```py
class C:
def __init__(self):
if False:
self.x = 1
C().x # would previously show an error, with this PR we pretend the attribute exists
```
This PR is potentially just a temporary measure until we find a better
fix. But I have already invested a lot of time trying to find the root
cause of https://github.com/astral-sh/ty/issues/758 (and [this
example](https://github.com/astral-sh/ty/issues/758#issuecomment-3206108262),
which I'm not entirely sure is related) and I still don't understand
what is going on. This PR fixes the performance problems in both of
these problems (in a rather crude way).
The impact of the proposed change on the ecosystem is small, and the
three new diagnostics are arguably true positives (previously hidden
because we considered the code unreachable, based on e.g. `assert`ions
that depended on implicit instance attributes). So this seems like a
reasonable fix for now.
Note that we still support cases like these:
```py
class D:
if False: # or any other expression that statically evaluates to `False`
x: int = 1
D().x # still an error
class E:
if False: # or any other expression that statically evaluates to `False`
def f(self):
self.x = 1
E().x # still an error
```
closes https://github.com/astral-sh/ty/issues/758
## Test Plan
Updated tests, benchmark results
## Summary
closes https://github.com/astral-sh/ty/issues/692
If the expression (or any child expressions) is not definitely bound the
reachability constraint evaluation is determined as ambiguous.
This fixes the infinite cycles panic in the following code:
```py
from typing import Literal
class Toggle:
def __init__(self: "Toggle"):
if not self.x:
self.x: Literal[True] = True
```
Credit of this solution is for David.
## Test Plan
- Added a test case with too many cycle iterations panic.
- Previous tests.
---------
Co-authored-by: David Peter <mail@david-peter.de>
Part of #994. This adds a new field to the Specialization struct to
record when we're dealing with the top or bottom materialization of an
invariant generic. It also implements subtyping and assignability for
these objects.
Next planned steps after this is done are to implement other operations
on top/bottom materializations; probably attribute access is an
important one.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
There are some situations that we have a confusing diagnostics due to
identical class names.
## Class with same name from different modules
```python
import pandas
import polars
df: pandas.DataFrame = polars.DataFrame()
```
This yields the following error:
**Actual:**
error: [invalid-assignment] "Object of type `DataFrame` is not
assignable to `DataFrame`"
**Expected**:
error: [invalid-assignment] "Object of type `polars.DataFrame` is not
assignable to `pandas.DataFrame`"
## Nested classes
```python
from enum import Enum
class A:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
class C:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
```
**Actual**:
error: [invalid-assignment] "Object of type `Literal[B.ACTIVE]` is not
assignable to `B`"
**Expected**:
error: [invalid-assignment] "Object of type
`Literal[my_module.C.B.ACTIVE]` is not assignable to `my_module.A.B`"
## Solution
In this MR we added an heuristics to detect when to use a fully
qualified name:
- There is an invalid assignment and;
- They are two different classes and;
- They have the same name
The fully qualified name always includes:
- module name
- nested classes name
- actual class name
There was no `QualifiedDisplay` so I had to implement it from scratch.
I'm very new to the codebase, so I might have done things inefficiently,
so I appreciate feedback.
Should we pre-compute the fully qualified name or do it on demand?
## Not implemented
### Function-local classes
Should we approach this in a different PR?
**Example**:
```python
# t.py
from __future__ import annotations
def function() -> A:
class A:
pass
return A()
class A:
pass
a: A = function()
```
#### mypy
```console
t.py:8: error: Incompatible return value type (got "t.A@5", expected "t.A") [return-value]
```
From my testing the 5 in `A@5` comes from the like number.
#### ty
```console
error[invalid-return-type]: Return type does not match returned value
--> t.py:4:19
|
4 | def function() -> A:
| - Expected `A` because of return type
5 | class A:
6 | pass
7 |
8 | return A()
| ^^^ expected `A`, found `A`
|
info: rule `invalid-return-type` is enabled by default
```
Fixes https://github.com/astral-sh/ty/issues/848
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Properly preserve type qualifiers when accessing attributes on unions
and intersections. This is a prerequisite for
https://github.com/astral-sh/ruff/pull/19579.
