This PR adds another useful simplification when rendering constraint
sets: `T = int` instead of `T = int ∧ T ≠ str`. (The "smaller"
constraint `T = int` implies the "larger" constraint `T ≠ str`.
Constraint set clauses are intersections, and if one constraint in a
clause implies another, we can throw away the "larger" constraint.)
While we're here, we also normalize the bounds of a constraint, so that
we equate e.g. `T ≤ int | str` with `T ≤ str | int`, and change the
ordering of BDD variables so that all constraints with the same typevar
are ordered adjacent to each other.
Lastly, we also add a new `display_graph` helper method that prints out
the full graph structure of a BDD.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Fall back to `C[Divergent]` if we are trying to specialize `C[T]` with a
type that itself already contains deeply nested specialized generic
classes. This is a way to prevent infinite recursion for cases like
`self.x = [self.x]` where type inference for the implicit instance
attribute would not converge.
closes https://github.com/astral-sh/ty/issues/1383
closes https://github.com/astral-sh/ty/issues/837
## Test Plan
Regression tests.
This is an alternative to #21012 that more narrowly handles this logic
in the stub-mapping machinery rather than pervasively allowing us to
identify cached files as typeshed stubs. Much of the logic is the same
(pulling the logic out of ty_server so it can be reused).
I don't have a good sense for if one approach is "better" or "worse" in
terms of like, semantics and Weird Bugs that this can cause. This one is
just "less spooky in its broad consequences" and "less muddying of
separation of concerns" and puts the extra logic on a much colder path.
I won't be surprised if one day the previous implementation needs to be
revisited for its more sweeping effects but for now this is good.
Fixes https://github.com/astral-sh/ty/issues/1054
## Summary
We currently panic in the seemingly rare case where the type of a
default value of a parameter depends on the callable itself:
```py
class C:
def f(self: C):
self.x = lambda a=self.x: a
```
Types of default values are only used for display reasons, and it's
unclear if we even want to track them (or if we should rather track the
actual value). So it didn't seem to me that we should spend a lot of
effort (and runtime) trying to achieve a theoretically correct type here
(which would be infinite).
Instead, we simply replace *nested* default types with `Unknown`, i.e.
only if the type of the default value is a callable itself.
closes https://github.com/astral-sh/ty/issues/1402
## Test Plan
Regression tests
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
This PR implements a new semantic syntax error where name is parameter &
global.
## Test Plan
<!-- How was it tested? -->
I have written inline test as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
Only run the "pull types" test after performing the "actual" mdtest. We
observed that the order matters. There is currently one mdtest which
panics when checked in the CLI or the playground. With this change, it
also panics in the mdtest suite.
reopens https://github.com/astral-sh/ty/issues/837?
## Summary
- Type checkers (and type-checker authors) think in terms of types, but
I think most Python users think in terms of values. Rather than saying
that a _type_ `X` "has no attribute `foo`" (which I think sounds strange
to many users), say that "an object of type `X` has no attribute `foo`"
- Special-case certain types so that the diagnostic messages read more
like normal English: rather than saying "Type `<class 'Foo'>` has no
attribute `bar`" or "Object of type `<class 'Foo'>` has no attribute
`bar`", just say "Class `Foo` has no attribute `bar`"
## Test Plan
Mdtests and snapshots updated
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
This PR implements semantic syntax error where alternative patterns bind
different names
## Test Plan
<!-- How was it tested? -->
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Derived from #20900
Implement `VarianceInferable` for `KnownInstanceType` (especially for
`KnownInstanceType::TypeAliasType`).
The variance of a type alias matches its value type. In normal usage,
type aliases are expanded to value types, so the variance of a type
alias can be obtained without implementing this. However, for example,
if we want to display the variance when hovering over a type alias, we
need to be able to obtain the variance of the type alias itself (cf.
#20900).
## Test Plan
I couldn't come up with a way to test this in mdtest, so I'm testing it
in a test submodule at the end of `types.rs`.
I also added a test to `mdtest/generics/pep695/variance.md`, but it
passes without the changes in this PR.
## Summary
Support `dataclass_transform` when used on a (base) class.
## Typing conformance
* The changes in `dataclasses_transform_class.py` look good, just a few
mistakes due to missing `alias` support.
* I didn't look closely at the changes in
`dataclasses_transform_converter.py` since we don't support `converter`
yet.
## Ecosystem impact
The impact looks huge, but it's concentrated on a single project (ibis).
Their setup looks more or less like this:
* the real `Annotatable`:
d7083c2c96/ibis/common/grounds.py (L100-L101)
* the real `DataType`:
d7083c2c96/ibis/expr/datatypes/core.py (L161-L179)
* the real `Array`:
d7083c2c96/ibis/expr/datatypes/core.py (L1003-L1006)
```py
from typing import dataclass_transform
@dataclass_transform()
class Annotatable:
pass
class DataType(Annotatable):
nullable: bool = True
class Array[T](DataType):
value_type: T
```
They expect something like `Array([1, 2])` to work, but ty, pyright,
mypy, and pyrefly would all expect there to be a first argument for the
`nullable` field on `DataType`. I don't really understand on what
grounds they expect the `nullable` field to be excluded from the
signature, but this seems to be the main reason for the new diagnostics
here. Not sure if related, but it looks like their typing setup is not
really complete
(https://github.com/ibis-project/ibis/issues/6844#issuecomment-1868274770,
this thread also mentions `dataclass_transform`).
## Test Plan
Update pre-existing tests.
Detect legacy namespace packages and treat them like namespace packages
when looking them up as the *parent* of the module we're interested in.
In all other cases treat them like a regular package.
(This PR is coauthored by @MichaReiser in a shared coding session)
Fixes https://github.com/astral-sh/ty/issues/838
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
Prefer the declared type for collection literals, e.g.,
```py
x: list[Any] = [1, "2", (3,)]
reveal_type(x) # list[Any]
```
This solves a large part of https://github.com/astral-sh/ty/issues/136
for invariant generics, where respecting the declared type is a lot more
important. It also means that annotated dict literals with `dict[_,
Any]` is a way out of https://github.com/astral-sh/ty/issues/1248.
We have to track whether a typevar appears in a position where it's
inferable or not. In a non-inferable position (in the body of the
generic class or function that binds it), assignability must hold for
every possible specialization of the typevar. In an inferable position,
it only needs to hold for _some_ specialization.
https://github.com/astral-sh/ruff/pull/20093 is working on using
constraint sets to model assignability of typevars, and the constraint
sets that we produce will be the same for inferable vs non-inferable
typevars; what changes is what we _compare_ that constraint set to. (For
a non-inferable typevar, the constraint set must equal the set of valid
specializations; for an inferable typevar, it must not be `never`.)
When I first added support for tracking inferable vs non-inferable
typevars, it seemed like it would be easiest to have separate `Type`
variants for each. The alternative (which lines up with the Δ set in
[POPL15](https://doi.org/10.1145/2676726.2676991)) would be to
explicitly plumb through a list of inferable typevars through our type
property methods. That seemed cumbersome.
In retrospect, that was the wrong decision. We've had to jump through
hoops to translate types between the inferable and non-inferable
variants, which has been quite brittle. Combined with the original point
above, that much of the assignability logic will become more identical
between inferable and non-inferable, there is less justification for the
two `Type` variants. And plumbing an extra `inferable` parameter through
all of these methods turns out to not be as bad as I anticipated.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Use the declared type of variables as type context for the RHS of assignment expressions, e.g.,
```py
x: list[int | str]
x = [1]
reveal_type(x) # revealed: list[int | str]
```
## Summary
Ignore the type context when specializing a generic call if it leads to
an unnecessarily wide return type. For example, [the example mentioned
here](https://github.com/astral-sh/ruff/pull/20796#issuecomment-3403319536)
works as expected after this change:
```py
def id[T](x: T) -> T:
return x
def _(i: int):
x: int | None = id(i)
y: int | None = i
reveal_type(x) # revealed: int
reveal_type(y) # revealed: int
```
I also added extended our usage of `filter_disjoint_elements` to tuple
and typed-dict inference, which resolves
https://github.com/astral-sh/ty/issues/1266.
## Summary
Add support for the `field_specifiers` parameter on
`dataclass_transform` decorator calls.
closes https://github.com/astral-sh/ty/issues/1068
## Conformance test results
All true positives ✔️
## Ecosystem analysis
* `trio`: this is the kind of change that I would expect from this PR.
The code makes use of a dataclass `Outcome` with a `_unwrapped: bool =
attr.ib(default=False, eq=False, init=False)` field that is excluded
from the `__init__` signature, so we now see a bunch of
constructor-call-related errors going away.
* `home-assistant/core`: They have a `domain: str = attr.ib(init=False,
repr=False)` field and then use
```py
@domain.default
def _domain_default(self) -> str:
# …
```
This accesses the `default` attribute on `dataclasses.Field[…]` with a
type of `default: _T | Literal[_MISSING_TYPE.MISSING]`, so we get those
"Object of type `_MISSING_TYPE` is not callable" errors. I don't really
understand how that is supposed to work. Even if `_MISSING_TYPE` would
be absent from that union, what does this try to call? pyright also
issues an error and it doesn't seem to work at runtime? So this looks
like a true positive?
* `attrs`: Similar here. There are some new diagnostics on code that
tries to access `.validator` on a field. This *does* work at runtime,
but I'm not sure how that is supposed to type-check (without a [custom
plugin](2c6c395935/mypy/plugins/attrs.py (L575-L602))).
pyright errors on this as well.
