## Summary
We're actually quite good at computing this but the main issue is just
that we compute it at the type-level and so wrap it in `Literal[...]`.
So just special-case the rendering of these to omit `Literal[...]` and
fallback to `...` in cases where the thing we'll show is probably
useless (i.e. `x: str = str`).
Fixes https://github.com/astral-sh/ty/issues/1882
Otherwise, given a case like this:
```
(lambda foo: (<CURSOR> + 1))(2)
```
we'll offer _argument_ completions for `foo` at the cursor position.
While we do actually want to offer completions for `foo` in this
context, it is currently difficult to do so. But we definitely don't
want to offer completions for `foo` as an argument to a function here.
Which is what we were doing.
We also add an end-to-end test here to verify that the actual label we
offer in completion suggestions includes the `=` suffix.
Closes https://github.com/astral-sh/ruff/pull/21970
It seems like this is perhaps a better default:
https://github.com/astral-sh/ty/issues/1274#issuecomment-3352233790
For me personally, I think I'd prefer the qualified
variant. But I can easily see this changing based on
the specific scenario. I think the thing that pushes
me toward prioritizing the unqualified variant is that
the user could have typed the qualified variant themselves,
but they didn't. So we should perhaps prioritize the
form they typed, which is unqualified.
Specifically, here, we'd probably like to add `TypedDict` to
the existing `from typing import ...` statement instead of
using the fully qualified `typing.TypedDict` form.
To test this, we add another snapshot mode for including imports
that a completion will insert when selected.
Ref https://github.com/astral-sh/ty/issues/1274#issuecomment-3352233790
In `for x in <CURSOR>` statements it's only valid to provide expressions
that eventually evaluate to an iterable. While it's extremely difficult
to know if something can evaulate to an iterable in a general case,
there are some suggestions we know can never lead to an iterable. Most
keywords are such and hence we remove them here.
## Summary
This suppresses statement-keywords from auto-complete suggestions in
`for x in <CURSOR>` statements where we know they can never be valid, as
whatever is typed has to (at some point) evaluate to an iterable.
It handles the core issue from
https://github.com/astral-sh/ty/issues/1774 but there's a lot of related
cases that probably has to be handled piece-wise.
## Test Plan
New tests and verifying in the playground.
## Summary
If `import warnings` exists in the file, we will suggest an edit of
`deprecated -> warnings.deprecated` as "qualify warnings.deprecated"
## Test Plan
Should test more cases...
## Summary
Working on py-fuzzer recently (AKA, a Python project!) reminded me how
cool our "inlay hint goto-definition feature" is. So this PR adds a
bunch more of that!
I also made a couple of other minor changes to type display. For
example, in the playground, this snippet:
```py
def f(): ...
reveal_type(f.__get__)
```
currently leads to this diagnostic:
```
Revealed type: `<method-wrapper `__get__` of `f`>` (revealed-type) [Ln 2, Col 13]
```
But the fact that we have backticks both around the type display and
inside the type display isn't _great_ there. This PR changes it to
```
Revealed type: `<method-wrapper '__get__' of function 'f'>` (revealed-type) [Ln 2, Col 13]
```
which avoids the nested-backticks issue in diagnostics, and is more
similar to our display for various other `Type` variants such as
class-literal types (`<class 'Foo'>`, etc., not ``<class `Foo`>``).
## Test Plan
inlay snapshots added; mdtests updated
... and also `__all__.extend(submodule.__all__)`.
I originally left out support for this since I was unclear on whether
we'd really need it. But it turns out this is used somewhat frequently.
For example, in `numpy`.
See the comments on the new `Imports` type for how we approach this.
While still under development, it's far enough along now that we think
it's worth enabling it by default. This should also help give us
feedback for how it behaves.
This PR adds a "completion settings" grouping similar to inlay hints. We
only have an auto-import setting there now, but I expect we'll add more
options to configure completion behavior in the future.
Closesastral-sh/ty#1765
This adds autocomplete suggestions for function arguments. For example,
`okay` in:
```python
def foo(okay=None):
foo(o<CURSOR>
```
This also ensures that we don't suggest a keyword argument if it has
already been used.
Closesastral-sh/issues#1550
## Summary
By taking a purely syntactic approach to the problem of trivial
initializer calls we can supress `x: T = T()`, `x: T = x.y.T()` and `x:
MyNewType = MyNewType(0)` but still display `x: T[U] = T()`.
The place where we drop a ball is this does not compose with our
analysis for supressing `x = (0, "hello")` as `x = (0, T())` and `x =
(T(), T())` will still get inlay hints (I don't think this is a huge
deal).