Also fix a completely wrong implementation of
`map_with_boundness_and_qualifiers`. It now closely follows
`map_with_boundness` (just above).
## Test Plan
I thought about it, but didn't find any easy way to test this. This only
affected `Type::member`. Things like validation of attribute writes
(where type qualifiers like `ClassVar` and `Final` are important) were
already handling things correctly.
## Summary
Add a subtly different test case for recursive PEP 695 type aliases,
which does require that we relax our union simplification, so we don't
eagerly unpack aliases from user-provided union annotations.
## Test Plan
Added mdtest.
## Summary
This has been here for awhile (since our initial PEP 695 type alias
support) but isn't really correct. The right-hand-side of a PEP 695 type
alias is a distinct scope, and we don't mark it as an "eager" nested
scope, so it automatically gets "deferred" resolution of names from
outer scopes (just like a nested function). Thus it's
redundant/unnecessary for us to use `DeferredExpressionState::Deferred`
for resolving that RHS expression -- that's for deferring resolution of
individual names within a scope. Using it here causes us to wrongly
ignore applicable outer-scope narrowing.
## Test Plan
Added mdtest that failed before this PR (the second snippet -- the first
snippet always passed.)
## Summary
Implement validation for `TypedDict` constructor calls and dictionary
literal assignments, including support for `total=False` and proper
field management.
Also add support for `Required` and `NotRequired` type qualifiers in
`TypedDict` classes, along with proper inheritance behavior and the
`total=` parameter.
Support both constructor calls and dict literal syntax
part of https://github.com/astral-sh/ty/issues/154
### Basic Required Field Validation
```py
class Person(TypedDict):
name: str
age: int | None
# Error: Missing required field 'name' in TypedDict `Person` constructor
incomplete = Person(age=25)
# Error: Invalid argument to key "name" with declared type `str` on TypedDict `Person`
wrong_type = Person(name=123, age=25)
# Error: Invalid key access on TypedDict `Person`: Unknown key "extra"
extra_field = Person(name="Bob", age=25, extra=True)
```
<img width="773" height="191" alt="Screenshot 2025-08-07 at 17 59 22"
src="https://github.com/user-attachments/assets/79076d98-e85f-4495-93d6-a731aa72a5c9"
/>
### Support for `total=False`
```py
class OptionalPerson(TypedDict, total=False):
name: str
age: int | None
# All valid - all fields are optional with total=False
charlie = OptionalPerson()
david = OptionalPerson(name="David")
emily = OptionalPerson(age=30)
frank = OptionalPerson(name="Frank", age=25)
# But type validation and extra fields still apply
invalid_type = OptionalPerson(name=123) # Error: Invalid argument type
invalid_extra = OptionalPerson(extra=True) # Error: Invalid key access
```
### Dictionary Literal Validation
```py
# Type checking works for both constructors and dict literals
person: Person = {"name": "Alice", "age": 30}
reveal_type(person["name"]) # revealed: str
reveal_type(person["age"]) # revealed: int | None
# Error: Invalid key access on TypedDict `Person`: Unknown key "non_existing"
reveal_type(person["non_existing"]) # revealed: Unknown
```
### `Required`, `NotRequired`, `total`
```python
from typing import TypedDict
from typing_extensions import Required, NotRequired
class PartialUser(TypedDict, total=False):
name: Required[str] # Required despite total=False
age: int # Optional due to total=False
email: NotRequired[str] # Explicitly optional (redundant)
class User(TypedDict):
name: Required[str] # Explicitly required (redundant)
age: int # Required due to total=True
bio: NotRequired[str] # Optional despite total=True
# Valid constructions
partial = PartialUser(name="Alice") # name required, age optional
full = User(name="Bob", age=25) # name and age required, bio optional
# Inheritance maintains original field requirements
class Employee(PartialUser):
department: str # Required (new field)
# name: still Required (inherited)
# age: still optional (inherited)
emp = Employee(name="Charlie", department="Engineering") # ✅
Employee(department="Engineering") # ❌
e: Employee = {"age": 1} # ❌
```
<img width="898" height="683" alt="Screenshot 2025-08-11 at 22 02 57"
src="https://github.com/user-attachments/assets/4c1b18cd-cb2e-493a-a948-51589d121738"
/>
## Implementation
The implementation reuses existing validation logic done in
https://github.com/astral-sh/ruff/pull/19782
### ℹ️ Why I did NOT synthesize an `__init__` for `TypedDict`:
`TypedDict` inherits `dict.__init__(self, *args, **kwargs)` that accepts
all arguments.
