## Summary
Use the type annotation of function parameters as bidirectional type
context when inferring the argument expression. For example, the
following example now type-checks:
```py
class TD(TypedDict):
x: int
def f(_: TD): ...
f({ "x": 1 })
```
Part of https://github.com/astral-sh/ty/issues/168.
## Summary
Modify the (external) signature of instance methods such that the first
parameter uses `Self` unless it is explicitly annotated. This allows us
to correctly type-check more code, and allows us to infer correct return
types for many functions that return `Self`. For example:
```py
from pathlib import Path
from datetime import datetime, timedelta
reveal_type(Path(".config") / ".ty") # now Path, previously Unknown
def _(dt: datetime, delta: timedelta):
reveal_type(dt - delta) # now datetime, previously Unknown
```
part of https://github.com/astral-sh/ty/issues/159
## Performance
I ran benchmarks locally on `attrs`, `freqtrade` and `colour`, the
projects with the largest regressions on CodSpeed. I see much smaller
effects locally, but can definitely reproduce the regression on `attrs`.
From looking at the profiling results (on Codspeed), it seems that we
simply do more type inference work, which seems plausible, given that we
now understand much more return types (of many stdlib functions). In
particular, whenever a function uses an implicit `self` and returns
`Self` (without mentioning `Self` anywhere else in its signature), we
will now infer the correct type, whereas we would previously return
`Unknown`. This also means that we need to invoke the generics solver in
more cases. Comparing half a million lines of log output on attrs, I can
see that we do 5% more "work" (number of lines in the log), and have a
lot more `apply_specialization` events (7108 vs 4304). On freqtrade, I
see similar numbers for `apply_specialization` (11360 vs 5138 calls).
Given these results, I'm not sure if it's generally worth doing more
performance work, especially since none of the code modifications
themselves seem to be likely candidates for regressions.
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/attrs` | 92.6 ± 3.6 | 85.9 |
102.6 | 1.00 |
| `./ty_self check /home/shark/ecosystem/attrs` | 101.7 ± 3.5 | 96.9 |
113.8 | 1.10 ± 0.06 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/freqtrade` | 599.0 ± 20.2 |
568.2 | 627.5 | 1.00 |
| `./ty_self check /home/shark/ecosystem/freqtrade` | 607.9 ± 11.5 |
594.9 | 626.4 | 1.01 ± 0.04 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/colour` | 423.9 ± 17.9 | 394.6
| 447.4 | 1.00 |
| `./ty_self check /home/shark/ecosystem/colour` | 426.9 ± 24.9 | 373.8
| 456.6 | 1.01 ± 0.07 |
## Test Plan
New Markdown tests
## Ecosystem report
* apprise: ~300 new diagnostics related to problematic stubs in apprise
😩
* attrs: a new true positive, since [this
function](4e2c89c823/tests/test_make.py (L2135))
is missing a `@staticmethod`?
* Some legitimate true positives
* sympy: lots of new `invalid-operator` false positives in [matrix
multiplication](cf9f4b6805/sympy/matrices/matrixbase.py (L3267-L3269))
due to our limited understanding of [generic `Callable[[Callable[[T1,
T2], T3]], Callable[[T1, T2], T3]]` "identity"
types](cf9f4b6805/sympy/core/decorators.py (L83-L84))
of decorators. This is not related to type-of-self.
## Typing conformance results
The changes are all correct, except for
```diff
+generics_self_usage.py:50:5: error[invalid-assignment] Object of type `def foo(self) -> int` is not assignable to `(typing.Self, /) -> int`
```
which is related to an assignability problem involving type variables on
both sides:
```py
class CallableAttribute:
def foo(self) -> int:
return 0
bar: Callable[[Self], int] = foo # <- we currently error on this assignment
```
---------
Co-authored-by: Shaygan Hooshyari <sh.hooshyari@gmail.com>
## Summary
This PR adds support for unpacking `**kwargs` argument.
This can be matched against any standard (positional or keyword),
keyword-only, or keyword variadic parameter that haven't been matched
yet.
This PR also takes care of special casing `TypedDict` because the key
names and the corresponding value type is known, so we can be more
precise in our matching and type checking step. In the future, this
special casing would be extended to include `ParamSpec` as well.
Part of astral-sh/ty#247
## Test Plan
Add test cases for various scenarios.
## Summary
I played with those numbers a bit locally and `sample_size=3,
sample_count=8` seemed like a rather stable setup. This means a single
sample consistents of 3 iterations of checking pydantic multithreaded.
And this is repeated 8 times for statistics. A single check took ~300 ms
previously on the runners, so this should only take 7 s.
The benchmark is currently very noisy (± 10%). This leads to codspeed
reports on PRs, because we often exceed the trigger threshold. This is
confusing to ty contributors who are not aware about the flakiness.
Let's disable it for now.