* A handful of new false positives because we don't support `alias` yet
## Test Plan
Updated tests.
Summary
--
This PR unifies the two different ways Ruff and ty construct syntax
errors. Ruff has been storing the primary message in the diagnostic
itself, while ty attached the message to the primary annotation:
```
> ruff check try.py
invalid-syntax: name capture `x` makes remaining patterns unreachable
--> try.py:2:10
|
1 | match 42:
2 | case x: ...
| ^
3 | case y: ...
|
Found 1 error.
> uvx ty check try.py
WARN ty is pre-release software and not ready for production use. Expect to encounter bugs, missing features, and fatal errors.
Checking ------------------------------------------------------------ 1/1 files
error[invalid-syntax]
--> try.py:2:10
|
1 | match 42:
2 | case x: ...
| ^ name capture `x` makes remaining patterns unreachable
3 | case y: ...
|
Found 1 diagnostic
```
I think there are benefits to both approaches, and I do like ty's
version, but I feel like we should pick one (and it might help with
#20901 eventually). I slightly prefer Ruff's version, so I went with
that. Hopefully this isn't too controversial, but I'm happy to close
this if it is.
Note that this shouldn't change any other diagnostic formats in ty
because
[`Diagnostic::primary_message`](98d27c4128/crates/ruff_db/src/diagnostic/mod.rs (L177))
was already falling back to the primary annotation message if the
diagnostic message was empty. As a result, I think this change will
partially resolve the FIXME therein.
Test Plan
--
Existing tests with updated snapshots
This is the ultra-minimal implementation of
* https://github.com/astral-sh/ty/issues/296
that was previously discussed as a good starting point. In particular we
don't actually bother trying to figure out the exact python versions,
but we still mention "hey btw for No Reason At All... you're on python
3.10" when you try to access something that has a definition rooted in
the stdlib that we believe exists sometimes.
This is a drive-by improvement that I stumbled backwards into while
looking into
* https://github.com/astral-sh/ty/issues/296
I was writing some simple tests for "thing not in old version of stdlib"
diagnostics and checked what was added in 3.14, and saw
`compression.zstd` and to my surprise discovered that `import
compression.zstd` and `from compression import zstd` had completely
different quality diagnostics.
This is because `compression` and `compression.zstd` were *both*
introduced in 3.14, and so per VERSIONS policy only an entry for
`compression` was added, and so we don't actually have any definite info
on `compression.zstd` and give up on producing a diagnostic. However the
`from compression import zstd` form fails on looking up `compression`
and we *do* have an exact match for that, so it gets a better
diagnostic!
(aside: I have now learned about the VERSIONS format and I *really* wish
they would just enumerate all the submodules but, oh well!)
The fix is, when handling an import failure, if we fail to find an exact
match *we requery with the parent module*. In cases like
`compression.zstd` this lets us at least identify that, hey, not even
`compression` exists, and luckily that fixes the whole issue. In cases
where the parent module and submodule were introduced at different times
then we may discover that the parent module is in-range and that's fine,
we don't produce the richer stdlib diagnostic.
## Summary
`dataclasses.field` and field-specifier functions of commonly used
libraries like `pydantic`, `attrs`, and `SQLAlchemy` all return the
default type for the field (or `Any`) instead of an actual `Field`
instance, even if this is not what happens at runtime. Let's make use of
this fact and assume that *all* field specifiers return the type of the
default value of the field.
For standard dataclasses, this leads to more or less the same outcome
(see test diff for details), but this change is important for 3rd party
dataclass-transformers.
## Test Plan
Tested the consequences of this change on the field-specifiers branch as
well.
## Summary
Resolves https://github.com/astral-sh/ty/issues/1349.
Fix match statement value patterns to use equality comparison semantics
instead of incorrectly narrowing to literal types directly. Value
patterns use equality for matching, and equality can be overridden, so
we can't always narrow to the matched literal.
## Test Plan
Updated match.md with corrected expected types and an additional example
with explanation
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Part of astral-sh/ty#1341
The following changes will be made to `Place`.
* Introduce `TypeOrigin`
* `Place::Type` -> `Place::Defined`
* `Place::Unbound` -> `Place::Undefined`
* `Boundness` -> `Definedness`
`TypeOrigin::Declared`+`Definedness::PossiblyUndefined` are patterns
that weren't considered before, but this PR doesn't address them yet,
only refactors.
## Test Plan
Refactoring
A large part of the diff on #20677 just involves threading a new
`inferable` parameter through all of the type property methods. In the
interests of making that PR easier to review, I've pulled that bit out
into here, so that it can be reviewed in isolation. This should be a
pure refactoring, with no logic changes or behavioral changes.
## Summary
If a function is decorated with a decorator that returns a union of
`Callable`s, also treat it as a union of function-like `Callable`s.
Labeling as `internal`, since the previous change has not been released
yet.
## Test Plan
New regression test.
## Summary
Rename "unwrapping" methods on `Type` from e.g.
`Type::into_class_literal` to `Type::as_class_literal`. I personally
find that name more intuitive, since no transformation of any kind is
happening. We are just unwrapping from certain enum variants. An
alternative would be `try_as_class_literal`, which would follow the
[`strum` naming
scheme](https://docs.rs/strum/latest/strum/derive.EnumTryAs.html), but
is slightly longer.
Also rename `Type::into_callable` to `Type::try_upcast_to_callable`.
Note that I intentionally kept names like
`FunctionType::into_callable_type`, because those return `CallableType`,
not `Option<Type<…>>`.
## Test Plan
Pure refactoring
As part of #20598, we added `is_identical_to` methods to
`TypeVarInstance` and `BoundTypeVarInstance`, which compare when two
typevar instances refer to "the same" underlying typevar, even if we
have forced their lazy bounds/constraints as part of marking typevars as
inferable. (Doing so results in a different salsa interned struct ID,
since we've changed the contents of the `bounds_or_constraints` field.)
It turns out that marking typevars as inferable is not the only way that
we might force lazy bounds/constraints; it also happens when we
materialize a type containing a typevar. This surfaced as ecosystem
report failures on #20677.
That means that we need a more long-term fix to this problem.
(`is_identical_to`, and its underlying `original` field, were meant to
be a temporary fix until we removed the `MarkTypeVarsInferable` type
mapping.)
This PR extracts out a separate type (`TypeVarIdentity`) that only
includes the fields that actually inform whether two typevars are "the
same". All other properties of the typevar (default, bounds/constraints,
etc) still live in `TypeVarInstance`. Call sites that care about typevar
identity can now either store just `TypeVarIdentity` (if they never need
access to those other properties), or continue to store
`TypeVarInstance` but pull out its `identity` when performing those "are
they the same typevar" comparisons. (All of this also applies
respectively to `BoundTypeVar{Identity,Instance}`.) In particular,
constraint sets now work on `BoundTypeVarIdentity`, and generic contexts
still _store_ a `BoundTypeVarInstance` (since we might need access to
defaults when specializing), but are keyed on `BoundTypeVarIdentity`.
Generic classes are not allowed to bind or reference a typevar from an
enclosing scope:
```py
def f[T](x: T, y: T) -> None:
class Ok[S]: ...
# error: [invalid-generic-class]
class Bad1[T]: ...
# error: [invalid-generic-class]
class Bad2(Iterable[T]): ...
class C[T]:
class Ok1[S]: ...
# error: [invalid-generic-class]
class Bad1[T]: ...
# error: [invalid-generic-class]
class Bad2(Iterable[T]): ...
```
It does not matter if the class uses PEP 695 or legacy syntax. It does
not matter if the enclosing scope is a generic class or function. The
generic class cannot even _reference_ an enclosing typevar in its base
class list.
This PR adds diagnostics for these cases.
In addition, the PR adds better fallback behavior for generic classes
that violate this rule: any enclosing typevars are not included in the
class's generic context. (That ensures that we don't inadvertently try
to infer specializations for those typevars in places where we
shouldn't.) The `dulwich` ecosystem project has [examples of
this](d912eaaffd/dulwich/config.py (L251))
that were causing new false positives on #20677.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
This PR implements https://docs.astral.sh/ruff/rules/break-outside-loop/
(F701) as a semantic syntax error.
## Test Plan
<!-- How was it tested? -->
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Treat `Callable`s as bound-method descriptors if `Callable` is the
return type of a decorator that is applied to a function definition. See
the [rendered version of the new test
file](https://github.com/astral-sh/ruff/blob/david/callables-as-descriptors/crates/ty_python_semantic/resources/mdtest/call/callables_as_descriptors.md)
for the full description of this new heuristic.
I could imagine that we want to treat `Callable`s as bound-method
descriptors in other cases as well, but this seems like a step in the
right direction. I am planning to add other "use cases" from
https://github.com/astral-sh/ty/issues/491 to this test suite.
partially addresses https://github.com/astral-sh/ty/issues/491
closes https://github.com/astral-sh/ty/issues/1333
## Ecosystem impact
All positive
* 2961 removed `unsupported-operator` diagnostics on `sympy`, which was
one of the main motivations for implementing this change
* 37 removed `missing-argument` diagnostics, and no added call-error
diagnostics, which is an indicator that this heuristic shouldn't cause
many false positives
* A few removed `possibly-missing-attribute` diagnostics when accessing
attributes like `__name__` on decorated functions. The two added
`unused-ignore-comment` diagnostics are also cases of this.