The type resolution system finds this inherited signature **before**
looking for synthesized members.
So `own_synthesized_member()` is never called because a signature
already exists.
To force synthesis, you'd have to override Python’s inheritance
mechanism, which would break compatibility with the existing ecosystem.
This is why I went with ad-hoc validation. IMO it's the only viable
approach that respects Python’s
inheritance semantics while providing the required validation.
### Refacto of `Field`
**Before:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
default_ty: Option<Type<'db>>, // NamedTuple and dataclass only
init_only: bool, // dataclass only
init: bool, // dataclass only
is_required: Option<bool>, // TypedDict only
}
```
**After:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
kind: FieldKind<'db>,
}
enum FieldKind<'db> {
NamedTuple { default_ty: Option<Type<'db>> },
Dataclass { default_ty: Option<Type<'db>>, init_only: bool, init: bool },
TypedDict { is_required: bool },
}
```
## Test Plan
Updated Markdown tests
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This PR limits the argument type expansion size for an overload call
evaluation to 512.
The limit chosen is arbitrary but I've taken the 256 limit from Pyright
into account and bumped it x2 to start with.
Initially, I actually started out by trying to refactor the entire
argument type expansion to be lazy. Currently, expanding a single
argument at any position eagerly creates the combination (argument
lists) and returns that (`Vec<CallArguments>`) but I thought we could
make it lazier by converting the return type of `expand` from
`Iterator<Item = Vec<CallArguments>>` to `Iterator<Item = Iterator<Item
= CallArguments>>` but that's proving to be difficult to implement
mainly because we **need** to maintain the previous expansion to
generate the next expansion which is the main reason to use
`std::iter::successors` in the first place.
Another approach would be to eagerly expand all the argument types and
then use the `combinations` from `itertools` to generate the
combinations but we would need to find the "boundary" between arguments
lists produced from expanding argument at position 1 and position 2
because that's important for the algorithm.
Closes: https://github.com/astral-sh/ty/issues/868
## Test Plan
Add test case to demonstrate the limit along with the diagnostic
snapshot stating that the limit has been reached.
Part of astral-sh/ty#994
## Summary
Add new special forms to `ty_extensions`, `Top[T]` and `Bottom[T]`.
Remove `ty_extensions.top_materialization` and
`ty_extensions.bottom_materialization`.
## Test Plan
Converted the existing `materialization.md` mdtest to the new syntax.
Added some tests for invalid use of the new special form.
## Summary
Previously we held off from doing this because we weren't sure that it
was worth the added complexity cost. But our code has changed in the
months since we made that initial decision, and I think the structure of
the code is such that it no longer really leads to much added complexity
to add precise inference when unpacking a string literal or a bytes
literal.
The improved inference we gain from this has real benefits to users (see
the mypy_primer report), and this PR doesn't appear to have a
performance impact.
## Test plan
mdtests
"Why would you do this? This looks like you just replaced `bool` with an
overly complex trait"
Yes that's correct!
This should be a no-op refactoring. It replaces all of the logic in our
assignability, subtyping, equivalence, and disjointness methods to work
over an arbitrary `Constraints` trait instead of only working on `bool`.
The methods that `Constraints` provides looks very much like what we get
from `bool`. But soon we will add a new impl of this trait, and some new
methods, that let us express "fuzzy" constraints that aren't always true
or false. (In particular, a constraint will express the upper and lower
bounds of the allowed specializations of a typevar.)
Even once we have that, most of the operations that we perform on
constraint sets will be the usual boolean operations, just on sets.
