This PR extends the "go to declaration" and "go to definition"
functionality to support import statements — both standard imports and
"from" import forms.
---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
This PR builds upon #19371. It addresses a few additional code review
suggestions and adds support for attribute accesses (expressions of the
form `x.y`) and keyword arguments within call expressions.
---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
## Summary
This PR updates the server to keep track of open files both system and
virtual files.
This is done by updating the project by adding the file in the open file
set in `didOpen` notification and removing it in `didClose`
notification.
This does mean that for workspace diagnostics, ty will only check open
files because the behavior of different diagnostic builder is to first
check `is_file_open` and only add diagnostics for open files. So, this
required updating the `is_file_open` model to be `should_check_file`
model which validates whether the file needs to be checked based on the
`CheckMode`. If the check mode is open files only then it will check
whether the file is open. If it's all files then it'll return `true` by
default.
Closes: astral-sh/ty#619
## Test Plan
### Before
There are two files in the project: `__init__.py` and `diagnostics.py`.
In the video, I'm demonstrating the old behavior where making changes to
the (open) `diagnostics.py` file results in re-parsing the file:
https://github.com/user-attachments/assets/c2ac0ecd-9c77-42af-a924-c3744b146045
### After
Same setup as above.
In the video, I'm demonstrating the new behavior where making changes to
the (open) `diagnostics.py` file doesn't result in re-parting the file:
https://github.com/user-attachments/assets/7b82fe92-f330-44c7-b527-c841c4545f8f
This fixes https://github.com/astral-sh/ty/issues/832.
New tests were added to prevent future regressions.
---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
This PR implements "go to definition" and "go to declaration"
functionality for name nodes only. Future PRs will add support for
attributes, module names in import statements, keyword argument names,
etc.
This PR:
* Registers a declaration and definition request handler for the
language server.
* Splits out the `goto_type_definition` into its own module. The `goto`
module contains functionality that is common to `goto_type_definition`,
`goto_declaration` and `goto_definition`.
* Roughs in a new module `stub_mapping` that is not yet implemented. It
will be responsible for mapping a definition in a stub file to its
corresponding definition(s) in an implementation (source) file.
* Adds a new IDE support function `definitions_for_name` that collects
all of the definitions associated with a name and resolves any imports
(recursively) to find the original definitions associated with that
name.
* Adds a new `VisibleAncestorsIter` stuct that iterates up the scope
hierarchy but skips scopes that are not visible to starting scope.
---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
## Summary
Add a new `Type::EnumLiteral(…)` variant and infer this type for member
accesses on enums.
**Example**: No more `@Todo` types here:
```py
from enum import Enum
class Answer(Enum):
YES = 1
NO = 2
def is_yes(self) -> bool:
return self == Answer.YES
reveal_type(Answer.YES) # revealed: Literal[Answer.YES]
reveal_type(Answer.YES == Answer.NO) # revealed: Literal[False]
reveal_type(Answer.YES.is_yes()) # revealed: bool
```
## Test Plan
* Many new Markdown tests for the new type variant
* Added enum literal types to property tests, ran property tests
## Ecosystem analysis
Summary:
Lots of false positives removed. All of the new diagnostics are
either new true positives (the majority) or known problems. Click for
detailed analysis</summary>
Details:
```diff
AutoSplit (https://github.com/Toufool/AutoSplit)
+ error[call-non-callable] src/capture_method/__init__.py:137:9: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
+ error[call-non-callable] src/capture_method/__init__.py:147:9: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
+ error[call-non-callable] src/capture_method/__init__.py:148:1: Method `__getitem__` of type `bound method CaptureMethodDict.__getitem__(key: Never, /) -> type[CaptureMethodBase]` is not callable on object of type `CaptureMethodDict`
```
New true positives. That `__getitem__` method is apparently annotated
with `Never` to prevent developers from using it.