* One new `invalid-assignment` diagnostic on `dd-trace-py`, which looks
suspicious, but only because our `invalid-assignment` diagnostics are
not great. This is actually a "Implicit shadowing of function"
diagnostic that hides behind the `invalid-assignment` diagnostic,
because a module-global function is being patched through a
`module.func` attribute assignment.
## Test Plan
New Markdown tests.
## Summary
Move the `class_member` function to the `member` module. This allows us
to move the `member` module into the `types` module and to reduce the
visibility of its contents to `pub(super)`. The drawback is that we need
to make `place::place_by_id` public.
## Test Plan
Pure refactoring.
## Summary
When accessing an (instance) attribute on a given class, we were
previously traversing its MRO, and building a union of types (if the
attribute was available on multiple classes in the MRO) until we found a
*definitely bound* symbol. The idea was that possibly unbound symbols in
a subclass might only partially shadow the underlying base class
attribute.
This behavior was problematic for two reasons:
* if the attribute was definitely bound on a class (e.g. `self.x =
None`), we would have stopped iterating, even if there might be a `x:
str | None` declaration in a base class (the bug reported in
https://github.com/astral-sh/ty/issues/1067).
* if the attribute originated from an implicit instance attribute
assignment (e.g. `self.x = 1` in method `Sub.foo`), we might stop
looking and miss another implicit instance attribute assignment in a
base class method (e.g. `self.x = 2` in method `Base.bar`).
With this fix, we still iterate the MRO of the class, but we only stop
iterating if we find a *definitely declared* symbol. In this case, we
only return the declared attribute type. Otherwise, we keep building a
union of inferred attribute types.
The implementation here seemed to be the easiest fix for
https://github.com/astral-sh/ty/issues/1067 that also kept the ecosystem
impact low (the changes that I see all look correct). However, as the
Markdown tests show, there are other things to fix in this area. For
example, we should do a similar thing for *class attributes*. This is
more involved, though (affects many different areas and probably
involves a change to our descriptor protocol implementation), so I'd
like to postpone this to a follow-up.
closes https://github.com/astral-sh/ty/issues/1067
## Test Plan
Updated Markdown tests, including a regression test for
https://github.com/astral-sh/ty/issues/1067.
## Summary
Implements bidirectional type inference using function return type
annotations.
This PR was originally proposed to solve astral-sh/ty#1167, but this
does not fully resolve it on its own.
Additionally, I believe we need to allow dataclasses to generate their
own `__new__` methods, [use constructor return types for
inference](5844c0103d/crates/ty_python_semantic/src/types.rs (L5326-L5328)),
and a mechanism to discard type narrowing like `& ~AlwaysFalsy` if
necessary (at a more general level than this PR).
## Test Plan
`mdtest/bidirectional.md` is added.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Ibraheem Ahmed <ibraheem@ibraheem.ca>
## Summary
Adds a set of basic new tests corresponding to open points in
https://github.com/astral-sh/ty/issues/1327, to document the state of
support for `dataclass_transform`.
## Summary
Type annotations are deferred by default starting with Python 3.14. No
`from __future__ import annotations` import is necessary.
## Test Plan
New Markdown test
## Summary
Simplify and fix the implementation of
`ty_extensions.CallableTypeOf[..]`.
closes https://github.com/astral-sh/ty/issues/1331
## Test Plan
Added regression test.
## Summary
This allows us to handle self-referential bounds/constraints/defaults
without panicking.
Handles more cases from https://github.com/astral-sh/ty/issues/256
This also changes the way we infer the types of legacy TypeVars. Rather
than understanding a constructor call to `typing[_extension].TypeVar`
inside of any (arbitrarily nested) expression, and having to use a
special `assigned_to` field of the semantic index to try to best-effort
figure out what name the typevar was assigned to, we instead understand
the creation of a legacy `TypeVar` only in the supported syntactic
position (RHS of a simple un-annotated assignment with one target). In
any other position, we just infer it as creating an opaque instance of
`typing.TypeVar`. (This behavior matches all other type checkers.)
So we now special-case TypeVar creation in `TypeInferenceBuilder`, as a
special case of an assignment definition, rather than deeper inside call
binding. This does mean we re-implement slightly more of
argument-parsing, but in practice this is minimal and easy to handle
correctly.
This is easier to implement if we also make the RHS of a simple (no
unpacking) one-target assignment statement no longer a standalone
expression. Which is fine to do, because simple one-target assignments
don't need to infer the RHS more than once. This is a bonus performance
(0-3% across various projects) and significant memory-usage win, since
most assignment statements are simple one-target assignment statements,
meaning we now create many fewer standalone-expression salsa
ingredients.
This change does mean that inference of manually-constructed
`TypeAliasType` instances can no longer find its Definition in
`assigned_to`, which regresses go-to-definition for these aliases. In a
future PR, `TypeAliasType` will receive the same treatment that
`TypeVar` did in this PR (moving its special-case inference into
`TypeInferenceBuilder` and supporting it only in the correct syntactic
position, and lazily inferring its value type to support recursion),
which will also fix the go-to-definition regression. (I decided a
temporary edge-case regression is better in this case than doubling the
size of this PR.)
This PR also tightens up and fixes various aspects of the validation of
`TypeVar` creation, as seen in the tests.
We still (for now) treat all typevars as instances of `typing.TypeVar`,
even if they were created using `typing_extensions.TypeVar`. This means
we'll wrongly error on e.g. `T.__default__` on Python 3.11, even if `T`
is a `typing_extensions.TypeVar` instance at runtime. We share this
wrong behavior with both mypy and pyrefly. It will be easier to fix
after we pull in https://github.com/python/typeshed/pull/14840.
There are some issues that showed up here with typevar identity and
`MarkTypeVarsInferable`; the fix here (using the new `original` field
and `is_identical_to` methods on `BoundTypeVarInstance` and
`TypeVarInstance`) is a bit kludgy, but it can go away when we eliminate
`MarkTypeVarsInferable`.
## Test Plan
Added and updated mdtests.
### Conformance suite impact
The impact here is all positive:
* We now correctly error on a legacy TypeVar with exactly one constraint
type given.
* We now correctly error on a legacy TypeVar with both an upper bound
and constraints specified.
### Ecosystem impact
Basically none; in the setuptools case we just issue slightly different
errors on an invalid TypeVar definition, due to the modified validation
code.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Avoid literal promotion when a literal type annotation is provided, e.g.,
```py
x: list[Literal[1]] = [1]
```
Resolves https://github.com/astral-sh/ty/issues/1198. This does not fix
issue https://github.com/astral-sh/ty/issues/1284, but it does make it
more relevant because after this change, it is possible to directly
instantiate a generic type with a literal specialization.
## Summary
Respect parameters such as `frozen_default` for metaclass-based
`@dataclass_transformer` models.
Related to: https://github.com/astral-sh/ty/issues/1260
## Typing conformance changes
Those are all correct (new true positives)
## Test Plan
New Markdown tests
## Summary
- Add support for eq, kw_only, and frozen parameter overrides in
@dataclass_transform
- Previously only order parameter override was supported
- Update test documentation to reflect fixed behavior
- Resolves issue where kw_only_default and frozen_default could not be
overridden
closes https://github.com/astral-sh/ty/issues/1260
## Test Plan
New Markdown tests
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Two stable property tests are currently failing on `main`, following
f054b8a55e
(of course, I only thought to run the property tests again around 30
minutes _after_ landing that PR...). The issue is quite subtle, and took
me an annoying amount of time to pin down: we're matching over `(self,
other)` in `Type::is_disjoint_from_impl`, but `other` here is shadowed
by the binding in the `match` branch, which means that the wrong key is
inserted into the cache of the `IsDisjointFrom` cycle detector:
f054b8a55e/crates/ty_python_semantic/src/types.rs (L2408-L2435)
This PR fixes that issue, and also adds a few `Debug` implementations to
our cycle detectors, so that issues like this are easier to debug in the
future.
I'm adding the `internal` label, as this fixes a bug that hasn't yet
appeared in any released version of ty, so it doesn't deserve its own
changelog entry.
## Test Plan
`QUICKCHECK_TESTS=1000000 cargo test --release -p ty_python_semantic --
--ignored types::property_tests::stable` now once again passes on `main`
I considered adding new mdtests as well, but the examples that the
property tests were throwing at me all seemed _quite_ obscure and
somewhat unlikely to occur in the real world. I don't think it's worth
it.
## Summary
Even disambiguating classes using their fully qualified names is not
enough for some diagnostics. We've seen real-world examples in the
ecosystem (and https://github.com/astral-sh/ruff/pull/20368 introduces
some more!) where two types can be different, but can still have the
same fully qualified name. In these cases, our disambiguation machinery
needs to print the file path and line number of the class in order to
disambiguate classes with similar names in our diagnostics.
Helps with https://github.com/astral-sh/ty/issues/1306
## Test Plan
Mdtests
## Summary
This adds a couple of new test cases related to
https://github.com/astral-sh/ty/issues/1067 and beyond that. For now,
they are just documenting the current (problematic) behavior. Since the
topic has some subtleties, I'd like to merge this prior to the actual
bugfix(es) in order to evaluate the changes in an easier way.
## Summary
The `types` module currently re-exports a lot of functions and data
types from `types::ide_support`. One of these is called `Member`, a name
that is overloaded several times already. And I'd like to add one more
`Member` struct soon. Making the whole `ide_support` module public seems
cleaner to me, anyway.
