## Summary
Model the lookup of `__new__` without going through
`Type::try_call_dunder`. The `__new__` method is only looked up on the
constructed type itself, not on the meta-type.
This now removes ~930 false positives across the ecosystem (vs 255 for
https://github.com/astral-sh/ruff/pull/17662). It introduces 30 new
false positives related to the construction of enums via something like
`Color = enum.Enum("Color", ["RED", "GREEN"])`. This is expected,
because we don't handle custom metaclass `__call__` methods. The fact
that we previously didn't emit diagnostics there was a coincidence (we
incorrectly called `EnumMeta.__new__`, and since we don't fully
understand its signature, that happened to work with `str`, `list`
arguments).
closes#17462
## Test Plan
Regression test
## Summary
Part of #15383.
As per the spec
(https://typing.python.org/en/latest/spec/overload.html#invalid-overload-definitions):
For `@staticmethod` and `@classmethod`:
> If one overload signature is decorated with `@staticmethod` or
`@classmethod`, all overload signatures must be similarly decorated. The
implementation, if present, must also have a consistent decorator. Type
checkers should report an error if these conditions are not met.
For `@final` and `@override`:
> If a `@final` or `@override` decorator is supplied for a function with
overloads, the decorator should be applied only to the overload
implementation if it is present. If an overload implementation isn’t
present (for example, in a stub file), the `@final` or `@override`
decorator should be applied only to the first overload. Type checkers
should enforce these rules and generate an error when they are violated.
If a `@final` or `@override` decorator follows these rules, a type
checker should treat the decorator as if it is present on all overloads.
## Test Plan
Update existing tests; add snapshots.
## Summary
As mentioned in the spec
(https://typing.python.org/en/latest/spec/overload.html#invalid-overload-definitions),
part of #15383:
> The `@overload`-decorated definitions must be followed by an overload
implementation, which does not include an `@overload` decorator. Type
checkers should report an error or warning if an implementation is
missing. Overload definitions within stub files, protocols, and on
abstract methods within abstract base classes are exempt from this
check.
## Test Plan
Remove TODOs from the test; create one diagnostic snapshot.
Re: #17526
## Summary
Adds tests to red knot and `linter.rs` for the semantic syntax.
Specifically add tests for `ReboundComprehensionVariable`,
`DuplicateTypeParameter`, and `MultipleCaseAssignment`.
Refactor the `test_async_comprehension_in_sync_comprehension` →
`test_semantic_error` to be more general for all semantic syntax test
cases.
## Test Plan
This is a test.
## Question
I'm happy to contribute more tests the coming days.
Should that happen here or should we merge this PR such that the
refactor `test_async_comprehension_in_sync_comprehension` →
`test_semantic_error` is available on main and others can chime in, too?
## Summary
Part of #15383, this PR adds the core infrastructure to check for
invalid overloads and adds a diagnostic to raise if there are < 2
overloads for a given definition.
### Design notes
The requirements to check the overloads are:
* Requires `FunctionType` which has the `to_overloaded` method
* The `FunctionType` **should** be for the function that is either the
implementation or the last overload if the implementation doesn't exists
* Avoid checking any `FunctionType` that are part of an overload chain
* Consider visibility constraints
This required a couple of iteration to make sure all of the above
requirements are fulfilled.
#### 1. Use a set to deduplicate
The logic would first collect all the `FunctionType` that are part of
the overload chain except for the implementation or the last overload if
the implementation doesn't exists. Then, when iterating over all the
function declarations within the scope, we'd avoid checking these
functions. But, this approach would fail to consider visibility
constraints as certain overloads _can_ be behind a version check. Those
aren't part of the overload chain but those aren't a separate overload
chain either.
<details><summary>Implementation:</summary>
<p>
```rs
fn check_overloaded_functions(&mut self) {
let function_definitions = || {
self.types
.declarations
.iter()
.filter_map(|(definition, ty)| {
// Filter out function literals that result from anything other than a function
// definition e.g., imports.
if let DefinitionKind::Function(function) = definition.kind(self.db()) {
ty.inner_type()
.into_function_literal()
.map(|ty| (ty, definition.symbol(self.db()), function.node()))
} else {
None
}
})
};
// A set of all the functions that are part of an overloaded function definition except for
// the implementation function and the last overload in case the implementation doesn't
// exists. This allows us to collect all the function definitions that needs to be skipped
// when checking for invalid overload usages.