(`false` becomes empty/never; `true` becomes universe/always; `or`
becomes union; `and` becomes intersection; `not` becomes negation.) So
it's helpful to have this separate PR to refactor how we invoke those
operations without introducing the new functionality yet.
Note that we also have translations of `Option::is_some_and` and
`is_none_or`, and of `Iterator::any` and `all`, and that the `and`,
`or`, `when_any`, and `when_all` methods are meant to short-circuit,
just like the corresponding boolean operations. For constraint sets,
that depends on being able to implement the `is_always` and `is_never`
trait methods.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Part of: https://github.com/astral-sh/ty/issues/868
This PR adds a heuristic to avoid argument type expansion if it's going
to eventually lead to no matching overload.
This is done by checking whether the non-expandable argument types are
assignable to the corresponding annotated parameter type. If one of them
is not assignable to all of the remaining overloads, then argument type
expansion isn't going to help.
## Test Plan
Add mdtest that would otherwise take a long time because of the number
of arguments that it would need to expand (30).
This commit corrects the type checker's behavior when handling
`dataclass_transform` decorators that don't explicitly specify
`field_specifiers`. According to [PEP 681 (Data Class
Transforms)](https://peps.python.org/pep-0681/#dataclass-transform-parameters),
when `field_specifiers` is not provided, it defaults to an empty tuple,
meaning no field specifiers are supported and
`dataclasses.field`/`dataclasses.Field` calls should be ignored.
Fixes https://github.com/astral-sh/ty/issues/980
## Summary
Closes: https://github.com/astral-sh/ty/issues/669
(This turned out to be simpler that I thought :))
## Test Plan
Update existing test cases.
### Ecosystem report
Most of them are basically because ty has now started inferring more
precise types for the return type to an overloaded call and a lot of the
types are defined using type aliases, here's some examples:
<details><summary>Details</summary>
<p>
> attrs (https://github.com/python-attrs/attrs)
> + tests/test_make.py:146:14: error[unresolved-attribute] Type
`Literal[42]` has no attribute `default`
> - Found 555 diagnostics
> + Found 556 diagnostics
This is accurate now that we infer the type as `Literal[42]` instead of
`Unknown` (Pyright infers it as `int`)
> optuna (https://github.com/optuna/optuna)
> + optuna/_gp/search_space.py:181:53: error[invalid-argument-type]
Argument to function `_round_one_normalized_param` is incorrect:
Expected `tuple[int | float, int | float]`, found `tuple[Unknown |
ndarray[Unknown, <class 'float'>], Unknown | ndarray[Unknown, <class
'float'>]]`
> + optuna/_gp/search_space.py:181:83: error[invalid-argument-type]
Argument to function `_round_one_normalized_param` is incorrect:
Expected `int | float`, found `Unknown | ndarray[Unknown, <class
'float'>]`
> + tests/gp_tests/test_search_space.py:109:13:
error[invalid-argument-type] Argument to function
`_unnormalize_one_param` is incorrect: Expected `tuple[int | float, int
| float]`, found `Unknown | ndarray[Unknown, <class 'float'>]`
> + tests/gp_tests/test_search_space.py:110:13:
error[invalid-argument-type] Argument to function
`_unnormalize_one_param` is incorrect: Expected `int | float`, found
`Unknown | ndarray[Unknown, <class 'float'>]`
> - Found 559 diagnostics
> + Found 563 diagnostics
Same as above where ty is now inferring a more precise type like
`Unknown | ndarray[tuple[int, int], <class 'float'>]` instead of just
`Unknown` as before
> jinja (https://github.com/pallets/jinja)
> + src/jinja2/bccache.py:298:39: error[invalid-argument-type] Argument
to bound method `write_bytecode` is incorrect: Expected `IO[bytes]`,
found `_TemporaryFileWrapper[str]`
> - Found 186 diagnostics
> + Found 187 diagnostics
This requires support for type aliases to match the correct overload.