## Test Plan
Pure refactoring.
## Summary
We have the following test in `protocols.md`:
```py
class HasX(Protocol):
x: int
# […]
class Foo:
x: int
# […]
class FooBool(Foo):
x: bool
static_assert(not is_subtype_of(FooBool, HasX))
static_assert(not is_assignable_to(FooBool, HasX))
```
If `Foo` was indeed intended to be a base class of `FooBool`, then `x:
bool` should be reported as a Liskov violation. And then it's a matter
of definition whether or not these assertions should hold true or not
(should the incorrect override take precedence or not?). So it looks to
me like this is just an oversight, probably a copy-paste error from
another test right before it, where `FooSub` is indeed intended to be a
subclass of `Foo`.
I am fixing this because this test started to fail on a branch of mine
that changes how attribute lookup in inheritance chains works.
## Summary
Fixes [astral-sh/ty#1307](https://github.com/astral-sh/ty/issues/1307)
Unions with length <= 5 are unaffected to minimize test churn
Unions with length > 5 will only display the first 3 elements + "...
omitted x union elements"
Here "length" is defined as the number of elements after condensation to
literals
Edit: we no longer truncate in revel case.
Before:
> info: Attempted to call union type `(def f1() -> int) | (def f2(name:
str) -> int) | (def f3(a: int, b: int) -> int) | (def f4[T](x: T@f4) ->
int) | Literal[5] | (Overload[() -> None, (x: str) -> str]) |
(Overload[() -> None, (x: str, y: str) -> str]) | PossiblyNotCallable`
After:
> info: Attempted to call union type `(def f1() -> int) | (def f2(name:
str) -> int) | (def f3(a: int, b: int) -> int) | ... omitted 5 union
elements`
The below comparisons are outdated, but left here as a reference.
Before:
```reveal_type(x) # revealed: Literal[1, 2] | A | B | C | D | E | F | G```
```reveal_type(x) # revealed: Result1A | Result1B | Result2A | Result2B
| Result3 | Result4```
After:
```reveal_type(x) # revealed: Literal[1, 2] | A | B | ... omitted 5 union elements```
```reveal_type(x) # revealed: Result1A | Result1B | Result2A | ...
omitted 3 union elements```
This formatting is consistent with
`crates/ty_python_semantic/src/types/call/bind.rs` line 2992
## Test Plan
Cosmetic only, covered and verified by changes in mdtest
## Summary
Bump the latest supported Python version of ty to 3.14 and updates some
references from 3.13 to 3.14.
This also fixes a bug with `dataclasses.field` on 3.14 (which adds a new
keyword-only parameter to that function, breaking our previously naive
matching on the parameter structure of that function).
## Test Plan
A `ty check` on a file with template strings (without any further
configuration) doesn't raise errors anymore.
## Summary
Typevar attributes (bound/constraints/default) can be either lazily
evaluated or eagerly evaluated. Currently they are lazily evaluated for
PEP 695 typevars, and eager for legacy and synthetic typevars.
https://github.com/astral-sh/ruff/pull/20598 will make them lazy also
for legacy typevars, and the ecosystem report on that PR surfaced the
issue fixed here (because legacy typevars are much more common in the
ecosystem than PEP 695 typevars.)
Applying a transform to a typevar (normalization, materialization, or
mark-inferable) will reify all lazy attributes and create a new typevar
with eager attributes. In terms of Salsa identity, this transformed
typevar will be considered different from the original typevar, whether
or not the attributes were actually transformed.
In general, this is not a problem, since all typevars in a given generic
context will be transformed, or not, together.
The exception to this was implicit-self vs explicit Self annotations.
The typevar we created for implicit self was created initially using
inferable typevars, whereas an explicit Self annotation is initially
non-inferable, then transformed via mark-inferable when accessed as part
of a function signature. If the containing class (which becomes the
upper bound of `Self`) is generic, and has e.g. a lazily-evaluated
default, then the explicit-Self annotation will reify that default in
the upper bound, and the implicit-self would not, leading them to be
treated as different typevars, and causing us to fail to solve a call to
a method such as `def method(self) -> Self` correctly.
The fix here is to treat implicit-self more like explicit-Self,
initially creating it as non-inferable and then using the mark-inferable
transform on it. This is less efficient, but restores the invariant that
all typevars in a given generic context are transformed together, or
not, fixing the bug.
In the improved-constraint-solver work, the separation of typevars into
"inferable" and "non-inferable" is expected to disappear, along with the
mark-inferable transform, which would render both this bug and the fix
moot. So this fix is really just temporary until that lands.
There is a performance regression, but not a huge one: 1-2% on most
projects, 5% on one outlier. This seems acceptable, given that it should
be fully recovered by removing the mark-inferable transform.
## Test Plan
Added mdtests that failed before this change.
This PR adds a specialization inference special case that lets us handle
the following examples better:
```py
def f[T](t: T | None) -> T: ...
def g[T](t: T | int | None) -> T | int: ...
def _(x: str | None):
reveal_type(f(x)) # revealed: str (previously str | None)
def _(y: str | int | None):
reveal_type(g(x)) # revealed: str | int (previously str | int | None)
```
We already have a special case for when the formal is a union where one
element is a typevar, but it maps the entire actual type to the typevar
(as you can see in the "previously" results above).
The new special case kicks in when the actual is also a union. Now, we
filter out any actual union elements that are already subtypes of the
formal, and only bind whatever types remain to the typevar. (The `|
None` pattern appears quite often in the ecosystem results, but it's
more general and works with any number of non-typevar union elements.)
The new constraint solver should handle this case as well, but it's
worth adding this heuristic now with the old solver because it
eliminates some false positives from the ecosystem report, and makes the
ecosystem report less noisy on the other constraint solver PRs.
Summary
--
Closes#19467 and also removes the warning about using Python 3.14
without
preview enabled.
I also bumped `PythonVersion::default` to 3.9 because it reaches EOL
this month,
but we could also defer that for now if we wanted.
The first three commits are related to the `latest` bump to 3.14; the
fourth commit
bumps the default to 3.10.
Note that this PR also bumps the default Python version for ty to 3.10
because
there was a test asserting that it stays in sync with
`ast::PythonVersion`.
Test Plan
--
Existing tests
I spot-checked the ecosystem report, and I believe these are all
expected. Inbits doesn't specify a target Python version, so I guess
we're applying the default. UP007, UP035, and UP045 all use the new
default value to emit new diagnostics.
## Summary
`infer_method_information` was previously calling
`ClassLiteral::to_class_type`, which uses the default-specialization of
a generic class. This specialized `ClassType` was later only used if the
class was non-generic, making the specialization irrelevant. The
implementation was still a bit confusing, so this PR proposes a way to
avoid turning the class literal into a `ClassType`.
## Summary
Use the type annotation of function parameters as bidirectional type
context when inferring the argument expression. For example, the
following example now type-checks:
```py
class TD(TypedDict):
x: int
def f(_: TD): ...
f({ "x": 1 })
```
Part of https://github.com/astral-sh/ty/issues/168.
We add an `inherited_generic_context` to the constructors of a generic
class. That lets us infer specializations of the class when invoking the
constructor. The constructor might itself be generic, in which case we
have to merge the list of typevars that we are willing to infer in the
constructor call.
Before we did that by tracking the two (and their specializations)
separately, with distinct `Option` fields/parameters. This PR updates
our call binding logic such that any given function call has _one_
optional generic context that we're willing to infer a specialization
for. If needed, we use the existing `GenericContext::merge` method to
create a new combined generic context for when the class and constructor
are both generic. This simplifies the call binding code considerably,
and is no more complex in the constructor call logic.
We also have a heuristic that we will promote any literals in the
specialized types of a generic class, but we don't promote literals in
the specialized types of the function itself. To handle this, we now
track this `should_promote_literals` property within `GenericContext`.
And moreover, we track this separately for each typevar, instead of a
single property for the generic context as a whole, so that we can
correctly merge the generic context of a constructor method (where the
option should be `false`) with the inherited generic context of its
containing class (where the option should be `true`).
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
The union `T | U` can be validly simplified to `U` iff:
1. `T` is a subtype of `U` OR
2. `T` is equivalent to `U` OR
3. `U` is a union and contains a type that is equivalent to `T` OR
4. `T` is an intersection and contains a type that is equivalent to `U`
(In practice, the only situation in which 2, 3 or 4 would be true when
(1) was not true would be if `T` or `U` is a dynamic type.)
Currently we achieve these simplifications in the union builder by doing
something along the lines of `t.is_subtype_of(db, u) ||
t.is_equivalent_to_(db, u) ||
t.into_intersection().is_some_and(|intersection|
intersection.positive(db).contains(&u)) ||
u.into_union().is_some_and(|union| union.elements(db).contains(&t))`.
But this is both slow and misses some cases (it doesn't simplify the
union `Any | (Unknown & ~None)` to `Any`, for example). We can improve
the consistency and performance of our union simplifications by adding a
third type relation that sits in between `TypeRelation::Subtyping` and
`TypeRelation::Assignability`: `TypeRelation::UnionSimplification`.
This change leads to simpler, more user-friendly types due to the more
consistent simplification. It also lead to a pretty huge performance
improvement!