let mut overloads: HashSet<FunctionType<'db>> = HashSet::default();
for (function, _) in function_definitions() {
let Some(overloaded) = function.to_overloaded(self.db()) else {
continue;
};
if overloaded.implementation.is_some() {
overloads.extend(overloaded.overloads.iter().copied());
} else if let Some((_, previous_overloads)) = overloaded.overloads.split_last() {
overloads.extend(previous_overloads.iter().copied());
}
}
for (function, function_node) in function_definitions() {
let Some(overloaded) = function.to_overloaded(self.db()) else {
continue;
};
if overloads.contains(&function) {
continue;
}
// At this point, the `function` variable is either the implementation function or the
// last overloaded function if the implementation doesn't exists.
if overloaded.overloads.len() < 2 {
if let Some(builder) = self
.context
.report_lint(&INVALID_OVERLOAD, &function_node.name)
{
let mut diagnostic = builder.into_diagnostic(format_args!(
"Function `{}` requires at least two overloads",
&function_node.name
));
if let Some(first_overload) = overloaded.overloads.first() {
diagnostic.annotate(
self.context
.secondary(first_overload.focus_range(self.db()))
.message(format_args!("Only one overload defined here")),
);
}
}
}
}
}
```
</p>
</details>
#### 2. Define a `predecessor` query
The `predecessor` query would return the previous `FunctionType` for the
given `FunctionType` i.e., the current logic would be extracted to be a
query instead. This could then be used to make sure that we're checking
the entire overload chain once. The way this would've been implemented
is to have a `to_overloaded` implementation which would take the root of
the overload chain instead of the leaf. But, this would require updates
to the use-def map to somehow be able to return the _following_
functions for a given definition.
#### 3. Create a successor link
This is what Pyrefly uses, we'd create a forward link between two
functions that are involved in an overload chain. This means that for a
given function, we can get the successor function. This could be used to
find the _leaf_ of the overload chain which can then be used with the
`to_overloaded` method to get the entire overload chain. But, this would
also require updating the use-def map to be able to "see" the
_following_ function.
### Implementation
This leads us to the final implementation that this PR implements which
is to consider the overloaded functions using:
* Collect all the **function symbols** that are defined **and** called
within the same file. This could potentially be an overloaded function
* Use the public bindings to get the leaf of the overload chain and use
that to get the entire overload chain via `to_overloaded` and perform
the check
This has a limitation that in case a function redefines an overload,
then that overload will not be checked. For example:
```py
from typing import overload
@overload
def f() -> None: ...
@overload
def f(x: int) -> int: ...
# The above overload will not be checked as the below function with the same name
# shadows it
def f(*args: int) -> int: ...
```
## Test Plan
Update existing mdtest and add snapshot diagnostics.
## Summary
@sharkdp and I realised in our 1:1 this morning that our control flow
for `assert` statements isn't quite accurate at the moment. Namely, for
something like this:
```py
def _(x: int | None):
assert x is None, reveal_type(x)
```
we currently reveal `None` for `x` here, but this is incorrect. In
actual fact, the `msg` expression of an `assert` statement (the
expression after the comma) will only be evaluated if the test (`x is
None`) evaluates to `False`. As such, we should be adding a constraint
of `~None` to `x` in the `msg` expression, which should simplify the
inferred type of `x` to `int` in that context (`(int | None) & ~None` ->
`int`).
## Test Plan
Mdtests added.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
We were previously recording wrong reachability constraints for negative
branches. Instead of `[cond] AND (NOT [True])` below, we were recording
`[cond] AND (NOT ([cond] AND [True]))`, i.e. we were negating not just
the last predicate, but the `AND`-ed reachability constraint from last
clause. With this fix, we now record the correct constraints for the
example from #17723:
```py
def _(cond: bool):
if cond:
# reachability: [cond]
if True:
# reachability: [cond] AND [True]
pass
else:
# reachability: [cond] AND (NOT [True])
x
```
closes#17723
## Test Plan
* Regression test.
* Verified the ecosystem changes
## Summary
Part of #15383, this PR adds `is_equivalent_to` support for overloaded
callables.
This is mainly done by delegating it to the subtyping check in that two
types A and B are considered equivalent if A is a subtype of B and B is
a subtype of A.
## Test Plan
Add test cases for overloaded callables in `is_equivalent_to.md`
## Summary
Includes minor changes to the semantic type inference to help detect the
return type of function call.
Fixes#17691
## Test Plan
Snapshot tests
## Summary
Subtyping was already modeled, but assignability also needs an explicit
branch. Removes 921 ecosystem false positives.
## Test Plan
New Markdown tests.
We are currently representing type variables using a `KnownInstance`
variant, which wraps a `TypeVarInstance` that contains the information
about the typevar (name, bounds, constraints, default type). We were
previously only constructing that type for PEP 695 typevars. This PR
constructs that type for legacy typevars as well.