```diff
dd-trace-py (https://github.com/DataDog/dd-trace-py)
+ error[invalid-assignment] ddtrace/vendor/psutil/_common.py:29:5: Object of type `None` is not assignable to `Literal[AddressFamily.AF_INET6]`
+ error[invalid-assignment] ddtrace/vendor/psutil/_common.py:33:5: Object of type `None` is not assignable to `Literal[AddressFamily.AF_UNIX]`
```
Arguably true positives:
e0a772c28b/ddtrace/vendor/psutil/_common.py (L29)
```diff
ignite (https://github.com/pytorch/ignite)
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:190:34: Argument to bound method `__call__` is incorrect: Expected `((...) -> Unknown) | None`, found `Literal["123"]`
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:220:37: Argument to function `default_event_filter` is incorrect: Expected `Engine`, found `None`
+ error[invalid-argument-type] tests/ignite/engine/test_custom_events.py:220:43: Argument to function `default_event_filter` is incorrect: Expected `int`, found `None`
+ error[call-non-callable] tests/ignite/engine/test_custom_events.py:561:9: Object of type `CustomEvents` is not callable
+ error[invalid-argument-type] tests/ignite/metrics/test_frequency.py:50:38: Argument to bound method `attach` is incorrect: Expected `Events`, found `CallableEventWithFilter`
```
All true positives. Some of them are inside `pytest.raises(TypeError,
…)` blocks 🙃
```diff
meson (https://github.com/mesonbuild/meson)
+ error[invalid-argument-type] unittests/internaltests.py:243:51: Argument to bound method `__init__` is incorrect: Expected `bool`, found `Literal[MachineChoice.HOST]`
+ error[invalid-argument-type] unittests/internaltests.py:271:51: Argument to bound method `__init__` is incorrect: Expected `bool`, found `Literal[MachineChoice.HOST]`
```
New true positives. Enum literals can not be assigned to `bool`, even if
their value types are `0` and `1`.
```diff
poetry (https://github.com/python-poetry/poetry)
+ error[invalid-assignment] src/poetry/console/exceptions.py:101:5: Object of type `Literal[""]` is not assignable to `InitVar[str]`
```
New false positive, missing support for `InitVar`.
```diff
prefect (https://github.com/PrefectHQ/prefect)
+ error[invalid-argument-type] src/integrations/prefect-dask/tests/test_task_runners.py:193:17: Argument is incorrect: Expected `StateType`, found `Literal[StateType.COMPLETED]`
```
This is confusing. There are two definitions
([one](74d8cd93ee/src/prefect/client/schemas/objects.py (L89-L100)),
[two](https://github.com/PrefectHQ/prefect/blob/main/src/prefect/server/schemas/states.py#L40))
of the `StateType` enum. Here, we're trying to assign one to the other.
I don't think that should be allowed, so this is a true positive (?).
```diff
python-htmlgen (https://github.com/srittau/python-htmlgen)
+ error[invalid-assignment] test_htmlgen/form.py:51:9: Object of type `str` is not assignable to attribute `autocomplete` of type `Autocomplete | None`
+ error[invalid-assignment] test_htmlgen/video.py:38:9: Object of type `str` is not assignable to attribute `preload` of type `Preload | None`
```
True positives. [The stubs are
wrong](01e3b911ac/htmlgen/form.pyi (L8-L10)).
These should not contain type annotations, but rather just `OFF = ...`.
```diff
rotki (https://github.com/rotki/rotki)
+ error[invalid-argument-type] rotkehlchen/tests/unit/test_serialization.py:62:30: Argument to bound method `deserialize` is incorrect: Expected `str`, found `Literal[15]`
```
New true positive.
```diff
vision (https://github.com/pytorch/vision)
+ error[unresolved-attribute] test/test_extended_models.py:302:17: Type `type[WeightsEnum]` has no attribute `DEFAULT`
+ error[unresolved-attribute] test/test_extended_models.py:302:58: Type `type[WeightsEnum]` has no attribute `DEFAULT`
```
Also new true positives. No `DEFAULT` member exists on `WeightsEnum`.
Basically, we weren't quite using `Type::member` in every case
correctly. Specifically, this example from @sharkdp:
```
class Meta(type):
@property
def meta_attr(self) -> int:
return 0
class C(metaclass=Meta): ...
C.<CURSOR>
```
While we would return `C.meta_attr` here, we were claiming its type was
`property`. But its type should be `int`.