## Test Plan
Existing tests, plus some new ones.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
#19990 didn't completely fix the base vs. child conda environment
distinction, since it detected slightly different behavior than what I
usually see in conda. E.g., I see something like the following:
```
(didn't yet activate conda, but base is active)
➜ printenv | grep CONDA
CONDA_PYTHON_EXE=/opt/anaconda3/bin/python
CONDA_PREFIX=/opt/anaconda3
CONDA_DEFAULT_ENV=base
CONDA_EXE=/opt/anaconda3/bin/conda
CONDA_SHLVL=1
CONDA_PROMPT_MODIFIER=(base)
(activating conda)
➜ conda activate test
(test is an active conda environment)
❯ printenv | grep CONDA
CONDA_PREFIX=/opt/anaconda3/envs/test
CONDA_PYTHON_EXE=/opt/anaconda3/bin/python
CONDA_SHLVL=2
CONDA_PREFIX_1=/opt/anaconda3
CONDA_DEFAULT_ENV=test
CONDA_PROMPT_MODIFIER=(test)
CONDA_EXE=/opt/anaconda3/bin/conda
```
But the current behavior looks for `CONDA_DEFAULT_ENV =
basename(CONDA_PREFIX)` for the base environment instead of the child
environment, where we actually see this equality.
This pull request fixes that and updates the tests correspondingly.
## Test Plan
I updated the existing tests with the new behavior. Let me know if you
want more tests. Note: It shouldn't be necessary to test for the case
where we have `conda/envs/base`, since one should not be able to create
such an environment (one with the name of `CONDA_DEFAULT_ENV`).
---------
Co-authored-by: Aria Desires <aria.desires@gmail.com>
Previously, we would always add `/{*filepath}` as our wildcard to match
descendant paths. But when the root is just `/` (as it can be in tests,
weird environments or in the ty playground), this causes a double `/`
and inhibits most descendant matches.
The regression test added in this commit fails without this fix.
Specifically, it panics because it can't find a file root for
`/project`.
Fixes#1277
## Summary
closes: https://github.com/astral-sh/ty/issues/247
This PR adds support for variadic arguments to overload call evaluation.
This basically boils down to making sure that the overloads are not
filtered out incorrectly during the step 5 in the overload call
evaluation algorithm. For context, the step 5 tries to filter out the
remaining overloads after finding an overload where the materialization
of argument types are assignable to the parameter types.
The issue with the previous implementation was that it wouldn't unpack
the variadic argument and wouldn't consider the many-to-one (multiple
arguments mapping to a single variadic parameter) correctly. This PR
fixes that.
## Test Plan
Update existing test cases and resolve the TODOs.
## Summary
Currently we do not emit an error on this code:
```py
from ty_extensions import Not
def f[T](x: T, y: Not[T]) -> T:
x = y
return x
```
But we should do! `~T` should never be assignable to `T`.
This fixes a small regression introduced in
14fe1228e7 (diff-8049ab5af787dba29daa389bbe2b691560c15461ef536f122b1beab112a4b48aR1443-R1446),
where a branch that previously returned `false` was replaced with a
branch that returns `C::always_satisfiable` -- the opposite of what it
used to be! The regression occurred because we didn't have any tests for
this -- so I added some tests in this PR that fail on `main`. I only
spotted the problem because I was going through the code of
`has_relation_to_impl` with a fine toothcomb for
https://github.com/astral-sh/ruff/pull/20602😄
## Summary
Quoting from the newly added comment:
Module-level globals can be mutated externally. A `MY_CONSTANT = 1`
global might be changed to `"some string"` from code outside of the
module that we're looking at, and so from a gradual-guarantee
perspective, it makes sense to infer a type of `Literal[1] | Unknown`
for global symbols. This allows the code that does the mutation to type
check correctly, and for code that uses the global, it accurately
reflects the lack of knowledge about the type.
External modifications (or modifications through `global` statements)
that would require a wider type are relatively rare. From a practical
perspective, we can therefore achieve a better user experience by
trusting the inferred type. Users who need the external mutation to work
can always annotate the global with the wider type. And everyone else
benefits from more precise type inference.
I initially implemented this by applying literal promotion to the type
of the unannotated module globals (as suggested in
https://github.com/astral-sh/ty/issues/1069), but the ecosystem impact
showed a lot of problems (https://github.com/astral-sh/ruff/pull/20643).
I fixed/patched some of these problems, but this PR seems like a good
first step, and it seems sensible to apply the literal promotion change
in a second step that can be evaluated separately.
closes https://github.com/astral-sh/ty/issues/1069
## Ecosystem impact
This seems like an (unexpectedly large) net positive with 650 fewer
diagnostics overall.. even though this change will certainly catch more
true positives.
* There are 666 removed `type-assertion-failure` diagnostics, where we
were previously used the correct type already, but removing the
`Unknown` now leads to an "exact" match.
* 1464 of the 1805 total new diagnostics are `unresolved-attribute`
errors, most (1365) of which were previously
`possibly-missing-attribute` errors. So they could also be counted as
"changed" diagnostics.
* For code that uses constants like
```py
IS_PYTHON_AT_LEAST_3_10 = sys.version_info >= (3, 10)
```
where we would have previously inferred a type of `Literal[True/False] |
Unknown`, removing the `Unknown` now allows us to do reachability
analysis on branches that use these constants, and so we get a lot of
favorable ecosystem changes because of that.
* There is code like the following, where we previously emitted
`conflicting-argument-forms` diagnostics on calls to the aliased
`assert_type`, because its type was `Unknown | def …` (and the call to
`Unknown` "used" the type form argument in a non type-form way):
```py
if sys.version_info >= (3, 11):
import typing
assert_type = typing.assert_type
else:
import typing_extensions
assert_type = typing_extensions.assert_type
```
* ~100 new `invalid-argument-type` false positives, due to missing
`**kwargs` support (https://github.com/astral-sh/ty/issues/247)
## Typing conformance
```diff
+protocols_modules.py:25:1: error[invalid-assignment] Object of type `<module '_protocols_modules1'>` is not assignable to `Options1`
```
This diagnostic should apparently not be there, but it looks like we
also fail other tests in that file, so it seems to be a limitation that
was previously hidden by `Unknown` somehow.
## Test Plan
Updated tests and relatively thorough ecosystem analysis.
## Summary
Reformulation of the public symbol type inference test suite to use
class scopes instead of module scopes. This is in preparation for an
upcoming change to module-global scopes (#20664).
## Test Plan
Updated tests
This doesn't seem to be flaky in the sense of tests failing
non-deterministically, but they are flaky in the sense of unrelated
changes causing testing failures from the clauses of a constraint set
being rendered in different orders. This flakiness is because we're
using Salsa IDs to determine the order in which typevars appear in a
constraint set BDD, and those IDs are assigned non-deterministically.
The fix is ham-fisted but effective: sort the constraints in each
clause, and the clauses in each set, as part of the rendering process.
Constraint sets are only rendered in our test cases, so we don't need to
over-optimize this.
## Summary
Not sure if this was the original intention, but it looks to me like the
previous `Type::literal_promotion_type` was more of an implementation
detail for the actual operation of promoting all literals in a
possibly-nested position of a type.
This is not a pure refactor, as I'm technically changing the behavior
for that protocols diagnostic message suggestion.
## Test Plan
New Markdown test
## Summary
Add two simple tests that we recently discussed with @dcreager. They
demonstrate that the `TypeMapping::MarkTypeVarsInferable` operation
really does need to keep track of the binding context.
## Test Plan
Made sure that those tests fail if we create
`TypeMapping::MarkTypeVarsInferable(None)`s everywhere.
## Summary
Modify the (external) signature of instance methods such that the first
parameter uses `Self` unless it is explicitly annotated. This allows us
to correctly type-check more code, and allows us to infer correct return
types for many functions that return `Self`. For example:
```py
from pathlib import Path
from datetime import datetime, timedelta
reveal_type(Path(".config") / ".ty") # now Path, previously Unknown
def _(dt: datetime, delta: timedelta):
reveal_type(dt - delta) # now datetime, previously Unknown
```
part of https://github.com/astral-sh/ty/issues/159
## Performance
I ran benchmarks locally on `attrs`, `freqtrade` and `colour`, the
projects with the largest regressions on CodSpeed. I see much smaller
effects locally, but can definitely reproduce the regression on `attrs`.
From looking at the profiling results (on Codspeed), it seems that we
simply do more type inference work, which seems plausible, given that we
now understand much more return types (of many stdlib functions). In
particular, whenever a function uses an implicit `self` and returns
`Self` (without mentioning `Self` anywhere else in its signature), we
will now infer the correct type, whereas we would previously return
`Unknown`. This also means that we need to invoke the generics solver in
more cases. Comparing half a million lines of log output on attrs, I can
see that we do 5% more "work" (number of lines in the log), and have a
lot more `apply_specialization` events (7108 vs 4304). On freqtrade, I
see similar numbers for `apply_specialization` (11360 vs 5138 calls).
Given these results, I'm not sure if it's generally worth doing more
performance work, especially since none of the code modifications
themselves seem to be likely candidates for regressions.
