## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
This PR fixes https://github.com/astral-sh/ruff/issues/18409
## Test Plan
<!-- How was it tested? -->
I have added tests in FURB103.
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Signed-off-by: 11happy <bhuminjaysoni@gmail.com>
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
This PR implements a new semantic syntax error where annotated name
can't be global
example
```
x: int = 1
def f():
global x
x: str = "foo" # SyntaxError: annotated name 'x' can't be global
```
## Test Plan
<!-- How was it tested? -->
I have written tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Signed-off-by: 11happy <bhuminjaysoni@gmail.com>
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Fixes https://github.com/astral-sh/ruff/issues/19771
Fixes incorrect parsing of Unicode named escape sequences like `Hey
\N{snowman}` in `FormatString`, which were being incorrectly split into
separate literal and field parts instead of being treated as a single
literal unit.
## Problem
The `FormatString` parser incorrectly handles Unicode named escape
sequences:
- **Current**: `Hey \N{snowman}` is parsed into 2 parts `Literal("Hey
\N")` & `Field("snowman")`
- **Expected**: `Hey \N{snowman}` should be parsed into 1 part
`Literal("Hey \N{snowman}")`
This affects f-string conversion rules when fixing `UP032` that rely on
proper format string parsing.
## Solution
I modified `parse_literal` to detect and handle Unicode named escape
sequences before parsing single characters:
- Introduced a flag to track when a backslash is "available" to escape
something.
- When the flag is `true`, and the text starts with `N{`, try to parse
the complete Unicode escape sequence as one unit, and set the flag to
`false` after parsing successfully.
- Set the flag to `false` when the backslash is already consumed.
## Manual Verification
`"\N{angle}AOB = {angle}°".format(angle=180)`
**Result**
```bash
def foo():
- "\N{angle}AOB = {angle}°".format(angle=180)
+ f"\N{angle}AOB = {180}°"
Would fix 1 error.
```
`"\N{snowman} {snowman}".format(snowman=1)`
**Result**
```bash
def foo():
- "\N{snowman} {snowman}".format(snowman=1)
+ f"\N{snowman} {1}"
Would fix 1 error.
```
`"\\N{snowman} {snowman}".format(snowman=1)`
**Result**
```bash
def foo():
- "\\N{snowman} {snowman}".format(snowman=1)
+ f"\\N{1} {1}"
Would fix 1 error.
```
## Test Plan
- Added test cases (happy case, invalid case, edge case) for
`FormatString` when parsing Unicode escape sequence.
- Updated snapshots.
## Summary
Ignores `#ruff:isort` when parsing suppressions similar to `#ruff:noqa`.
Should clear up ecosystem issues in #21908
## Test Plan
cargo tests
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Closes#17347
Goal is to detect the useless exception statement not just for builtin
exceptions but also custom (user defined) ones.
## Test Plan
<!-- How was it tested? -->
I added test cases in the rule fixture and updated the insta snapshot.
Note that I first moved up a test case case which was at the bottom to
the correct "violation category".
I wasn't sure if I should create new test cases or just insert inside
those tests. I know that ideally each test case should test only one
thing, but here, duplicating twice 12 test cases seemed very verbose,
and actually less maintainable in the future. The drawback is that the
diff in the snapshot is hard to review, sorry. But you can see that the
snapshot gives 38 diagnostics, which is what we expect.
Alternatively, I also created this file for manual testing.
```py
# tmp/test_error.py
class MyException(Exception):
...
class MyBaseException(BaseException):
...
class MyValueError(ValueError):
...
class MyExceptionCustom(Exception):
...
class MyBaseExceptionCustom(BaseException):
...
class MyValueErrorCustom(ValueError):
...
class MyDeprecationWarning(DeprecationWarning):
...
class MyDeprecationWarningCustom(MyDeprecationWarning):
...
class MyExceptionGroup(ExceptionGroup):
...
class MyExceptionGroupCustom(MyExceptionGroup):
...
class MyBaseExceptionGroup(ExceptionGroup):
...
class MyBaseExceptionGroupCustom(MyBaseExceptionGroup):
...
def foo():
Exception("...")