Ref https://github.com/astral-sh/ruff/pull/19216#discussion_r2197065241
While we did previously support submodule completions via our
`all_members` API, that only works when submodules are attributes of
their parent module. For example, `os.path`. But that didn't work when
the submodule was not an attribute of its parent. For example,
`http.client`. To make the latter work, we read the directory of the
parent module to discover its submodules.
This PR includes:
* Implemented core signature help logic
* Added new docstring method on Definition that returns a docstring for
function and class definitions
* Modified the display code for Signature that allows a signature string
to be broken into text ranges that correspond to each parameter in the
signature
* Augmented Signature struct so it can track the Definition for a
signature when available; this allows us to find the docstring
associated with the signature
* Added utility functions for parsing parameter documentation from three
popular docstring formats (Google, NumPy and reST)
* Implemented tests for all of the above
"Signature help" is displayed by an editor when you are typing a
function call expression. It is typically triggered when you type an
open parenthesis. The language server provides information about the
target function's signature (or multiple signatures), documentation, and
parameters.
Here is how this appears:

---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
Co-authored-by: Micha Reiser <micha@reiser.io>
Since we generally need (so far) to get the type information of each
suggestion to figure out its boundness anyway, we might as well expose
it here. Completions want to use this information to enhance the
metadata on each suggestion for a more pleasant user experience.
For the most part, this was pretty straight-forward. The most exciting
part was in computing the types for instance attributes. I'm not 100%
sure it's correct or is the best way to do it.
This commit doesn't change any behavior, but makes it so `all_members`
returns a `Vec<Member>` instead of `Vec<Name>`, where a `Member`
contains a `Name`. This gives us an expansion point to include other
data (such as the type of the `Name`).
This PR implements a basic semantic token provider for ty's language
server. This allows for more accurate semantic highlighting / coloring
within editors that support this LSP functionality.
Here are screen shots that show how code appears in VS Code using the
"rainbow" theme both before and after this change.


The token types and modifier tags in this implementation largely mirror
those used in Microsoft's default language server for Python.
The implementation supports two LSP interfaces. The first provides
semantic tokens for an entire document, and the second returns semantic
tokens for a requested range within a document.
The PR includes unit tests. It also includes comments that document
known limitations and areas for future improvements.
---------
Co-authored-by: UnboundVariable <unbound@gmail.com>
This implements filtering of private symbols from stub files based on
type information as discussed in
https://github.com/astral-sh/ruff/pull/19102. It extends the previous
implementation to apply to all stub files, instead of just the
`builtins` module, and uses type information to retain private names
that are may be relevant at runtime.
Most of the work here was doing some light refactoring to facilitate
sensible testing. That is, we don't want to list every builtin included
in most tests, so we add some structure to the completion type returned.
Tests can now filter based on whether a completion is a builtin or not.
Otherwise, builtins are found using the existing infrastructure for
`object.attr` completions (where we hard-code the module name
`builtins`).
I did consider changing the sort order based on whether a completion
suggestion was a builtin or not. In particular, it seemed like it might
be a good idea to sort builtins after other scope based completions,
but before the dunder and sunder attributes. Namely, it seems likely
that there is an inverse correlation between the size of a scope and
the likelihood of an item in that scope being used at any given point.
So it *might* be a good idea to prioritize the likelier candidates in
the completions returned.
Additionally, the number of items introduced by adding builtins is quite
large. So I wondered whether mixing them in with everything else would
become too noisy.
However, it's not totally clear to me that this is the right thing to
do. Right now, I feel like there is a very obvious lexicographic
ordering that makes "finding" the right suggestion to activate
potentially easier than if the ranking mechanism is less clear.
(Technically, the dunder and sunder attributes are not sorted
lexicographically, but I'd put forward that most folks don't have an
intuitive understanding of where `_` ranks lexicographically with
respect to "regular" letters. Moreover, since dunder and sunder
attributes are all grouped together, I think the ordering here ends up
being very obvious after even a quick glance.)