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/attrs` | 92.6 ± 3.6 | 85.9 |
102.6 | 1.00 |
| `./ty_self check /home/shark/ecosystem/attrs` | 101.7 ± 3.5 | 96.9 |
113.8 | 1.10 ± 0.06 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/freqtrade` | 599.0 ± 20.2 |
568.2 | 627.5 | 1.00 |
| `./ty_self check /home/shark/ecosystem/freqtrade` | 607.9 ± 11.5 |
594.9 | 626.4 | 1.01 ± 0.04 |
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./ty_main check /home/shark/ecosystem/colour` | 423.9 ± 17.9 | 394.6
| 447.4 | 1.00 |
| `./ty_self check /home/shark/ecosystem/colour` | 426.9 ± 24.9 | 373.8
| 456.6 | 1.01 ± 0.07 |
## Test Plan
New Markdown tests
## Ecosystem report
* apprise: ~300 new diagnostics related to problematic stubs in apprise
😩
* attrs: a new true positive, since [this
function](4e2c89c823/tests/test_make.py (L2135))
is missing a `@staticmethod`?
* Some legitimate true positives
* sympy: lots of new `invalid-operator` false positives in [matrix
multiplication](cf9f4b6805/sympy/matrices/matrixbase.py (L3267-L3269))
due to our limited understanding of [generic `Callable[[Callable[[T1,
T2], T3]], Callable[[T1, T2], T3]]` "identity"
types](cf9f4b6805/sympy/core/decorators.py (L83-L84))
of decorators. This is not related to type-of-self.
## Typing conformance results
The changes are all correct, except for
```diff
+generics_self_usage.py:50:5: error[invalid-assignment] Object of type `def foo(self) -> int` is not assignable to `(typing.Self, /) -> int`
```
which is related to an assignability problem involving type variables on
both sides:
```py
class CallableAttribute:
def foo(self) -> int:
return 0
bar: Callable[[Self], int] = foo # <- we currently error on this assignment
```
---------
Co-authored-by: Shaygan Hooshyari <sh.hooshyari@gmail.com>
`TypeMapping` is no longer cow-shaped.
Before, `TypeMapping` defined a `to_owned` method, which would make an
owned copy of the type mapping. This let us apply type mappings to
function literals lazily. The primary part of a function that you have
to apply the type mapping to is its signature. The hypothesis was that
doing this lazily would prevent us from constructing the signature of a
function just to apply a type mapping; if you never ended up needed the
updated function signature, that would be extraneous work.
But looking at the CI for this PR, it looks like that hypothesis is
wrong! And this definitely cleans up the code quite a bit. It also means
that over time we can consider replacing all of these `TypeMapping` enum
variants with separate `TypeTransformer` impls.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Fixes a bug observed by @AlexWaygood where `C[Any] <: C[object]` should
hold for a class that is covariant in its type parameter (and similar
subtyping relations involving dynamic types for other variance
configurations).
## Test Plan
New and updated Markdown tests
While working on #20093, I kept running into test failures due to
constraint sets not simplifying as much as they could, and therefore not
being easily testable against "always true" and "always false".
This PR updates our constraint set representation to use BDDs. Because
BDDs are reduced and ordered, they are canonical — equivalent boolean
formulas are represented by the same interned BDD node.
That said, there is a wrinkle, in that the "variables" that we use in
these BDDs — the individual constraints like `Lower ≤ T ≤ Upper` are not
always independent of each other.
As an example, given types `A ≤ B ≤ C ≤ D` and a typevar `T`, the
constraints `A ≤ T ≤ C` and `B ≤ T ≤ D` "overlap" — their intersection
is non-empty. So we should be able to simplify
```
(A ≤ T ≤ C) ∧ (B ≤ T ≤ D) == (B ≤ T ≤ C)
```
That's not a simplification that the BDD structure can perform itself,
since those three constraints are modeled as separate BDD variables, and
are therefore "opaque" to the BDD algorithms.
That means we need to perform this kind of simplification ourselves. We
look at pairs of constraints that appear in a BDD and see if they can be
simplified relative to each other, and if so, replace the pair with the
simplification. A large part of the toil of getting this PR to work was
identifying all of those patterns and getting that substitution logic
correct.
With this new representation, all existing tests pass, as well as some
new ones that represent test failures that were occuring on #20093.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
Follow up on #20495. The improvement suggested by @AlexWaygood cannot be
applied as-is since the `argument_matches` vector is indexed by argument
number, while the two boolean vectors are indexed by parameter number.
Still coalescing the latter two saves one allocation.
## Summary
Closes: https://github.com/astral-sh/ty/issues/551
This PR adds support for step 4 of the overload call evaluation
algorithm which states that:
> If the argument list is compatible with two or more overloads,
determine whether one or more of the overloads has a variadic parameter
(either `*args` or `**kwargs`) that maps to a corresponding argument
that supplies an indeterminate number of positional or keyword
arguments. If so, eliminate overloads that do not have a variadic
parameter.
And, with that, the overload call evaluation algorithm has been
implemented completely end to end as stated in the typing spec.
## Test Plan
Expand the overload call test suite.
## Summary
This removes a hack in the protocol satisfiability check that was
previously needed to work around missing assignability-modeling of
inferable type variables. Assignability of type variables is not
implemented fully, but some recent changes allow us to remove that hack
with limited impact on the ecosystem (and the test suite). The change in
the typing conformance test is favorable.
## Test Plan
* Adapted Markdown tests
* Made sure that this change works in combination with
https://github.com/astral-sh/ruff/pull/20517
## Summary
Closes: https://github.com/astral-sh/ty/issues/1236
This PR fixes a bug where the variadic argument wouldn't match against
the variadic parameter in certain scenarios.
This was happening because I didn't realize that the `all_elements`
iterator wouldn't keep on returning the variable element (which is
correct, I just didn't realize it back then).
I don't think we can use the `resize` method here because we don't know
how many parameters this variadic argument is matching against as this
is where the actual parameter matching occurs.
## Test Plan
Expand test cases to consider a few more combinations of arguments and
parameters which are variadic.
## Summary
This applies the trick that we use for `builtins.open` to similar
functions that have the same problem. The reason is that the problem
would otherwise become even more pronounced once we add understanding of
the implicit type of `self` parameters, because then something like
`(base_path / "test.bin").open("rb")` also leads to a wrong return type
and can result in false positives.
## Test Plan
New Markdown tests
## Summary
I found this bug while working on #20528.
The minimum reproducible code is:
```python
from __future__ import annotations
from typing import NamedTuple
from ty_extensions import is_disjoint_from, static_assert
class Path(NamedTuple):
prev: Path | None
key: str
static_assert(not is_disjoint_from(Path, Path))
```
A stack overflow occurs when a nominal instance type inherits from
`NamedTuple` and is defined recursively.
This PR fixes this bug.
## Test Plan
mdtest updated
### Summary
This PR includes two changes, both of which are necessary to resolve
https://github.com/astral-sh/ty/issues/1196:
* For a generic class `C[T]`, we previously used `C[Unknown]` as the
upper bound of the `Self` type variable. There were two problems with
this. For one, when `Self` appeared in contravariant position, we would
materialize its upper bound to `Bottom[C[Unknown]]` (which might
simplify to `C[Never]` if `C` is covariant in `T`) when accessing
methods on `Top[C[Unknown]]`. This would result in `invalid-argument`
errors on the `self` parameter. Also, using an upper bound of
`C[Unknown]` would mean that inside methods, references to `T` would be
treated as `Unknown`. This could lead to false negatives. To fix this,
we now use `C[T]` (with a "nested" typevar) as the upper bound for
`Self` on `C[T]`.
* In order to make this work, we needed to allow assignability/subtyping
of inferable typevars to other types, since we now check assignability
of e.g. `C[int]` to `C[T]` (when checking assignability to the upper
bound of `Self`) when calling an instance-method on `C[int]` whose
`self` parameter is annotated as `self: Self` (or implicitly `Self`,
following https://github.com/astral-sh/ruff/pull/18007).
closes https://github.com/astral-sh/ty/issues/1196
closes https://github.com/astral-sh/ty/issues/1208
### Test Plan
Regression tests for both issues.
## Summary
@ibraheemdev notes this example failed
```py
from typing import Callable
class X:
...
def f(callable: Callable[[], X]) -> X:
return callable()
x = f(X)
```
Resolves https://github.com/astral-sh/ty/issues/1210
The issue was that we set the `Self` to the class type instead of the
instance type of the class.
## Test Plan
Fix tests in `is_subtype_of.md`
## Summary
Fixes https://github.com/astral-sh/ty/issues/1218.
This bug doesn't currently cause us any real-world issues, because we
don't yet understand the signatures typeshed gives us for `isinstance()`
and `issubclass()` (typeshed's annotations there use PEP-613 type
aliases). #20107 demonstrates that this will start causing us issues as
soon as we add support for PEP-613 aliases, however, so it makes sense
to fix it now.
## Test Plan
Added mdtests
Coming soon: The Renovate bot (GitHub App) will be renamed to Mend. PRs
from Renovate will soon appear from 'Mend'. Learn more
[here](https://redirect.github.com/renovatebot/renovate/discussions/37842).
This PR contains the following updates:
| Package | Type | Update | Change |
|---|---|---|---|
| [hashbrown](https://redirect.github.com/rust-lang/hashbrown) |
workspace.dependencies | minor | `0.15.0` -> `0.16.0` |
---
> [!WARNING]
> Some dependencies could not be looked up. Check the Dependency
Dashboard for more information.
---
### Release Notes
<details>
<summary>rust-lang/hashbrown (hashbrown)</summary>
###
[`v0.16.0`](https://redirect.github.com/rust-lang/hashbrown/blob/HEAD/CHANGELOG.md#0160---2025-08-28)
[Compare
Source](https://redirect.github.com/rust-lang/hashbrown/compare/v0.15.5...v0.16.0)
##### Changed
- Bump foldhash, the default hasher, to 0.2.0.