> hydra-zen (https://github.com/mit-ll-responsible-ai/hydra-zen)
> + src/hydra_zen/wrapper/_implementations.py:945:16:
error[invalid-return-type] Return type does not match returned value:
expected `DataClass_ | type[@Todo(type[T] for protocols)] | ListConfig |
DictConfig`, found `@Todo(unsupported type[X] special form) | (((...) ->
Any) & dict[Unknown, Unknown]) | (DataClass_ & dict[Unknown, Unknown]) |
dict[Any, Any] | (ListConfig & dict[Unknown, Unknown]) | (DictConfig &
dict[Unknown, Unknown]) | (((...) -> Any) & list[Unknown]) | (DataClass_
& list[Unknown]) | list[Any] | (ListConfig & list[Unknown]) |
(DictConfig & list[Unknown])`
> + tests/annotations/behaviors.py:60:28: error[call-non-callable]
Object of type `Path` is not callable
> + tests/annotations/behaviors.py:64:21: error[call-non-callable]
Object of type `Path` is not callable
> + tests/annotations/declarations.py:167:17: error[call-non-callable]
Object of type `Path` is not callable
> + tests/annotations/declarations.py:524:17:
error[unresolved-attribute] Type `<class 'int'>` has no attribute
`_target_`
> - Found 561 diagnostics
> + Found 566 diagnostics
Same as above, this requires support for type aliases to match the
correct overload.
> paasta (https://github.com/yelp/paasta)
> + paasta_tools/utils.py:4188:19: warning[redundant-cast] Value is
already of type `list[str]`
> - Found 888 diagnostics
> + Found 889 diagnostics
This is correct.
> colour (https://github.com/colour-science/colour)
> + colour/plotting/diagrams.py:448:13: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/diagrams.py:462:13: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/models.py:419:13: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/temperature.py:230:9: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/temperature.py:474:13: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/temperature.py:495:17: error[invalid-argument-type]
Argument to bound method `__init__` is incorrect: Expected
`Sequence[@Todo(Support for `typing.TypeAlias`)]`, found
`ndarray[tuple[int, int, int], dtype[Unknown]]`
> + colour/plotting/temperature.py:513:13: error[invalid-argument-type]
Argument to bound method `text` is incorrect: Expected `int | float`,
found `ndarray[@Todo(Support for `typing.TypeAlias`), dtype[Unknown]]`
> + colour/plotting/temperature.py:514:13: error[invalid-argument-type]
Argument to bound method `text` is incorrect: Expected `int | float`,
found `ndarray[@Todo(Support for `typing.TypeAlias`), dtype[Unknown]]`
> - Found 480 diagnostics
> + Found 488 diagnostics
Most of them are correct except for the last two diagnostics which I'm
not sure
what's happening, it's trying to index into an `np.ndarray` type (which
is
inferred correctly) but I think it might be picking up an incorrect
overload
for the `__getitem__` method.
Scipy's diagnostics also requires support for type alises to pick the
correct overload.
</p>
</details>
In implementing partial stubs I had observed that this continue in the
namespace package code seemed erroneous since the same continue for
partial stubs didn't work. Unfortunately I wasn't confident enough to
push on that hunch. Fortunately I remembered that hunch to make this an
easy fix.
The issue with the continue is that it bails out of the current
search-path without testing any .py files. This breaks when for example
`google` and `google-stubs`/`types-google` are both in the same
site-packages dir -- failing to find a module in `types-google` has us
completely skip over `google`!
Fixes https://github.com/astral-sh/ty/issues/520
fix https://github.com/astral-sh/ty/issues/1047
## Summary
This PR fixes how `KW_ONLY` is applied in dataclasses. Previously, the
sentinel leaked into subclasses and incorrectly marked their fields as
keyword-only; now it only affects fields declared in the same class.
```py
from dataclasses import dataclass, KW_ONLY
@dataclass
class D:
x: int
_: KW_ONLY
y: str
@dataclass
class E(D):
z: bytes
# This should work: x=1 (positional), z=b"foo" (positional), y="foo" (keyword-only)
E(1, b"foo", y="foo")
reveal_type(E.__init__) # revealed: (self: E, x: int, z: bytes, *, y: str) -> None
```
<!-- What's the purpose of the change? What does it do, and why? -->
## Test Plan
<!-- How was it tested? -->
mdtests
## Summary
Fixes https://github.com/astral-sh/ty/issues/1046
We special-case iteration of certain types because they may have a more
detailed tuple-spec. Now that type aliases are a distinct type variant,
we need to handle them as well.