* fixes https://github.com/astral-sh/ty/issues/1516
## Test Plan
Existing snapshots cover this well.
## Summary
Closes: https://github.com/astral-sh/ty/issues/157
This PR adds support for the following capabilities involving a
`ParamSpec` type variable:
- Representing `P.args` and `P.kwargs` in the type system
- Matching against a callable containing `P` to create a type mapping
- Specializing `P` against the stored parameters
The value of a `ParamSpec` type variable is being represented using
`CallableType` with a `CallableTypeKind::ParamSpecValue` variant. This
`CallableTypeKind` is expanded from the existing `is_function_like`
boolean flag. An `enum` is used as these variants are mutually
exclusive.
For context, an initial iteration made an attempt to expand the
`Specialization` to use `TypeOrParameters` enum that represents that a
type variable can specialize into either a `Type` or `Parameters` but
that increased the complexity of the code as all downstream usages would
need to handle both the variants appropriately. Additionally, we'd have
also need to establish an invariant that a regular type variable always
maps to a `Type` while a paramspec type variable always maps to a
`Parameters`.
I've intentionally left out checking and raising diagnostics when the
`ParamSpec` type variable and it's components are not being used
correctly to avoid scope increase and it can easily be done as a
follow-up. This would also include the scoping rules which I don't think
a regular type variable implements either.
## Test Plan
Add new mdtest cases and update existing test cases.
Ran this branch on pyx, no new diagnostics.
### Ecosystem analysis
There's a case where in an annotated assignment like:
```py
type CustomType[P] = Callable[...]
def value[**P](...): ...
def another[**P](...):
target: CustomType[P] = value
```
The type of `value` is a callable and it has a paramspec that's bound to
`value`, `CustomType` is a type alias that's a callable and `P` that's
used in it's specialization is bound to `another`. Now, ty infers the
type of `target` same as `value` and does not use the declared type
`CustomType[P]`. [This is the
assignment](0980b9d9ab/src/async_utils/gen_transform.py (L108))
that I'm referring to which then leads to error in downstream usage.
Pyright and mypy does seem to use the declared type.
There are multiple diagnostics in `dd-trace-py` that requires support
for `cls`.
I'm seeing `Divergent` type for an example like which ~~I'm not sure
why, I'll look into it tomorrow~~ is because of a cycle as mentioned in
https://github.com/astral-sh/ty/issues/1729#issuecomment-3612279974:
```py
from typing import Callable
def decorator[**P](c: Callable[P, int]) -> Callable[P, str]: ...
@decorator
def func(a: int) -> int: ...
# ((a: int) -> str) | ((a: Divergent) -> str)
reveal_type(func)
```
I ~~need to look into why are the parameters not being specialized
through multiple decorators in the following code~~ think this is also
because of the cycle mentioned in
https://github.com/astral-sh/ty/issues/1729#issuecomment-3612279974 and
the fact that we don't support `staticmethod` properly:
```py
from contextlib import contextmanager
class Foo:
@staticmethod
@contextmanager
def method(x: int):
yield
foo = Foo()
# ty: Revealed type: `() -> _GeneratorContextManager[Unknown, None, None]` [revealed-type]
reveal_type(foo.method)
```
There's some issue related to `Protocol` that are generic over a
`ParamSpec` in `starlette` which might be related to
https://github.com/astral-sh/ty/issues/1635 but I'm not sure. Here's a
minimal example to reproduce:
<details><summary>Code snippet:</summary>
<p>
```py
from collections.abc import Awaitable, Callable, MutableMapping
from typing import Any, Callable, ParamSpec, Protocol
P = ParamSpec("P")
Scope = MutableMapping[str, Any]
Message = MutableMapping[str, Any]
Receive = Callable[[], Awaitable[Message]]
Send = Callable[[Message], Awaitable[None]]
ASGIApp = Callable[[Scope, Receive, Send], Awaitable[None]]
_Scope = Any
_Receive = Callable[[], Awaitable[Any]]
_Send = Callable[[Any], Awaitable[None]]
# Since `starlette.types.ASGIApp` type differs from `ASGIApplication` from `asgiref`
# we need to define a more permissive version of ASGIApp that doesn't cause type errors.
_ASGIApp = Callable[[_Scope, _Receive, _Send], Awaitable[None]]
class _MiddlewareFactory(Protocol[P]):
def __call__(
self, app: _ASGIApp, *args: P.args, **kwargs: P.kwargs
) -> _ASGIApp: ...
class Middleware:
def __init__(
self, factory: _MiddlewareFactory[P], *args: P.args, **kwargs: P.kwargs
) -> None:
self.factory = factory
self.args = args
self.kwargs = kwargs
class ServerErrorMiddleware:
def __init__(
self,
app: ASGIApp,
value: int | None = None,
flag: bool = False,
) -> None:
self.app = app
self.value = value
self.flag = flag
async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: ...