BaseException("...")
ValueError("...")
RuntimeError("...")
DeprecationWarning("...")
GeneratorExit("...")
SystemExit("...")
ExceptionGroup("eg", [ValueError(1), TypeError(2), OSError(3), OSError(4)])
BaseExceptionGroup("eg", [ValueError(1), TypeError(2), OSError(3), OSError(4)])
MyException("...")
MyBaseException("...")
MyValueError("...")
MyExceptionCustom("...")
MyBaseExceptionCustom("...")
MyValueErrorCustom("...")
MyDeprecationWarning("...")
MyDeprecationWarningCustom("...")
MyExceptionGroup("...")
MyExceptionGroupCustom("...")
MyBaseExceptionGroup("...")
MyBaseExceptionGroupCustom("...")
```
and you can run this to check the PR:
```sh
target/debug/ruff check tmp/test_error.py --select PLW0133 --unsafe-fixes --diff --no-cache --isolated --target-version py310
target/debug/ruff check tmp/test_error.py --select PLW0133 --unsafe-fixes --diff --no-cache --isolated --target-version py314
```
Closes issue #21565
## Summary
As pointed out in the issue, slices are currently flagged by B008 but
this behavior is incorrect because slices are immutable.
## Test Plan
Added a test case in the "B006_B008.py" fixture. Sorry for the diff in
the snapshots, the only thing that changes in those flies is the line
numbers, though.
You can also test this manually with this file:
```py
# test_slice.py
def c(d=slice(0, 3)): ...
```
```sh
> target/debug/ruff check tmp/test_slice.py --no-cache --select B008
All checks passed!
```
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
Fixes https://github.com/astral-sh/ruff/issues/8774
This PR fixes `pydocstyle` incorrectly flagging missing argument for
arguments with `Unpack` type annotation by extracting the `kwarg` `D417`
suppression logic into a helper function for future rules as needed.
## Problem Statement
The below example was incorrectly triggering `D417` error for missing
`**kwargs` doc.
```python
class User(TypedDict):
id: int
name: str
def do_something(some_arg: str, **kwargs: Unpack[User]):
"""Some doc
Args:
some_arg: Some argument
"""
```
<img width="1135" height="276" alt="image"
src="https://github.com/user-attachments/assets/42fa4bb9-61a5-4a70-a79c-0c8922a3ee66"
/>
`**kwargs: Unpack[User]` indicates the function expects keyword
arguments that will be unpacked. Ideally, the individual fields of the
User `TypedDict` should be documented, not in the `**kwargs` itself. The
`**kwargs` parameter acts as a semantic grouping rather than a parameter
requiring documentation.
## Solution
As discussed in the linked issue, it makes sense to suppress the `D417`
for parameters with `Unpack` annotation. I extract a helper function to
solely check `D417` should be suppressed with `**kwarg: Unpack[T]`
parameter, this function can also be unit tested independently and
reduce complexity of current `missing_args` check function. This also
makes it easier to add additional rules in the future.
_✏️ Note:_ This is my first PR in this repo, as I've learned a ton from
it, please call out anything that could be improved. Thanks for making
this excellent tool 👏
## Test Plan
Add 2 test cases in `D417.py` and update snapshots.
---------
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
This PR re-implements [return-in-generator
(B901)](https://docs.astral.sh/ruff/rules/return-in-generator/#return-in-generator-b901)
for async generators as a semantic syntax error. This is not a syntax
error for sync generators, so we'll need to preserve both the lint rule
and the syntax error in this case.
It also updates B901 and the new implementation to catch cases where the
generator's `yield` or `yield from` expression is part of another
statement, as in:
```py
def foo():
return (yield)
```
These were previously not caught because we only looked for
`Stmt::Expr(Expr::Yield)` in `visit_stmt` instead of visiting `yield`
expressions directly. I think this modification is within the spirit of
the rule and safe to try out since the rule is in preview.