This commit does a small refactor to combine the file and
cursor offset into a single type. I think this makes it
clearer that even if there are multiple files in the cursor
test, this one in particular corresponds to the file that
contains the `<CURSOR>` marker.
This doesn't change any functionality of the cursor tests, but does
re-arrange the code a bit. Firstly, it's now in a builder. And secondly,
there's an API to add multiple files to the test (but exactly one must
have a `<CURSOR>` marker).
There were two main challenges in this PR.
The first was mostly just figuring out how to get the symbols
corresponding to `module`. It turns out that we do this in a couple
of places in ty already, but through different means. In one approach,
we use [`exported_names`]. In another approach, we get a `Type`
corresponding to the module. We take the latter approach here, which is
consistent with how we do completions elsewhere. (I looked into
factoring this logic out into its own function, but it ended up being
pretty constrained. e.g., There's only one other place where we want to
go from `ast::StmtImportFrom` to a module `Type`, and that code also
wants the module name.)
The second challenge was recognizing the `from module import <CURSOR>`
pattern in the code. I initially started with some fixed token patterns
to get a proof of concept working. But I ended up switching to mini
state machine over tokens. I looked at the parser for `StmtImportFrom`
to determine what kinds of tokens we can expect.
[`exported_names`]:
23a3b6ef23/crates/ty_python_semantic/src/semantic_index/re_exports.rs (L47)
## Summary
* Completely removes the concept of visibility constraints. Reachability
constraints are now used to model the static visibility of bindings and
declarations. Reachability constraints are *much* easier to reason about
/ work with, since they are applied at the beginning of a branch, and
not applied retroactively. Removing the duplication between visibility
and reachability constraints also leads to major code simplifications
[^1]. For an overview of how the new constraint system works, see the
updated doc comment in `reachability_constraints.rs`.
* Fixes a [control-flow modeling bug
(panic)](https://github.com/astral-sh/ty/issues/365) involving `break`
statements in loops
* Fixes a [bug where](https://github.com/astral-sh/ty/issues/624) where
`elif` branches would have wrong reachability constraints
* Fixes a [bug where](https://github.com/astral-sh/ty/issues/648) code
after infinite loops would not be considered unreachble
* Fixes a panic on the `pywin32` ecosystem project, which we should be
able to move to `good.txt` once this has been merged.
* Removes some false positives in unreachable code because we infer
`Never` more often, due to the fact that reachability constraints now
apply retroactively to *all* active bindings, not just to bindings
inside a branch.
* As one example, this removes the `division-by-zero` diagnostic from
https://github.com/astral-sh/ty/issues/443 because we now infer `Never`
for the divisor.
* Supersedes and includes similar test changes as
https://github.com/astral-sh/ruff/pull/18392
closes https://github.com/astral-sh/ty/issues/365
closes https://github.com/astral-sh/ty/issues/624
closes https://github.com/astral-sh/ty/issues/642
closes https://github.com/astral-sh/ty/issues/648
## Benchmarks
Benchmarks on black, pandas, and sympy showed that this is neither a
performance improvement, nor a regression.
## Test Plan
Regression tests for:
- [x] https://github.com/astral-sh/ty/issues/365
- [x] https://github.com/astral-sh/ty/issues/624
- [x] https://github.com/astral-sh/ty/issues/642
- [x] https://github.com/astral-sh/ty/issues/648
[^1]: I'm afraid this is something that @carljm advocated for since the
beginning, and I'm not sure anymore why we have never seriously tried
this before. So I suggest we do *not* attempt to do a historical deep
dive to find out exactly why this ever became so complicated, and just
enjoy the fact that we eventually arrived here.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Specifically, this PR reverts "Make completions an opt-in LSP feature
(#17921)",
corresponding to commit 51e2effd2d.
In practice, this means you don't need to opt into completions working
by enabling experimental features. i.e., I was able to remove this from
my LSP configuration:
```
"experimental": {
"completions": {
"enable": true
}
},
```
There's still a lot of work left to do to make completions awesome, but
I think it's in a state where it would be useful to get real user
feedback. It's also meaningfully using ty to provide completions that
use type information.
Ref astral-sh/ty#86
This makes it work for a number of additional cases, like nested
attribute access and things like `[].<CURSOR>`.