I don't love that `Type::TypeAlias` means we have to remember to add a
case for it basically anywhere we are special-casing a certain kind of
type, but at the moment I don't have a better plan. It's another
argument for avoiding fallback cases in `Type` matches, which we usually
prefer; I've updated this match statement to be comprehensive.
## Test Plan
Added mdtest.
`Type::TypeVar` now distinguishes whether the typevar in question is
inferable or not.
A typevar is _not inferable_ inside the body of the generic class or
function that binds it:
```py
def f[T](t: T) -> T:
return t
```
The infered type of `t` in the function body is `TypeVar(T,
NotInferable)`. This represents how e.g. assignability checks need to be
valid for all possible specializations of the typevar. Most of the
existing assignability/etc logic only applies to non-inferable typevars.
Outside of the function body, the typevar is _inferable_:
```py
f(4)
```
Here, the parameter type of `f` is `TypeVar(T, Inferable)`. This
represents how e.g. assignability doesn't need to hold for _all_
specializations; instead, we need to find the constraints under which
this specific assignability check holds.
This is in support of starting to perform specialization inference _as
part of_ performing the assignability check at the call site.
In the [[POPL2015][]] paper, this concept is called _monomorphic_ /
_polymorphic_, but I thought _non-inferable_ / _inferable_ would be
clearer for us.
Depends on #19784
[POPL2015]: https://doi.org/10.1145/2676726.2676991
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR adds a new lint, `invalid-await`, for all sorts of reasons why
an object may not be `await`able, as discussed in astral-sh/ty#919.
Precisely, `__await__` is guarded against being missing, possibly
unbound, or improperly defined (expects additional arguments or doesn't
return an iterator).
Of course, diagnostics need to be fine-tuned. If `__await__` cannot be
called with no extra arguments, it indicates an error (or a quirk?) in
the method signature, not at the call site. Without any doubt, such an
object is not `Awaitable`, but I feel like talking about arguments for
an *implicit* call is a bit leaky.
I didn't reference any actual diagnostic messages in the lint
definition, because I want to hear feedback first.
Also, there's no mention of the actual required method signature for
`__await__` anywhere in the docs. The only reference I had is the
`typing` stub. I basically ended up linking `[Awaitable]` to ["must
implement
`__await__`"](https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable),
which is insufficient on its own.
## Test Plan
The following code was tested:
```python
import asyncio
import typing
class Awaitable:
def __await__(self) -> typing.Generator[typing.Any, None, int]:
yield None
return 5
class NoDunderMethod:
pass
class InvalidAwaitArgs:
def __await__(self, value: int) -> int:
return value
class InvalidAwaitReturn:
def __await__(self) -> int:
return 5
class InvalidAwaitReturnImplicit:
def __await__(self):
pass
async def main() -> None:
result = await Awaitable() # valid
result = await NoDunderMethod() # `__await__` is missing
result = await InvalidAwaitReturn() # `__await__` returns `int`, which is not a valid iterator
result = await InvalidAwaitArgs() # `__await__` expects additional arguments and cannot be called implicitly
result = await InvalidAwaitReturnImplicit() # `__await__` returns `Unknown`, which is not a valid iterator
asyncio.run(main())
```
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
For PEP 695 generic functions and classes, there is an extra "type
params scope" (a child of the outer scope, and wrapping the body scope)
in which the type parameters are defined; class bases and function
parameter/return annotations are resolved in that type-params scope.
This PR fixes some longstanding bugs in how we resolve name loads from
inside these PEP 695 type parameter scopes, and also defers type
inference of PEP 695 typevar bounds/constraints/default, so we can
handle cycles without panicking.
We were previously treating these type-param scopes as lazy nested
scopes, which is wrong. In fact they are eager nested scopes; the class
`C` here inherits `int`, not `str`, and previously we got that wrong:
```py
Base = int
class C[T](Base): ...