## Test Plan
<!-- How was it tested? -->
I have written tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Signed-off-by: 11happy <bhuminjaysoni@gmail.com>
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
This PR implements syntax error where a default type parameter is
followed by a non-default type parameter.
https://github.com/astral-sh/ruff/issues/17412#issuecomment-3584088217
## Test Plan
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <bhuminjaysoni@gmail.com>
Signed-off-by: 11happy <soni5happy@gmail.com>
This adds a new `suppression` module to the `ruff_linter` crate, similar
to the suppression
module for ty, to parse comments for ruff suppression directives, such
as `# ruff: disable[CODE]`.
## Summary
Fixes#21750 and a related bug in `PLE1142`. We were not properly
considering generators to be valid `await` contexts, which caused the
`F704` issue. One of the tests I added for this also uncovered an issue
in `PLE1142` for comprehensions nested within async generators because
we were only checking the current scope rather than traversing the
nested context.
## Test Plan
Both of these rules are implemented as semantic syntax errors, so I
added tests (and fixes) in both Ruff and ty.
## Summary
Fixes false positives in SIM222 and SIM223 where truthiness was
incorrectly assumed for `tuple(x)`, `list(x)`, `set(x)` when `x` is not
iterable.
Fixes#21473.
## Problem
`Truthiness::from_expr` recursively called itself on arguments to
iterable initializers (`tuple`, `list`, `set`) without checking if the
argument is iterable, causing false positives for cases like `tuple(0)
or True` and `tuple("") or True`.
## Approach
Added `is_definitely_not_iterable` helper and updated
`Truthiness::from_expr` to return `Unknown` for non-iterable arguments
(numbers, booleans, None) and string literals when called with iterable
initializers, preventing incorrect truthiness assumptions.
## Test Plan
Added test cases to `SIM222.py` and `SIM223.py` for `tuple("")`,
`tuple(0)`, `tuple(1)`, `tuple(False)`, and `tuple(None)` with `or True`
and `and False` patterns.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Marks fixes as unsafe when they change return types (`None` → `Path`,
`str`/`bytes` → `Path`, `str` → `Path`), except when the call is a
top-level expression.
Fixes#21431.
## Problem
Fixes for `os.rename`, `os.replace`, `os.getcwd`/`os.getcwdb`, and
`os.readlink` were marked safe despite changing return types, which can
break code that uses the return value.
## Approach
Added `is_top_level_expression_call` helper to detect when a call is a
top-level expression (return value unused). Updated
`check_os_pathlib_two_arg_calls` and `check_os_pathlib_single_arg_calls`
to mark fixes as unsafe unless the call is a top-level expression.
Updated PTH109 to use the helper for applicability determination.
## Test Plan
Updated snapshots for `preview_full_name.py`, `preview_import_as.py`,
`preview_import_from.py`, and `preview_import_from_as.py` to reflect
unsafe markers.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Lots of Ruff rules encourage you to make changes that might then cause
ty to start complaining about Liskov violations. Most of these Ruff
rules already refrain from complaining about a method if they see that
the method is decorated with `@override`, but this usually isn't
documented. This PR updates the docs of many Ruff rules to note that
they refrain from complaining about `@override`-decorated methods, and
also adds a similar note to the ty `invalid-method-override`
documentation.
Helps with
https://github.com/astral-sh/ty/issues/1644#issuecomment-3581663859
## Test Plan
- `uvx prek run -a` locally
- CI on this PR
## Summary
As reported in #19757:
While attempting ISC003 autofix for an expression with explicit string
concatenation, with either operand being a string literal that wraps
across multiple lines (in parentheses) - it resulted in generating a fix
which caused runtime error.
Example:
```
_ = "abc" + (
"def"
"ghi"
)
```
was being auto-fixed to:
```
_ = "abc" (
"def"
"ghi"
)
```
which raised `TypeError: 'str' object is not callable`
This commit makes changes to just report diagnostic - no autofix in such
cases.
Fixes#19757.
## Test Plan
Added example scenarios in
`crates/ruff_linter/resources/test/fixtures/flake8_implicit_str_concat/ISC.py`.
