Commit Graph

5 Commits

Author SHA1 Message Date
David Peter 0092794302
[ty] Use `typing.Self` for the first parameter of instance methods (#20517)
## Summary

Modify the (external) signature of instance methods such that the first
parameter uses `Self` unless it is explicitly annotated. This allows us
to correctly type-check more code, and allows us to infer correct return
types for many functions that return `Self`. For example:

```py
from pathlib import Path
from datetime import datetime, timedelta

reveal_type(Path(".config") / ".ty")  # now Path, previously Unknown

def _(dt: datetime, delta: timedelta):
    reveal_type(dt - delta)  # now datetime, previously Unknown
```

part of https://github.com/astral-sh/ty/issues/159

## Performance

I ran benchmarks locally on `attrs`, `freqtrade` and `colour`, the
projects with the largest regressions on CodSpeed. I see much smaller
effects locally, but can definitely reproduce the regression on `attrs`.
From looking at the profiling results (on Codspeed), it seems that we
simply do more type inference work, which seems plausible, given that we
now understand much more return types (of many stdlib functions). In
particular, whenever a function uses an implicit `self` and returns
`Self` (without mentioning `Self` anywhere else in its signature), we
will now infer the correct type, whereas we would previously return
`Unknown`. This also means that we need to invoke the generics solver in
more cases. Comparing half a million lines of log output on attrs, I can
see that we do 5% more "work" (number of lines in the log), and have a
lot more `apply_specialization` events (7108 vs 4304). On freqtrade, I
see similar numbers for `apply_specialization` (11360 vs 5138 calls).
Given these results, I'm not sure if it's generally worth doing more
performance work, especially since none of the code modifications
themselves seem to be likely candidates for regressions.

| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/attrs` | 92.6 ± 3.6 | 85.9 |
102.6 | 1.00 |
| `./ty_self check /home/shark/ecosystem/attrs` | 101.7 ± 3.5 | 96.9 |
113.8 | 1.10 ± 0.06 |

| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/freqtrade` | 599.0 ± 20.2 |
568.2 | 627.5 | 1.00 |
| `./ty_self check /home/shark/ecosystem/freqtrade` | 607.9 ± 11.5 |
594.9 | 626.4 | 1.01 ± 0.04 |

| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/colour` | 423.9 ± 17.9 | 394.6
| 447.4 | 1.00 |
| `./ty_self check /home/shark/ecosystem/colour` | 426.9 ± 24.9 | 373.8
| 456.6 | 1.01 ± 0.07 |

## Test Plan

New Markdown tests

## Ecosystem report

* apprise: ~300 new diagnostics related to problematic stubs in apprise
😩
* attrs: a new true positive, since [this
function](4e2c89c823/tests/test_make.py (L2135))
is missing a `@staticmethod`?
* Some legitimate true positives
* sympy: lots of new `invalid-operator` false positives in [matrix
multiplication](cf9f4b6805/sympy/matrices/matrixbase.py (L3267-L3269))
due to our limited understanding of [generic `Callable[[Callable[[T1,
T2], T3]], Callable[[T1, T2], T3]]` "identity"
types](cf9f4b6805/sympy/core/decorators.py (L83-L84))
of decorators. This is not related to type-of-self.

## Typing conformance results

The changes are all correct, except for
```diff
+generics_self_usage.py:50:5: error[invalid-assignment] Object of type `def foo(self) -> int` is not assignable to `(typing.Self, /) -> int`
```
which is related to an assignability problem involving type variables on
both sides:
```py
class CallableAttribute:
    def foo(self) -> int:
        return 0

    bar: Callable[[Self], int] = foo  # <- we currently error on this assignment
```

---------

Co-authored-by: Shaygan Hooshyari <sh.hooshyari@gmail.com>
2025-09-29 21:08:08 +02:00
David Peter 742f8a4ee6
[ty] Use `C[T]` instead of `C[Unknown]` for the upper bound of `Self` (#20479)
### Summary

This PR includes two changes, both of which are necessary to resolve
https://github.com/astral-sh/ty/issues/1196:

* For a generic class `C[T]`, we previously used `C[Unknown]` as the
upper bound of the `Self` type variable. There were two problems with
this. For one, when `Self` appeared in contravariant position, we would
materialize its upper bound to `Bottom[C[Unknown]]` (which might
simplify to `C[Never]` if `C` is covariant in `T`) when accessing
methods on `Top[C[Unknown]]`. This would result in `invalid-argument`
errors on the `self` parameter. Also, using an upper bound of
`C[Unknown]` would mean that inside methods, references to `T` would be
treated as `Unknown`. This could lead to false negatives. To fix this,
we now use `C[T]` (with a "nested" typevar) as the upper bound for
`Self` on `C[T]`.
* In order to make this work, we needed to allow assignability/subtyping
of inferable typevars to other types, since we now check assignability
of e.g. `C[int]` to `C[T]` (when checking assignability to the upper
bound of `Self`) when calling an instance-method on `C[int]` whose
`self` parameter is annotated as `self: Self` (or implicitly `Self`,
following https://github.com/astral-sh/ruff/pull/18007).

closes https://github.com/astral-sh/ty/issues/1196
closes https://github.com/astral-sh/ty/issues/1208


### Test Plan

Regression tests for both issues.
2025-09-23 14:02:25 +02:00
Jelle Zijlstra 08c1d3660c
[ty] Narrow specialized generics using isinstance() (#20256)
Closes astral-sh/ty#456. Part of astral-sh/ty#994.

After all the foundational work, this is only a small change, but let's
see if it exposes any unresolved issues.
2025-09-04 15:28:33 -07:00
Alex Waygood 27eee5a1a8
[ty] Support narrowing on `isinstance()`/`issubclass()` if the second argument is a dynamic, intersection, union or typevar type (#18900) 2025-06-24 10:55:26 +00:00
Micha Reiser b51c4f82ea
Rename Red Knot (#17820) 2025-05-03 19:49:15 +02:00