The basic idea is that instead of selecting a covering node closest to a
leaf that contains the cursor, we walk up the tree as much as we can.
This lets us access the correct `ExprAttribute` node when performing
nested access.
This routine lets us climb up the AST tree when we find
a contiguous sequence of nodes that satisfy our predicate.
This will be useful for making things like `a.b.<CURSOR>`
work. That is, we don't want the `ExprAttribute` closest
to a leaf. We also don't always want the `ExprAttribute`
closest to the root. Rather, (I think) we want the
`ExprAttribute` closest to the root that has an unbroken
chain to the `ExprAttribute` closest to the leaf.
This commit doesn't change any functionality, but instead changes the
representation of `CoveringNode` to make the implementation simpler (as
well as planned future additions). By putting the found node last in the
list of ancestors (now just generically called `nodes`), we reduce the
amount of special case handling we need.
The downside is that the representation now allows invalid states (a
`CoveringNode` with no elements). But I think this is well mitigated by
encapsulation.
## Summary
https://github.com/astral-sh/ty/issues/214 will require a couple
invasive changes that I would like to get merged even before garbage
collection is fully implemented (to avoid rebasing):
- `ParsedModule` can no longer be dereferenced directly. Instead you
need to load a `ParsedModuleRef` to access the AST, which requires a
reference to the salsa database (as it may require re-parsing the AST if
it was collected).
- `AstNodeRef` can only be dereferenced with the `node` method, which
takes a reference to the `ParsedModuleRef`. This allows us to encode the
fact that ASTs do not live as long as the database and may be collected
as soon a given instance of a `ParsedModuleRef` is dropped. There are a
number of places where we currently merge the `'db` and `'ast`
lifetimes, so this requires giving some types/functions two separate
lifetime parameters.
## Summary
Previously, all symbols where provided as possible completions. In an
example like the following, both `foo` and `f` were suggested as
completions, because `f` itself is a symbol.
```py
foo = 1
f<CURSOR>
```
Similarly, in the following example, `hidden_symbol` was suggested, even
though it is not statically visible:
```py
if 1 + 2 != 3:
hidden_symbol = 1
hidden_<CURSOR>
```
With the change suggested here, we only use statically visible
declarations and bindings as a source for completions.
## Test Plan
- Updated snapshot tests
- New test for statically hidden definitions
- Added test for star import
## Summary
Implement a hotfix for the playground/LSP crashes related to missing
`expression_scope_id`s.
relates to: https://github.com/astral-sh/ty/issues/572
## Test Plan
* Regression tests from https://github.com/astral-sh/ruff/pull/18441
* Ran the playground locally to check if panics occur / completions
still work.
---------
Co-authored-by: Andrew Gallant <andrew@astral.sh>
Previously, completions were based on just returning every identifier
parsed in the current Python file. In this commit, we change it to
identify an expression under the cursor and then return all symbols
available to the scope containing that expression.
This is still returning too much, and also, in some cases, not enough.
Namely, it doesn't really take the specific context into account other
than scope. But this does improve on the status quo. For example:
def foo(): ...
def bar():
def fast(): ...
def foofoo(): ...
f<CURSOR>
When asking for completions here, the LSP will no longer include `fast`
as a possible completion in this context.
Ref https://github.com/astral-sh/ty/issues/86
## Summary
Support direct uses of `typing.TypeAliasType`, as in:
```py
from typing import TypeAliasType
IntOrStr = TypeAliasType("IntOrStr", int | str)
def f(x: IntOrStr) -> None:
reveal_type(x) # revealed: int | str
```
closes https://github.com/astral-sh/ty/issues/392
## Ecosystem
The new false positive here:
```diff
+ error[invalid-type-form] altair/utils/core.py:49:53: The first argument to `Callable` must be either a list of types, ParamSpec, Concatenate, or `...`
```
comes from the fact that we infer the second argument as a type
expression now. We silence false positives for PEP695 `ParamSpec`s, but
not for `P = ParamSpec("P")` inside `Callable[P, ...]`.
## Test Plan
New Markdown tests