Signed-off-by: Prakhar Pratyush <prakhar1144@gmail.com>
## Summary
Fixes the PLE1141 (`dict-iter-missing-items`) rule to allow fixes for
empty dictionaries unless they have type annotations indicating 2-tuple
keys. Previously, the fix was incorrectly suppressed for all empty dicts
due to vacuous truth in the `all()` function.
Fixes#21289
## Problem Analysis
The `is_dict_key_tuple_with_two_elements` function was designed to
suppress the fix when a dictionary's keys are all 2-tuples, as unpacking
tuple keys directly would change runtime behavior.
However, for empty dictionaries, `iter_keys()` returns an empty
iterator, and `all()` on an empty iterator returns `true` (vacuous
truth). This caused the function to incorrectly suppress fixes for empty
dicts, even when there was no indication that future keys would be
2-tuples.
## Approach
1. **Detect empty dictionaries**: Added a check to identify when a dict
literal has no keys.
2. **Handle annotated empty dicts**: For empty dicts with type
annotations:
- Parse the annotation to check if it's `dict[tuple[T1, T2], ...]` where
the tuple has exactly 2 elements
- Support both PEP 484 (`typing.Dict`, `typing.Tuple`) and PEP 585
(`dict`, `tuple`) syntax
- If tuple keys are detected, suppress the fix (correct behavior)
- Otherwise, allow the fix
3. **Handle unannotated empty dicts**: For empty dicts without
annotations, allow the fix since there's no indication that keys will be
2-tuples.
4. **Preserve existing behavior**: For non-empty dicts, the original
logic is unchanged - check if all existing keys are 2-tuples.
The implementation includes helper functions:
- `is_annotation_dict_with_tuple_keys()`: Checks if a type annotation
specifies dict with tuple keys
- `is_tuple_type_with_two_elements()`: Checks if a type expression
represents a 2-tuple
Test cases were added to verify:
- Empty dict without annotation triggers the error
- Empty dict with `dict[tuple[int, str], bool]` suppresses the error
- Empty dict with `dict[str, int]` triggers the error
- Existing tests remain unchanged
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Extends the `used-dummy-variable` rule
([RUF052](https://docs.astral.sh/ruff/rules/used-dummy-variable/)) to
detect dummy variables that are used within list comprehensions, dict
comprehensions, set comprehensions, and generator expressions, not just
regular for loops and function assignments.
### Problem
Previously, RUF052 only flagged dummy variables (variables with leading
underscores) that were used in function scopes via assignments or
regular for loops. It missed cases where dummy variables were used
within comprehensions:
```python
def example():
my_list = [{"foo": 1}, {"foo": 2}]
# These were not detected before:
[_item["foo"] for _item in my_list] # Should warn: _item is used
{_item["key"]: _item["val"] for _item in my_list} # Should warn: _item is used
(_item["foo"] for _item in my_list) # Should warn: _item is used
```
### Solution
- Extended scope checking to include all generator scopes () with any
(list/dict/set comprehensions and generator expressions)
`ScopeKind::Generator``GeneratorKind`
- Added support for bindings, which cover loop variables in both regular
for loops and comprehensions `BindingKind::LoopVar`
- Refactored the scope validation logic for better readability with a
descriptive variable `is_allowed_scope`
[ISSUE](https://github.com/astral-sh/ruff/issues/19732)
## Test Plan
```bash
cargo test
```
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Updated `S508` (snmp-insecure-version) and `S509`
(snmp-weak-cryptography) rules to support both old and new PySNMP API
module paths. Previously, these rules only detected the old API path
`pysnmp.hlapi.*`, but now they correctly detect all PySNMP API variants
including `pysnmp.hlapi.asyncio.*`, `pysnmp.hlapi.v1arch.*`,
`pysnmp.hlapi.v3arch.*`, and `pysnmp.hlapi.auth.*`.