- Replaced `DefaultHashBuilder` with a newtype wrapper around `foldhash`
instead
of re-exporting it directly.
</details>
---
### Configuration
📅 **Schedule**: Branch creation - "before 4am on Monday" (UTC),
Automerge - At any time (no schedule defined).
🚦 **Automerge**: Disabled by config. Please merge this manually once you
are satisfied.
♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the
rebase/retry checkbox.
🔕 **Ignore**: Close this PR and you won't be reminded about this update
again.
---
- [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check
this box
---
This PR was generated by [Mend Renovate](https://mend.io/renovate/).
View the [repository job
log](https://developer.mend.io/github/astral-sh/ruff).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiI0MS45Ny4xMCIsInVwZGF0ZWRJblZlciI6IjQxLjk3LjEwIiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6WyJpbnRlcm5hbCJdfQ==-->
---------
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: David Peter <mail@david-peter.de>
Co-authored-by: Ibraheem Ahmed <ibraheem@ibraheem.ca>
## Summary
This PR adds support for unpacking `**kwargs` argument.
This can be matched against any standard (positional or keyword),
keyword-only, or keyword variadic parameter that haven't been matched
yet.
This PR also takes care of special casing `TypedDict` because the key
names and the corresponding value type is known, so we can be more
precise in our matching and type checking step. In the future, this
special casing would be extended to include `ParamSpec` as well.
Part of astral-sh/ty#247
## Test Plan
Add test cases for various scenarios.
## Summary
This change reduces MD test compilation time from 6s to 3s on my laptop.
We don't need to build the unit tests and the corpus tests when we're
only interested in Markdown-based tests.
## Test Plan
local benchmarks
## Summary
Part of https://github.com/astral-sh/ty/issues/168. Infer more precise types for collection literals (currently, only `list` and `set`). For example,
```py
x = [1, 2, 3] # revealed: list[Unknown | int]
y: list[int] = [1, 2, 3] # revealed: list[int]
```
This could easily be extended to `dict` literals, but I am intentionally limiting scope for now.
Fixes: https://github.com/astral-sh/ty/issues/1173
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR will change the logic of binding Self type variables to bind
self to the immediate function that it's used on.
Since we are binding `self` to methods and not the class itself we need
to ensure that we bind self consistently.
The fix is to traverse scopes containing the self and find the first
function inside a class and use that function to bind the typevar for
self.
If no such scope is found we fallback to the normal behavior. Using Self
outside of a class scope is not legal anyway.
## Test Plan
Added a new mdtest.
Checked the diagnostics that are not emitted anymore in [primer
results](https://github.com/astral-sh/ruff/pull/20366#issuecomment-3289411424).
It looks good altough I don't completely understand what was wrong
before.
---------
Co-authored-by: Douglas Creager <dcreager@dcreager.net>
This is somewhat inspired by a similar abstraction in
`ruff_linter`. The main idea is to create an importer once
for a module that you want to add imports to. And then call
`import` to generate an edit for each symbol you want to
add.
I haven't done any performance profiling here yet. I don't
know if it will be a bottleneck. In particular, I do expect
`Importer::import` (but not `Importer::new`) to get called
many times for a single completion request when auto-import
is enabled. Particularly in projects with a lot of unimported
symbols. Because I don't know the perf impact, I didn't do
any premature optimization here. But there are surely some
low hanging fruit if this does prove to be a problem.
New tests make up a big portion of the diff here. I tried to
think of a bunch of different cases, although I'm sure there
are more.
I think this is a better home for it. This way, `ty_ide`
more clearly owns how the "kind" of a completion is computed.
In particular, it is computed differently for things where
we know its type versus unimported symbols.
In the course of writing the "add an import" implementation,
I realized that we needed to know which symbols were in scope
and how they were defined. This was necessary to be able to
determine how to add a new import in a way that (minimally)
does not conflict with existing symbols.
I'm not sure that this is fully correct (especially for
symbol bindings) and it's unclear to me in which cases a
definition site will be missing. But this seems to work for
some of the basic cases that I tried.
The names of the submodules returned should be *complete*. This
is the contract of `Module::name`. However, we were previously
only returning the basename of the submodule.
## Summary
Catch infinite recursion in binary-compare inference.
Fixes the stack overflow in `graphql-core` in mypy-primer.
## Test Plan
Added two tests that stack-overflowed before this PR.
## Summary
Use `Type::Divergent` to short-circuit diverging types in type
expressions. This avoids panicking in a wide variety of cases of
recursive type expressions.
Avoids many panics (but not yet all -- I'll be tracking down the rest)
from https://github.com/astral-sh/ty/issues/256 by falling back to
Divergent. For many of these recursive type aliases, we'd like to
support them properly (i.e. really understand the recursive nature of
the type, not just fall back to Divergent) but that will be future work.
This switches `Type::has_divergent_type` from using `any_over_type` to a
custom set of visit methods, because `any_over_type` visits more than we
need to visit, and exercises some lazy attributes of type, causing
significantly more work. This change means this diff doesn't regress
perf; it even reclaims some of the perf regression from
https://github.com/astral-sh/ruff/pull/20333.
## Test Plan
Added mdtest for recursive type alias that panics on main.
Verified that we can now type-check `packaging` (and projects depending
on it) without panic; this will allow moving a number of mypy-primer
projects from `bad.txt` to `good.txt` in a subsequent PR.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements F406
https://docs.astral.sh/ruff/rules/undefined-local-with-nested-import-star-usage/
as a semantic syntax error
## Test Plan
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Previously, we used a very fine-grained representation for individual
constraints: each constraint was _either_ a range constraint, a
not-equivalent constraint, or an incomparable constraint. These three
pieces are enough to represent all of the "real" constraints we need to
create — range constraints and their negation.
However, it meant that we weren't picking up as many chances to simplify
constraint sets as we could. Our simplification logic depends on being
able to look at _pairs_ of constraints or clauses to see if they
simplify relative to each other. With our fine-grained representation,
we could easily encounter situations that we should have been able to
simplify, but that would require looking at three or more individual
constraints.
For instance, negating a range constraint would produce:
```
¬(Base ≤ T ≤ Super) = ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨
((Super ≤ T) ∧ (T ≠ Super)) ∨ (T ≁ Super)
```
That is, `T` must be (strictly) less than `Base`, (strictly) greater
than `Super`, or incomparable to either.
If we tried to union those back together, we should get `always`, since
`x ∨ ¬x` should always be true, no matter what `x` is. But instead we
would get:
```
(Base ≤ T ≤ Super) ∨ ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨ ((Super ≤ T) ∧ (T ≠
Super)) ∨ (T ≁ Super)
```
Nothing would simplify relative to each other, because we'd have to look
at all five union elements to see that together they do in fact combine
to `always`.
The fine-grained representation was nice, because it made it easier to
[work out the math](https://dcreager.net/theory/constraints/) for
intersections and unions of each kind of constraint. But being able to
simplify is more important, since the example above comes up immediately
in #20093 when trying to handle constrained typevars.
The fix in this PR is to go back to a more coarse-grained
representation, where each individual constraint consists of a positive
range (which might be `always` / `Never ≤ T ≤ object`), and zero or more
negative ranges. The intuition is to think of a constraint as a region
of the type space (representable as a range) with zero or more "holes"
removed from it.
With this representation, negating a range constraint produces:
```
¬(Base ≤ T ≤ Super) = (always ∧ ¬(Base ≤ T ≤ Super))
```
(That looks trivial, because it is! We just move the positive range to
the negative side.)
The math is not that much harder than before, because there are only
three combinations to consider (each for intersection and union) —
though the fact that there can be multiple holes in a constraint does
require some nested loops. But the mdtest suite gives me confidence that
this is not introducing any new issues, and it definitely removes a
troublesome TODO.
(As an aside, this change also means that we are back to having each
clause contain no more than one individual constraint for any typevar.
This turned out to be important, because part of our simplification
logic was also depending on that!)
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This mainly removes an internal inconsistency, where we didn't remove
the `Self` type variable when eagerly binding `Self` to an instance
type. It has no observable effect, apparently.
builds on top of https://github.com/astral-sh/ruff/pull/20328
## Test Plan
None
## Summary
Fixes https://github.com/astral-sh/ty/issues/1161
Include `NamedTupleFallback` members in `NamedTuple` instance
completions.
- Augment instance attribute completions when completing on NamedTuple
instances by merging members from
`_typeshed._type_checker_internals.NamedTupleFallback`
## Test Plan
Adds a minimal completion test `namedtuple_fallback_instance_methods`
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This project was [recently removed from
mypy_primer](https://github.com/astral-sh/ruff/pull/20378), so we need
to remove it from `good.txt` in order for ecosystem-analyzer to work
correctly.
## Test Plan
Run mypy_primer and ecosystem-analyzer on this branch.
## Summary
https://github.com/astral-sh/ruff/pull/20165 added a lot of false
positives around calls to `builtins.open()`, because our missing support
for PEP-613 type aliases means that we don't understand typeshed's
overloads for `builtins.open()` at all yet, and therefore always select
the first overload. This didn't use to matter very much, but now that we
have a much stricter implementation of protocol assignability/subtyping
it matters a lot, because most of the stdlib functions dealing with I/O
(`pickle`, `marshal`, `io`, `json`, etc.) are annotated in typeshed as
taking in protocols of some kind.