It also detects functions that are generic because they use legacy
typevars in their parameter list. With the existing logic for inferring
specializations of function calls (#17301), that means that we are
correctly detecting that the definition of `reveal_type` in the typeshed
is generic, and inferring the correct specialization of `_T` for each
call site.
This does not yet handle legacy generic classes; that will come in a
follow-on PR.
A small PR that just updates the various settings/configurations to
allow Python 3.14. At the moment selecting that target version will
have no impact compared to Python 3.13 - except that a warning
is emitted if the user does so with `preview` disabled.
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Apply auto fixes to cases where the names have changed in Airflow 3 in
AIR302 and split the huge test cases into different test cases based on
proivder
## Test Plan
<!-- How was it tested? -->
the test cases has been split into multiple for easier checking
Summary
--
This PR resolves https://github.com/astral-sh/ruff/issues/9761 by adding
a linter configuration option to disable
`typing_extensions` imports. As mentioned [here], it would be ideal if
we could
detect whether or not `typing_extensions` is available as a dependency
automatically, but this seems like a much easier fix in the meantime.
The default for the new option, `typing-extensions`, is `true`,
preserving the current behavior. Setting it to `false` will bail out of
the new
`Checker::typing_importer` method, which has been refactored from the
`Checker::import_from_typing` method in
https://github.com/astral-sh/ruff/pull/17340),
with `None`, which is then handled specially by each rule that calls it.
I considered some alternatives to a config option, such as checking if
`typing_extensions` has been imported or checking for a `TYPE_CHECKING`
block we could use, but I think defaulting to allowing
`typing_extensions` imports and allowing the user to disable this with
an option is both simple to implement and pretty intuitive.
[here]:
https://github.com/astral-sh/ruff/issues/9761#issuecomment-2790492853
Test Plan
--
New linter tests exercising several combinations of Python versions and
the new config option for PYI019. I also added tests for the other
affected rules, but only in the case where the new config option is
enabled. The rules' existing tests also cover the default case.
This is done in what appears to be the same way as Ruff: we get the CWD,
strip the prefix from the path if possible, and use that. If stripping
the prefix fails, then we print the full path as-is.
Fixes#17233
## Summary
Removes ~850 diagnostics related to assignability of callable types,
where the callable-being-assigned-to has a "Todo signature", which
should probably accept any left hand side callable/signature.
This PR promotes the fix applicability of [readlines-in-for
(FURB129)](https://docs.astral.sh/ruff/rules/readlines-in-for/#readlines-in-for-furb129)
to always safe.
In the original PR (https://github.com/astral-sh/ruff/pull/9880), the
author marked the rule as unsafe because Ruff's type inference couldn't
quite guarantee that we had an `IOBase` object in hand. Some false
positives were recorded in the test fixture. However, before the PR was
merged, Charlie added the necessary type inference and the false
positives went away.
According to the [Python
documentation](https://docs.python.org/3/library/io.html#io.IOBase), I
believe this fix is safe for any proper implementation of `IOBase`:
>[IOBase](https://docs.python.org/3/library/io.html#io.IOBase) (and its
subclasses) supports the iterator protocol, meaning that an
[IOBase](https://docs.python.org/3/library/io.html#io.IOBase) object can
be iterated over yielding the lines in a stream. Lines are defined
slightly differently depending on whether the stream is a binary stream
(yielding bytes), or a text stream (yielding character strings). See
[readline()](https://docs.python.org/3/library/io.html#io.IOBase.readline)
below.
and then in the [documentation for
`readlines`](https://docs.python.org/3/library/io.html#io.IOBase.readlines):
>Read and return a list of lines from the stream. hint can be specified
to control the number of lines read: no more lines will be read if the
total size (in bytes/characters) of all lines so far exceeds hint. [...]
>Note that it’s already possible to iterate on file objects using for
line in file: ... without calling file.readlines().
I believe that a careful reading of our [versioning
policy](https://docs.astral.sh/ruff/versioning/#version-changes)
requires that this change be deferred to a minor release - but please
correct me if I'm wrong!
This PR collects all behavior gated under preview into a new module
`ruff_linter::preview` that exposes functions like
`is_my_new_feature_enabled` - just as is done in the formatter crate.
## Summary
Do not emit errors when defining `TypedDict`s:
```py
from typing_extensions import TypedDict
# No error here
class Person(TypedDict):
name: str
age: int | None
# No error for this alternative syntax
Message = TypedDict("Message", {"id": int, "content": str})
```
## Ecosystem analysis
* Removes ~ 450 false positives for `TypedDict` definitions.