Fixes#21364
## Problem Analysis
The `S508` and `S509` rules used exact pattern matching on qualified
names:
- `S509` only matched `["pysnmp", "hlapi", "UsmUserData"]`
- `S508` only matched `["pysnmp", "hlapi", "CommunityData"]`
This meant that newer PySNMP API paths were not detected, such as:
- `pysnmp.hlapi.asyncio.UsmUserData`
- `pysnmp.hlapi.v3arch.asyncio.UsmUserData`
- `pysnmp.hlapi.v3arch.asyncio.auth.UsmUserData`
- `pysnmp.hlapi.auth.UsmUserData`
- Similar variants for `CommunityData` in `S508`
Additionally, the old API path `pysnmp.hlapi.auth.*` was also missing
from both rules.
## Approach
Instead of exact pattern matching, both rules now check if:
1. The qualified name starts with `["pysnmp", "hlapi"]`
2. The qualified name ends with the target class name (`"UsmUserData"`
for `S509`, `"CommunityData"` for `S508`)
This flexible approach matches all PySNMP API paths without hardcoding
each variant, making the rules more maintainable and future-proof.
## Test Plan
Added comprehensive test cases to both `S508.py` and `S509.py` test
files covering:
- New API paths: `pysnmp.hlapi.asyncio.*`, `pysnmp.hlapi.v1arch.*`,
`pysnmp.hlapi.v3arch.*`
- Old API path: `pysnmp.hlapi.auth.*`
- Both insecure and secure usage patterns
All existing tests pass, and new snapshot tests were added and accepted.
Manual verification confirms both rules correctly detect all PySNMP API
variants.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
Summary
--
This PR wires up the `Diagnostic::set_documentation_url` method from
#21502 to Ruff's lint diagnostics. This enables the links for the full
and concise output formats without any other changes.
I considered also including the URLs for the grouped and pylint output
formats, but the grouped format is still in `ruff_linter` instead of
`ruff_db`, so we'd have to export some additional functionality to wire
it up with `fmt_with_hyperlink`; and the pylint format doesn't currently
render with color, so I think it might actually be machine readable
rather than human readable?
The other ouput formats (json, json-lines, junit, github, gitlab,
rdjson, azure, sarif) seem more clearly not to need the links.
Test Plan
--
I guess you can't see my cursor or the browser opening, but it works for
lint rules, which have links, and doesn't include a link for syntax
errors, which don't have valid links.

<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Fixes#21389
Avoid RUF012 false positives when reassigning a ClassVar
## Test Plan
<!-- How was it tested? -->
Added the new reassignment scenario to
`crates/ruff_linter/resources/test/fixtures/ruff/RUF012.py`.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Fixes#21393
Now the rule checks if the index variable is initialized as an `int`
type rather than only flagging if the index variable is initialized to
`0`. I used `ResolvedPythonType` to check if the index variable is an
`int` type.
## Test Plan
Updated snapshot test for `SIM113`.
---------
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
Fixed RUF065 (`logging-eager-conversion`) to only flag `str()` calls
when they perform a simple conversion that can be safely removed. The
rule now ignores `str()` calls with no arguments, multiple arguments,
starred arguments, or keyword unpacking, preventing false positives.
Fixes#21315
## Problem Analysis
The RUF065 rule was incorrectly flagging all `str()` calls in logging
statements, even when `str()` was performing actual conversion work
beyond simple type coercion. Specifically, the rule flagged:
- `str()` with no arguments - which returns an empty string
- `str(b"data", "utf-8")` with multiple arguments - which performs
encoding conversion
- `str(*args)` with starred arguments - which unpacks arguments
- `str(**kwargs)` with keyword unpacking - which passes keyword
arguments
These cases cannot be safely removed because `str()` is doing meaningful
work (encoding conversion, argument unpacking, etc.), not just redundant
type conversion.
The root cause was that the rule only checked if the function was
`str()` without validating the call signature. It didn't distinguish
between simple `str(value)` conversions (which can be removed) and more
complex `str()` calls that perform actual work.