# ty: Argument to bound method `__init__` is incorrect: Expected `_MiddlewareFactory[(...)]`, found `<class 'ServerErrorMiddleware'>` [invalid-argument-type]
Middleware(ServerErrorMiddleware, value=500, flag=True)
```
</p>
</details>
### Conformance analysis
> ```diff
> -constructors_callable.py:36:13: info[revealed-type] Revealed type:
`(...) -> Unknown`
> +constructors_callable.py:36:13: info[revealed-type] Revealed type:
`(x: int) -> Unknown`
> ```
Requires return type inference i.e.,
https://github.com/astral-sh/ruff/pull/21551
> ```diff
> +constructors_callable.py:194:16: error[invalid-argument-type]
Argument is incorrect: Expected `list[T@__init__]`, found `list[Unknown
| str]`
> +constructors_callable.py:194:22: error[invalid-argument-type]
Argument is incorrect: Expected `list[T@__init__]`, found `list[Unknown
| str]`
> +constructors_callable.py:195:4: error[invalid-argument-type] Argument
is incorrect: Expected `list[T@__init__]`, found `list[Unknown | int]`
> +constructors_callable.py:195:9: error[invalid-argument-type] Argument
is incorrect: Expected `list[T@__init__]`, found `list[Unknown | str]`
> ```
I might need to look into why this is happening...
> ```diff
> +generics_defaults.py:79:1: error[type-assertion-failure] Type
`type[Class_ParamSpec[(str, int, /)]]` does not match asserted type
`<class 'Class_ParamSpec'>`
> ```
which is on the following code
```py
DefaultP = ParamSpec("DefaultP", default=[str, int])
class Class_ParamSpec(Generic[DefaultP]): ...
assert_type(Class_ParamSpec, type[Class_ParamSpec[str, int]])
```
It's occurring because there's no equivalence relationship defined
between `ClassLiteral` and `KnownInstanceType::TypeGenericAlias` which
is what these types are.
Everything else looks good to me!
This makes auto-import include modules in suggestions.
In this initial implementation, we permit this to include submodules as
well. This is in contrast to what we do in `import ...` completions.
It's easy to change this behavior, but I think it'd be interesting to
run with this for now to see how well it works.
The existing importer functionality always required
an import request with a module and a member in that
module. But we want to be able to insert import statements
for a module itself and not any members in the module.
This is basically changing `member: &str` to an
`Option<&str>` and fixing the fallout in a way that
makes sense for module-only imports.
A completion lacking a module reference doesn't necessarily mean that
the symbol is defined within the current module. I believe the intent
here is that it means that no import is required to use it.
This applies recursively. So if *any* component of a module name starts
with a `_`, then symbols from that module are excluded from auto-import.
The exception is when it's a module within first party code. Then we
want to include it in auto-import.
Note that the `Deprecated` symbols from `importlib.metadata` are no
longer offered because 1) `importlib.metadata` defined `__all__` and 2)
the `Deprecated` symbols aren't in it. These seem to not be a part of
its public API according to the docs, so this seems right to me.
This commit (mostly) re-implements the support for `__all__` in
ty-proper, but inside the auto-import AST scanner.
When `__all__` isn't present in a module, we fall back to conventions to
determine whether a symbol is exported or not:
https://docs.python.org/3/library/index.html
However, in keeping with current practice for non-auto-import
completions, we continue to provide sunder and dunder names as
re-exports.
When `__all__` is present, we respect it strictly. That is, a symbol is
exported *if and only if* it's in `__all__`. This is somewhat stricter
than pylance seemingly is. I felt like it was a good idea to start here,
and we can relax it based on user demand (perhaps through a setting).
This simplifies the existing visitor by DRYing it up slightly.
We also add tests for the existing functionality. In particular,
we want to add support for re-export conventions, and that
warrants more careful testing.
## Summary
I realized we don't really test `DefinitionKind::ImportFromSubmodule` in
the IDE at all, so here's a bunch of them, just recording our current
behaviour.
## Test Plan
*stares at the camera*
## Summary
I have no idea what I'm doing with the fix (all the interesting stuff is
in the second commit).
The basic problem is the compiler emits the diagnostic:
```
x: "foobar"
^^^^^^
```
Which the suppression code-action hands the end of to `Tokens::after`
which then panics because that function panics if handed an offset that
is in the middle of a token.
Fixes https://github.com/astral-sh/ty/issues/1748
## Test Plan
Many tests added (only the e2e test matters).