* Changes a few diagnostic messages.
* Adds a few (< 10) false positives, for example:
```diff
+ error[lint:unresolved-attribute]
/tmp/mypy_primer/projects/hydra-zen/src/hydra_zen/structured_configs/_utils.py:262:5:
Type `Literal[DataclassOptions]` has no attribute `__required_keys__`
+ error[lint:unresolved-attribute]
/tmp/mypy_primer/projects/hydra-zen/src/hydra_zen/structured_configs/_utils.py:262:42:
Type `Literal[DataclassOptions]` has no attribute `__optional_keys__`
```
* New true positive
4f8263cd7f/corporate/lib/remote_billing_util.py (L155-L157)
```diff
+ error[lint:invalid-assignment]
/tmp/mypy_primer/projects/zulip/corporate/lib/remote_billing_util.py:155:5:
Object of type `RemoteBillingIdentityDict | LegacyServerIdentityDict |
None` is not assignable to `LegacyServerIdentityDict | None`
```
## Test Plan
New Markdown tests
The PR add the `fix safety` section for rule `RUF027` (#15584 ).
Actually, I have an example of a false positive. Should I include it in
the` fix safety` section?
---------
Co-authored-by: Dylan <dylwil3@gmail.com>
The PR add the fix safety section for rule `FLY002` (#15584 )
The motivation for the content of the fix safety section is given by the
following example
```python
foo = 1
bar = [2, 3]
try:
result_join = " ".join((foo, bar))
print(f"Join result: {result_join}")
except TypeError as e:
print(f"Join error: {e}")
```
which print `Join error: sequence item 0: expected str instance, int
found`
But after the fix is applied, we have
```python
foo = 1
bar = [2, 3]
try:
result_join = f"{foo} {bar}"
print(f"Join result: {result_join}")
except TypeError as e:
print(f"Join error: {e}")
```
which print `Join result: 1 [2, 3]`
---------
Co-authored-by: dylwil3 <dylwil3@gmail.com>
## Summary
This PR add the `fix safety` section for rule `ASYNC116` in
`long_sleep_not_forever.rs` for #15584
---------
Co-authored-by: dylwil3 <dylwil3@gmail.com>
## Summary
I remember we discussed about adding this as a property tests so here I
am.
## Test Plan
```console
❯ QUICKCHECK_TESTS=10000000 cargo test --locked --release --package red_knot_python_semantic -- --ignored types::property_tests::stable::bottom_callable_is_subtype_of_all_fully_static_callable
Finished `release` profile [optimized] target(s) in 0.10s
Running unittests src/lib.rs (target/release/deps/red_knot_python_semantic-e41596ca2dbd0e98)
running 1 test
test types::property_tests::stable::bottom_callable_is_subtype_of_all_fully_static_callable ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 233 filtered out; finished in 30.91s
```
As discussed today, this is needed to handle legacy generic classes
without having to infer the types of the class's explicit bases eagerly
at class construction time. Pulling this out into a separate PR so
there's a smaller diff to review.
This also makes our representation of generic classes and functions more
consistent — before, we had separate Rust types and enum variants for
generic/non-generic classes, but a single type for generic functions.
Now we each a single (respective) type for each.
There were very few places we were differentiation between generic and
non-generic _class literals_, and these are handled now by calling the
(salsa cached) `generic_context` _accessor function_.
Note that _`ClassType`_ is still an enum with distinct variants for
non-generic classes and specialized generic classes.
## Summary
<!-- What's the purpose of the change? What does it do, and why? -->
Add "airflow.operators.python.get_current_context" →
"airflow.sdk.get_current_context" rule
## Test Plan
<!-- How was it tested? -->
the test fixture has been updated accordingly
## Summary
Even though the original suggestion works, they've been removed in later
version and is no longer the best practices.
e.g., many sql realted operators have been removed and are now suggested
to use SQLExecuteQueryOperator instead
## Test Plan
The existing test fixtures have been updated
Previously, we could iterate over files in an unspecified order (via
`HashSet` iteration) and we could accumulate diagnostics from files in
an unspecified order (via parallelism).
Here, we change the status quo so that diagnostics collected from files
are sorted after checking is complete. For now, we sort by severity
(with higher severity diagnostics appearing first) and then by
diagnostic ID to give a stable ordering.
I'm not sure if this is the best ordering.