Base = str
```
But certain syntactic positions within type param scopes (typevar
bounds/constraints/defaults) are lazy at runtime, and we should use
deferred name resolution for them. This also means they can have cycles;
in order to handle that without panicking in type inference, we need to
actually defer their type inference until after we have constructed the
`TypeVarInstance`.
PEP 695 does specify that typevar bounds and constraints cannot be
generic, and that typevar defaults can only reference prior typevars,
not later ones. This reduces the scope of (valid from the type-system
perspective) cycles somewhat, although cycles are still possible (e.g.
`class C[T: list[C]]`). And this is a type-system-only restriction; from
the runtime perspective an "invalid" case like `class C[T: T]` actually
works fine.
I debated whether to implement the PEP 695 restrictions as a way to
avoid some cycles up-front, but I ended up deciding against that; I'd
rather model the runtime name-resolution semantics accurately, and
implement the PEP 695 restrictions as a separate diagnostic on top.
(This PR doesn't yet implement those diagnostics, thus some `# TODO:
error` in the added tests.)
Introducing the possibility of cyclic typevars made typevar display
potentially stack overflow. For now I've handled this by simply removing
typevar details (bounds/constraints/default) from typevar display. This
impacts display of two kinds of types. If you `reveal_type(T)` on an
unbound `T` you now get just `typing.TypeVar` instead of
`typing.TypeVar("T", ...)` where `...` is the bound/constraints/default.
This matches pyright and mypy; pyrefly uses `type[TypeVar[T]]` which
seems a bit confusing, but does include the name. (We could easily
include the name without cycle issues, if there's a syntax we like for
that.)
It also means that displaying a generic function type like `def f[T:
int](x: T) -> T: ...` now displays as `f[T](x: T) -> T` instead of `f[T:
int](x: T) -> T`. This matches pyright and pyrefly; mypy does include
bound/constraints/defaults of typevars in function/callable type
display. If we wanted to add this, we would either need to thread a
visitor through all the type display code, or add a `decycle` type
transformation that replaced recursive reoccurrence of a type with a
marker.
## Test Plan
Added mdtests and modified existing tests to improve their correctness.
After this PR, there's only a single remaining py-fuzzer seed in the
0-500 range that panics! (Before this PR, there were 10; the fuzzer
likes to generate cyclic PEP 695 syntax.)
## Ecosystem report
It's all just the changes to `TypeVar` display.
## Summary
A [passing
comment](https://github.com/astral-sh/ruff/pull/19711#issuecomment-3169312014)
led me to explore why we didn't report a class attribute as possibly
unbound if it was a method and defined in two different conditional
branches.
I found that the reason was because of our handling of "conflicting
declarations" in `place_from_declarations`. It returned a `Result` which
would be `Err` in case of conflicting declarations.
But we only actually care about conflicting declarations when we are
actually doing type inference on that scope and might emit a diagnostic
about it. And in all cases (including that one), we want to otherwise
proceed with the union of the declared types, as if there was no
conflict.
In several cases we were failing to handle the union of declared types
in the same way as a normal declared type if there was a declared-types
conflict. The `Result` return type made this mistake really easy to
make, as we'd match on e.g. `Ok(Place::Type(...))` and do one thing,
then match on `Err(...)` and do another, even though really both of
those cases should be handled the same.
This PR refactors `place_from_declarations` to instead return a struct
which always represents the declared type we should use in the same way,
as well as carrying the conflicting declared types, if any. This struct
has a method to allow us to explicitly ignore the declared-types
conflict (which is what we want in most cases), as well as a method to
get the declared type and the conflict information, in the case where we
want to emit a diagnostic on the conflict.
## Test Plan
Existing CI; added a test showing that we now understand a
multiply-conditionally-defined method as possibly-unbound.
This does trigger issues on a couple new fuzzer seeds, but the issues
are just new instances of an already-known (and rarely occurring)
problem which I already plan to address in a future PR, so I think it's
OK to land as-is.
I happened to build this initially on top of
https://github.com/astral-sh/ruff/pull/19711, which adds invalid-await
diagnostics, so I also updated some invalid-syntax tests to not await on
an invalid type, since the purpose of those tests is to check the
syntactic location of the `await`, not the validity of the awaited type.