## Approach
The fix adds validation to the `str()` detection logic in
`logging_eager_conversion.rs`:
1. **Check argument count**: Only flag `str()` calls with exactly one
positional argument (`str_call_args.args.len() == 1`)
2. **Check for starred arguments**: Ensure the single argument is not
starred (`!str_call_args.args[0].is_starred_expr()`)
3. **Check for keyword arguments**: Ensure there are no keyword
arguments (`str_call_args.keywords.is_empty()`)
This ensures the rule only flags cases like `str(value)` where `str()`
is truly redundant and can be removed, while ignoring cases where
`str()` performs actual conversion work.
The fix maintains backward compatibility - all existing valid test cases
continue to be flagged correctly, while the new edge cases are properly
ignored.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Fixes FURB105 (`print-empty-string`) to detect empty f-strings in
addition to regular empty strings. Previously, the rule only flagged
`print("")` but missed `print(f"")`. This fix ensures both cases are
detected and can be automatically fixed.
Fixes#21346
## Problem Analysis
The FURB105 rule checks for unnecessary empty strings passed to
`print()` calls. The `is_empty_string` helper function was only checking
for `Expr::StringLiteral` with empty values, but did not handle
`Expr::FString` (f-strings). As a result, `print(f"")` was not being
flagged as a violation, even though it's semantically equivalent to
`print("")` and should be simplified to `print()`.
The issue occurred because the function used a `matches!` macro that
only checked for string literals:
```rust
fn is_empty_string(expr: &Expr) -> bool {
matches!(
expr,
Expr::StringLiteral(ast::ExprStringLiteral { value, .. }) if value.is_empty()
)
}
```
## Approach
1. **Import the helper function**: Added `is_empty_f_string` to the
imports from `ruff_python_ast::helpers`, which already provides logic to
detect empty f-strings.
2. **Update `is_empty_string` function**: Changed the implementation
from a `matches!` macro to a `match` expression that handles both string
literals and f-strings:
```rust
fn is_empty_string(expr: &Expr) -> bool {
match expr {
Expr::StringLiteral(ast::ExprStringLiteral { value, .. }) =>
value.is_empty(),
Expr::FString(f_string) => is_empty_f_string(f_string),
_ => false,
}
}
```
The fix leverages the existing `is_empty_f_string` helper function which
properly handles the complexity of f-strings, including nested f-strings
and interpolated expressions. This ensures the detection is accurate and
consistent with how empty strings are detected elsewhere in the
codebase.
## Summary
Fixed FURB101 (`read-whole-file`) to handle annotated assignments.
Previously, the rule would detect violations in code like `contents: str
= f.read()` but fail to generate a fix. Now it correctly generates fixes
that preserve type annotations (e.g., `contents: str =
Path("file.txt").read_text(encoding="utf-8")`).
Fixes#21274
## Problem Analysis
The FURB101 rule was only checking for `Stmt::Assign` statements when
determining whether a fix could be applied. When encountering annotated
assignments (`Stmt::AnnAssign`) like `contents: str = f.read()`, the
rule would:
1. Correctly detect the violation (the diagnostic was reported)
2. Fail to generate a fix because:
- The `visit_expr` method only matched `Stmt::Assign`, not
`Stmt::AnnAssign`
- The `generate_fix` function only accepted `Stmt::Assign` in its body
validation
- The replacement code generation didn't account for type annotations
This occurred because Python's AST represents annotated assignments as a
different node type (`StmtAnnAssign`) with separate fields for the
target, annotation, and value, unlike regular assignments which use a
list of targets.
## Approach
The fix extends the rule to handle both assignment types:
1. **Updated `visit_expr` method**: Now matches both `Stmt::Assign` and
`Stmt::AnnAssign`, extracting:
- Variable name from the target expression
- Type annotation code (when present) using the code generator
2. **Updated `generate_fix` function**:
- Added `annotation: Option<String>` parameter to accept annotation code
- Updated body validation to accept both `Stmt::Assign` and
`Stmt::AnnAssign`
- Modified replacement code generation to preserve annotations: `{var}:
{annotation} = {binding}({filename_code}).{suggestion}`
3. **Added test case**: Added an annotated assignment test case to
verify the fix works correctly.
The implementation maintains backward compatibility with regular
assignments while adding support for annotated assignments, ensuring
type annotations are preserved in the generated fixes.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>