## Summary
After https://github.com/astral-sh/ruff/pull/17620 (which this PR is
based on), I was looking at other call sites of `Type::into_class_type`,
and I began to feel that _all_ of them were currently buggy due to
silently skipping unspecialized generic class literal types (though in
some cases the bug hadn't shown up yet because we don't understand
legacy generic classes from typeshed), and in every case they would be
better off if an unspecialized generic class literal were implicitly
specialized with the default specialization (which is the usual Python
typing semantics for an unspecialized reference to a generic class),
instead of silently skipped.
So I changed the method to implicitly apply the default specialization,
and added a test that previously failed for detecting metaclasses on an
unspecialized generic base.
I also renamed the method to `to_class_type`, because I feel we have a
strong naming convention where `Type::into_foo` is always a trivial
`const fn` that simply returns `Some()` if the type is of variant `Foo`
and `None` otherwise. Even the existing method (with it handling both
`GenericAlias` and `ClassLiteral`, and distinguishing kinds of
`ClassLiteral`) was stretching this convention, and the new version
definitely breaks that envelope.
## Test Plan
Added a test that failed before this PR.
## Summary
The `ClassLiteralType::inheritance_cycle` method is intended to detect
inheritance cycles that would result in cyclic MROs, emit a diagnostic,
and skip actually trying to create the cyclic MRO, falling back to an
"error" MRO instead with just `Unknown` and `object`.
This method didn't work properly for generic classes. It used
`fully_static_explicit_bases`, which filter-maps `explicit_bases` over
`Type::into_class_type`, which returns `None` for an unspecialized
generic class literal. So in a case like `class C[T](C): ...`, because
the explicit base is an unspecialized generic, we just skipped it, and
failed to detect the class as cyclically defined.
Instead, iterate directly over all `explicit_bases`, and explicitly
handle both the specialized (`GenericAlias`) and unspecialized
(`ClassLiteral`) cases, so that we check all bases and correctly detect
cyclic inheritance.
## Test Plan
Added mdtests.
Summary
--
While going through the syntax errors in [this comment], I was surprised
to see the error `name 'x' is assigned to before global declaration`,
which corresponds to [load-before-global-declaration (PLE0118)] and has
also been reimplemented as a syntax error (#17135). However, it looks
like neither of the implementations consider `global` declarations in
the top-level module scope, which is a syntax error in CPython:
```python
# try.py
x = None
global x
```
```shell
> python -m compileall -f try.py
Compiling 'try.py'...
*** File "try.py", line 2
global x
^^^^^^^^
SyntaxError: name 'x' is assigned to before global declaration
```
I'm not sure this is the best or most elegant solution, but it was a
quick fix that passed all of our tests.
Test Plan
--
New PLE0118 test case.
[this comment]:
https://github.com/astral-sh/ruff/issues/7633#issuecomment-1740424031
[load-before-global-declaration (PLE0118)]:
https://docs.astral.sh/ruff/rules/load-before-global-declaration/#load-before-global-declaration-ple0118
## Summary
Tracked structs have some issues with fixpoint iteration in Salsa, and
there's not actually any need for this to be tracked, it should be
interned like most of our type structs.
The removed comment was probably never correct (in that we could have
disambiguated sufficiently), and is definitely not relevant now that
`TypeVarInstance` also holds its `Definition`.
## Test Plan
Existing tests.
## Summary
This PR adds special-casing for `@final` and `@override` decorator for a
similar reason as https://github.com/astral-sh/ruff/pull/17591 to
support the invalid overload check.
Both `final` and `override` are identity functions which can be removed
once `TypeVar` support is added.
## Summary
As promised, this just adds a TODO comment to document something we
discussed today that should probably be improved at some point, but
isn't a priority right now (since it's an issue that in practice would
only affect generic classes with both `__init__` and `__new__` methods,
where some typevar is bound to `Unknown` in one and to some other type
in another.)
## Summary
Part of #17412
Add a new compile-time syntax error for detecting `nonlocal`
declarations at a module level.
## Test Plan
- Added new inline tests for the syntax error
- Updated existing tests for `nonlocal` statement parsing to be inside a
function scope
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
## Summary
While adding semantic error support to red-knot, I noticed duplicate
diagnostics for code like this:
```py
# error: [invalid-syntax] "cannot use an asynchronous comprehension outside of an asynchronous function on Python 3.9 (syntax was added in 3.11)"
# error: [invalid-syntax] "`asynchronous comprehension` outside of an asynchronous function"
[reveal_type(x) async for x in AsyncIterable()]
```
Beyond the duplication, the first error message doesn't make much sense
because this syntax is _not_ allowed on Python 3.11 either.