In lieu of full PEP-613 support, which is blocked on various things and
might not land in time for our next alpha release, this PR adds some
temporary special-casing for `builtins.open()` to avoid the false
positives. We just infer `Todo` for anything that isn't meant to match
typeshed's first `open()` overload. This should be easy to rip out again
once we have proper support for PEP-613 type aliases, which hopefully
should be pretty soon!
## Test Plan
Added an mdtest
## Summary
Fixes https://github.com/astral-sh/ty/issues/377.
We were treating any function as being assignable to any callback
protocol, because we were trying to figure out a type's `Callable`
supertype by looking up the `__call__` attribute on the type's
meta-type. But a function-literal's meta-type is `types.FunctionType`,
and `types.FunctionType.__call__` is `(...) -> Any`, which is not very
helpful!
While working on this PR, I also realised that assignability between
class-literals and callback protocols was somewhat broken too, so I
fixed that at the same time.
## Test Plan
Added mdtests
## Summary
This looks like it should fix the errors that we've been seeing in sympy
in recent mypy-primer runs.
## Test Plan
I wasn't able to reproduce the sympy failures locally; it looks like
there is probably a dependency on the order in which files are checked.
So I don't have a minimal reproducible example, and wasn't able to add a
test :/ Obviously I would be happier if we could commit a regression
test here, but since the change is straightforward and clearly
desirable, I'm not sure how many hours it's worth trying to track it
down.
Mypy-primer is still failing in CI on this PR, because it fails on the
"old" ty commit already (i.e. on main). But it passes [on a no-op PR
stacked on top of this](https://github.com/astral-sh/ruff/pull/20370),
which strongly suggests this PR fixes the problem.
## Summary
This PR addresses an issue for a variadic argument when involved in
argument type expansion of overload call evaluation.
The issue is that the expansion of the variadic argument could result in
argument list of different arity. For example, in `*args: tuple[int] |
tuple[int, str]`, the expansion would lead to the variadic argument
being unpacked into 1 and 2 element respectively. This means that the
parameter matching that was performed initially isn't sufficient and
each expanded argument list would need to redo the parameter matching
again.
This is currently done by redoing the parameter matching directly,
maintaining the state of argument forms (and the conflicting forms), and
updating the `Bindings` values if it changes.
Closes: astral-sh/ty#735
## Test Plan
Update existing mdtest.
This PR removes the `Constraints` trait. We removed the `bool`
implementation several weeks back, and are using `ConstraintSet`
everywhere. There have been discussions about trying to include the
reason for an assignability failure as part of the result, but that
there are no concrete plans to do so soon, and it's not clear that we'll
need the `Constraints` trait to do that. (We can ideally just update the
`ConstraintSet` type directly.)
In the meantime, this just complicates the code for no good reason.
This PR is a pure refactoring, and contains no behavioral changes.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Previously, `Type::object` would find the definition of the `object`
class in typeshed, load that in (to produce a `ClassLiteral` and
`ClassType`), and then create a `NominalInstance` of that class.
It's possible that we are using a typeshed that doesn't define `object`.
We will not be able to do much useful work with that kind of typeshed,
but it's still a possibility that we have to support at least without
panicking. Previously, we would handle this situation by falling back on
`Unknown`.
In most cases, that's a perfectly fine fallback! But `object` is also
our top type — the type of all values. `Unknown` is _not_ an acceptable
stand-in for the top type.
This PR adds a new `NominalInstance` variant for "instances of
`object`". Unlike other nominal instances, we do not need to load in
`object`'s `ClassType` to instantiate this variant. We will use this new
variant even when the current typeshed does not define an `object`
class, ensuring that we have a fully static representation of our top
type at all times.
There are several operations that need access to a nominal instance's
class, and for this new `object` variant we load it lazily only when
it's needed. That means this operation is now fallible, since this is
where the "typeshed doesn't define `object`" failure shows up.
This new approach also has the benefit of avoiding some salsa cycles
that were cropping up while I was debugging #20093, since the new
constraint set representation was trying to instantiate `Type::object`
while in the middle of processing its definition in typeshed. Cycle
handling was kicking in correctly and returning the `Unknown` fallback
mentioned above. But the constraint set implementation depends on
`Type::object` being a distinct and fully static type, highlighting that
this is a correctness fix, not just an optimization fix.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Use `Type::Divergent` to avoid "too many iterations" panic on an
infinitely-nested tuple in an implicit instance attribute.
The regression here is from checking all tuple elements to see if they
contain a Divergent type. It's 5% on one project, 1% on another, and
zero on the rest. I spent some time looking into eliminating this
regression by tracking a flag on inference results to note if they could
possibly contain any Divergent type, but this doesn't really work --
there are too many different ways a type containing a Divergent type
could enter an inference result. Still thinking about whether there are
other ways to reduce this. One option is if we see certain kinds of
non-atomic types that are commonly expensive to check for Divergent, we
could make `has_divergent_type` a Salsa query on those types.
## Test Plan
Added mdtest.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
The debug representation isn't as useful as calling `.display(db)`, but
it's still kind-of annoying when `dbg!()` calls don't compile locally
due to the compiler not being able to guarantee that an object of type
`impl Constraints` implements `Debug`
## Summary
`CallableTypeOf[bound_method]` would previously bind `self` to the
bound method type itself, instead of binding it to the instance type
stored inside the bound method type.
## Test Plan
Added regression test
This PR adds a new `ty_extensions.ConstraintSet` class, which is used to
expose constraint sets to our mdtest framework. This lets us write a
large collection of unit tests that exercise the invariants and rewrite
rules of our constraint set implementation.
As part of this, `is_assignable_to` and friends are updated to return a
`ConstraintSet` instead of a `bool`, and we implement
`ConstraintSet.__bool__` to return when a constraint set is always
satisfied. That lets us still use
`static_assert(is_assignable_to(...))`, since the assertion will coerce
the constraint set to a bool, and also lets us
`reveal_type(is_assignable_to(...))` to see more detail about
whether/when the two types are assignable. That lets us get rid of
`reveal_when_assignable_to` and friends, since they are now redundant
with the expanded capabilities of `is_assignable_to`.
## Summary
When adding an enum literal `E = Literal[Color.RED]` to a union which
already contained a subtype of that enum literal(!), we were previously
not simplifying the union correctly. My assumption is that our property
tests didn't catch that earlier, because the only possible non-trivial
subytpe of an enum literal that I can think of is `Any & E`. And in
order for that to be detected by the property tests, it would have to
randomly generate `Any & E | E` and then also compare that with `E` on
the other side (in an equivalence test, or the subtyping-antisymmetry
test).
closes https://github.com/astral-sh/ty/issues/1155
## Test Plan
* Added a regression test.
* I also ran the property tests for a while, but probably not for two
months worth of daily CI runs.
The constraint representation that we added in #19997 was subtly wrong,
in that it didn't correctly model that type assignability is a _partial_
order — it's possible for two types to be incomparable, with neither a
subtype of the other. That means the negation of a constraint like `T ≤
t` (typevar `T` must be a subtype of `t`) is **_not_** `t < T`, but
rather `t < T ∨ T ≁ t` (using ≁ to mean "not comparable to").
That means we need to update our constraint representation to be an
enum, so that we can track both _range_ constraints (upper/lower bound
on the typevar), and these new _incomparable_ constraints.
Since we need an enum now, that also lets us simplify how we were
modeling range constraints. Before, we let the lower/upper bounds be
either open (<) or closed (≤). Now, range constraints are always closed,
and we add a third kind of constraint for _not equivalent_ (≠). We can
translate an open upper bound `T < t` into `T ≤ t ∧ T ≠ t`.
We already had the logic for doing adding _clauses_ to a _set_ by doing
a pairwise simplification. We copy that over to where we add
_constraints_ to a _clause_. To calculate the intersection or union of
two constraints, the new enum representation makes it easy to break down
all of the possibilities into a small number of cases: intersect range
with range, intersect range with not-equivalent, etc. I've done the math
[here](https://dcreager.net/theory/constraints/) to show that the
simplifications for each of these cases is correct.
## Summary
This is a follow-up to https://github.com/astral-sh/ruff/pull/19321.
Now lazy snapshots are updated to take into account new bindings on
every symbol reassignment.
```python
def outer(x: A | None):
if x is None:
x = A()
reveal_type(x) # revealed: A
def inner() -> None:
# lazy snapshot: {x: A}
reveal_type(x) # revealed: A
inner()
def outer() -> None:
x = None
x = 1
def inner() -> None:
# lazy snapshot: {x: Literal[1]} -> {x: Literal[1, 2]}
reveal_type(x) # revealed: Literal[1, 2]
inner()
x = 2
```
Closesastral-sh/ty#559.
## Test Plan
Some TODOs in `public_types.md` now work properly.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Adds support for generic PEP695 type aliases, e.g.,
```python
type A[T] = T
reveal_type(A[int]) # A[int]
```
Resolves https://github.com/astral-sh/ty/issues/677.
## Summary
Support cases like the following, where we need the generic context to
include both `Self` and `T` (not just `T`):
```py
from typing import Self
class C:
def method[T](self: Self, arg: T): ...
C().method(1)
```
closes https://github.com/astral-sh/ty/issues/1131
## Test Plan
Added regression test