To fix this, this PR renames the
`async-comprehension-outside-async-function` semantic syntax error to
`async-comprehension-in-sync-comprehension` and fixes the rule to avoid
applying outside of sync comprehensions at all.
## Test Plan
New linter test demonstrating the false positive. The mdtests from my red-knot
PR also reflect this change.
## Summary
This PR updates the `to_overloaded` method to use an iterative approach
instead of a recursive one.
Refer to
https://github.com/astral-sh/ruff/pull/17585#discussion_r2056804587 for
context.
The main benefit here is that it avoids calling the `to_overloaded`
function in a recursive manner which is a salsa query. So, this is a bit
hand wavy but we should also see less memory used because the cache will
only contain a single entry which should be the entire overload chain.
Previously, the recursive approach would mean that each of the function
involved in an overload chain would have a cache entry. This reduce in
memory shouldn't be too much and I haven't looked at the actual data for
it.
## Test Plan
Existing test cases should pass.
This mostly only improves things for incorrect arguments and for an
incorrect return type. It doesn't do much to improve the case where
`__bool__` isn't callable and leaves the union/other cases untouched
completely.
I picked this one because, at first glance, this _looked_ like a lower
hanging fruit. The conceptual improvement here is pretty
straight-forward: add annotations for relevant data. But it took me a
bit to figure out how to connect all of the pieces.
I wanted to use this method in other places, so I moved it
to what appears to be a God-type. I also made it slightly
more versatile: callers can ask for the entire parameter list
by omitting a specific parameter index.
## Summary
Historically we have avoided narrowing on `==` tests because in many
cases it's unsound, since subclasses of a type could compare equal to
who-knows-what. But there are a lot of types (literals and unions of
them, as well as some known instances like `None` -- single-valued
types) whose `__eq__` behavior we know, and which we can safely narrow
away based on equality comparisons.
This PR implements equality narrowing in the cases where it is sound.
The most elegant way to do this (and the way that is most in-line with
our approach up until now) would be to introduce new Type variants
`NeverEqualTo[...]` and `AlwaysEqualTo[...]`, and then implement all
type relations for those variants, narrow by intersection, and let union
and intersection simplification sort it all out. This is analogous to
our existing handling for `AlwaysFalse` and `AlwaysTrue`.
But I'm reluctant to add new `Type` variants for this, mostly because
they could end up un-simplified in some types and make types even more
complex. So let's try this approach, where we handle more of the
narrowing logic as a special case.
## Test Plan
Updated and added tests.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Co-authored-by: Carl Meyer <carl@oddbird.net>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Another follow-up to the unions-of-large-literals optimization. Restore
the behavior that e.g. `Literal[""] | ~Literal[""]` collapses to
`object`.
## Test Plan
Added mdtests.
## Summary
This is required because otherwise the inferred type is not going to be
`Type::FunctionLiteral` but a todo type because we don't recognize
`TypeVar` yet:
```py
_FuncT = TypeVar("_FuncT", bound=Callable[..., Any])
def abstractmethod(funcobj: _FuncT) -> _FuncT: ...
```
This is mainly required to raise diagnostic when only some (and not all)
`@overload`-ed functions are decorated with `@abstractmethod`.
## Summary
This PR adds a new method `FunctionType::to_overloaded` which converts a
`FunctionType` into an `OverloadedFunction` which contains all the
`@overload`-ed `FunctionType` and the implementation `FunctionType` if
it exists.
There's a big caveat here (it's the way overloads work) which is that
this method can only "see" all the overloads that comes _before_ itself.
Consider the following example:
```py
from typing import overload
@overload
def foo() -> None: ...
@overload
def foo(x: int) -> int: ...
def foo(x: int | None) -> int | None:
return x
```
Here, when the `to_overloaded` method is invoked on the
1. first `foo` definition, it would only contain a single overload which
is itself and no implementation.
2. second `foo` definition, it would contain both overloads and still no
implementation
3. third `foo` definition, it would contain both overloads and the
implementation which is itself
### Usages
This method will be used in the logic for checking invalid overload
usages. It can also be used for #17541.
## Test Plan
Make sure that existing tests pass.
## Summary
This is a first step toward `global` support in red-knot (#15385). I
went through all the matches for `global` in the `mypy/test-data`
directory, but I didn't find anything too interesting that wasn't
already covered by @carljm's suggestions on Discord. I still pulled in a
couple of cases for a little extra variety. I also included a section
from the
[PLE0118](https://docs.astral.sh/ruff/rules/load-before-global-declaration/)
tests in ruff that will become syntax errors once #17463 is merged and
we handle `global` statements.
I don't think I figured out how to use `@Todo` properly, so please let
me know if I need to fix that. I hope this is a good start to the test
suite otherwise.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
Status
--
This is a pretty minor change, but it was breaking a red-knot mdtest
until #17463 landed. Now this should close#11934 as the last syntax
error being tracked there!
Summary
--
Moves `Parser::validate_parameters` to
`SemanticSyntaxChecker::duplicate_parameter_name`.
Test Plan
--
Existing tests, with `## Errors` replaced with `## Semantic Syntax
Errors`.
We now handle generic constructor methods on generic classes correctly:
```py
class C[T]:
def __init__[S](self, t: T, s: S): ...
x = C(1, "str")
```
Here, constructing `C` requires us to infer a specialization for the
generic contexts of `C` and `__init__` at the same time.
At first I thought I would need to track the full stack of nested
generic contexts here (since the `[S]` context is nested within the
`[T]` context). But I think this is the only way that we might need to
specialize more than one generic context at once — in all other cases, a
containing generic context must be specialized before we get to a nested
one, and so we can just special-case this.
While we're here, we also construct the generic context for a generic
function lazily, when its signature is accessed, instead of eagerly when
inferring the function body.
## Summary
Model assignability of class instances with a `__call__` method to
`Callable` types. This should solve some false positives related to
`functools.partial` (yes, 1098 fewer diagnostics!).
Reference:
https://github.com/astral-sh/ruff/issues/17343#issuecomment-2824618483
## Test Plan
New Markdown tests.
## Summary
Many symbols in typeshed are defined without being declared. For
example:
```pyi
# builtins:
IOError = OSError
# types
LambdaType = FunctionType
NotImplementedType = _NotImplementedType
# typing
Text = str
# random
uniform = _inst.uniform
# optparse
make_option = Option
# all over the place:
_T = TypeVar("_T")
```
Here, we introduce a change that skips widening the public type of these
symbols (by unioning with `Unknown`).
fixes#17032
## Ecosystem analysis
This is difficult to analyze in detail, but I went over most changes and
it looks very favorable to me overall. The diff on the overall numbers
is:
```
errors: 1287 -> 859 (reduction by 428)
warnings: 45 -> 59 (increase by 14)
```
### Removed false positives
`invalid-base` examples:
```diff
- error[lint:invalid-base] /tmp/mypy_primer/projects/pip/src/pip/_vendor/rich/console.py:548:27: Invalid class base with type `Unknown | Literal[_local]` (all bases must be a class, `Any`, `Unknown` or `Todo`)
- error[lint:invalid-base] /tmp/mypy_primer/projects/tornado/tornado/iostream.py:84:25: Invalid class base with type `Unknown | Literal[OSError]` (all bases must be a class, `Any`, `Unknown` or `Todo`)
- error[lint:invalid-base] /tmp/mypy_primer/projects/mitmproxy/test/conftest.py:35:40: Invalid class base with type `Unknown | Literal[_UnixDefaultEventLoopPolicy]` (all bases must be a class, `Any`, `Unknown` or `Todo`)
```
`invalid-exception-caught` examples:
```diff
- error[lint:invalid-exception-caught] /tmp/mypy_primer/projects/cloud-init/cloudinit/cmd/status.py:334:16: Cannot catch object of type `Literal[ProcessExecutionError]` in an exception handler (must be a `BaseException` subclass or a tuple of `BaseException` subclasses)
- error[lint:invalid-exception-caught] /tmp/mypy_primer/projects/jinja/src/jinja2/loaders.py:537:16: Cannot catch object of type `Literal[TemplateNotFound]` in an exception handler (must be a `BaseException` subclass or a tuple of `BaseException` subclasses)
```
`unresolved-reference` examples
7a0265d36e/cloudinit/handlers/jinja_template.py (L120-L123)
(we now understand the `isinstance` narrowing)
```diff
- error[lint:unresolved-attribute] /tmp/mypy_primer/projects/cloud-init/cloudinit/handlers/jinja_template.py:123:16: Type `Exception` has no attribute `errno`
```
`unknown-argument` examples
https://github.com/hauntsaninja/boostedblob/blob/master/boostedblob/request.py#L53
```diff
- error[lint:unknown-argument] /tmp/mypy_primer/projects/boostedblob/boostedblob/request.py:53:17: Argument `connect` does not match any known parameter of bound method `__init__`
```
`unknown-argument`
There are a lot of `__init__`-related changes because we now understand
[`@attr.s`](3d42a6978a/src/attr/__init__.pyi (L387))
as a `@dataclass_transform` annotated symbol. For example:
```diff
- error[lint:unknown-argument] /tmp/mypy_primer/projects/attrs/tests/test_hooks.py:72:18: Argument `x` does not match any known parameter of bound method `__init__`
```
### New false positives
This can happen if a symbol that previously was inferred as `X |
Unknown` was assigned-to, but we don't yet understand the assignability
to `X`:
https://github.com/strawberry-graphql/strawberry/blob/main/strawberry/exceptions/handler.py#L90
```diff
+ error[lint:invalid-assignment] /tmp/mypy_primer/projects/strawberry/strawberry/exceptions/handler.py:90:9: Object of type `def strawberry_threading_exception_handler(args: tuple[type[BaseException], BaseException | None, TracebackType | None, Thread | None]) -> None` is not assignable to attribute `excepthook` of type `(_ExceptHookArgs, /) -> Any`
```
### New true positives
6bbb5519fe/tests/tracer/test_span.py (L714)
```diff
+ error[lint:invalid-argument-type] /tmp/mypy_primer/projects/dd-trace-py/tests/tracer/test_span.py:714:33: Argument to this function is incorrect: Expected `str`, found `Literal[b"\xf0\x9f\xa4\x94"]`
```
### Changed diagnostics
A lot of changed diagnostics because we now show `@Todo(Support for
`typing.TypeVar` instances in type expressions)` instead of `Unknown`
for all kinds of symbols that used a `_T = TypeVar("_T")` as a type. One
prominent example is the `list.__getitem__` method:
`builtins.pyi`:
```pyi
_T = TypeVar("_T") # previously `TypeVar | Unknown`, now just `TypeVar`
# …
class list(MutableSequence[_T]):
# …
@overload
def __getitem__(self, i: SupportsIndex, /) -> _T: ...
# …
```
which causes this change in diagnostics:
```py
xs = [1, 2]
reveal_type(xs[0]) # previously `Unknown`, now `@Todo(Support for `typing.TypeVar` instances in type expressions)`
```
## Test Plan
Updated Markdown tests
## Summary
Apply auto fixes to cases where the names have changed in Airflow 3
## Test Plan
Add `AIR301_names_fix.py` and `AIR301_provider_names_fix.py` test fixtures
This pull request fixes https://github.com/astral-sh/ruff/issues/17014
changes this
```python
from __future__ import annotations
flag1 = True
flag2 = True
if flag1 == True or flag2 == True:
pass
if flag1 == False and flag2 == False:
pass
flag3 = True
if flag1 == flag3 and (flag2 == False or flag3 == True): # Should become: if flag1==flag3 and (not flag2 or flag3)
pass
if flag1 == True and (flag2 == False or not flag3 == True): # Should become: if flag1 and (not flag2 or not flag3)
pass
if flag1 != True and (flag2 != False or not flag3 == True): # Should become: if not flag1 and (flag2 or not flag3)
pass
flag = True
while flag == True: # Should become: while flag
flag = False
flag = True
x = 5
if flag == True and x > 0: # Should become: if flag and x > 0
print("ok")
flag = True
result = "yes" if flag == True else "no" # Should become: result = "yes" if flag else "no"
x = flag == True < 5
x = (flag == True) == False < 5
```
to this
```python
from __future__ import annotations
flag1 = True
flag2 = True
if flag1 or flag2:
pass
if not flag1 and not flag2:
pass
flag3 = True
if flag1 == flag3 and (not flag2 or flag3): # Should become: if flag1 == flag3 and (not flag2 or flag3)
pass
if flag1 and (not flag2 or not flag3): # Should become: if flag1 and (not flag2 or not flag3)
pass
if not flag1 and (flag2 or not flag3): # Should become: if not flag1 and (flag2 or not flag3)
pass
flag = True
while flag: # Should become: while flag
flag = False
flag = True
x = 5
if flag and x > 0: # Should become: if flag and x > 0
print("ok")
flag = True
result = "yes" if flag else "no" # Should become: result = "yes" if flag else "no"
x = flag is True < 5
x = (flag) is False < 5
```
---------
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
Summary
--
This PR extends semantic syntax error detection to red-knot. The main
changes here are:
1. Adding `SemanticSyntaxChecker` and `Vec<SemanticSyntaxError>` fields
to the `SemanticIndexBuilder`
2. Calling `SemanticSyntaxChecker::visit_stmt` and `visit_expr` in the
`SemanticIndexBuilder`'s `visit_stmt` and `visit_expr` methods
3. Implementing `SemanticSyntaxContext` for `SemanticIndexBuilder`
4. Adding new mdtests to test the context implementation and show
diagnostics
(3) is definitely the trickiest and required (I think) a minor addition
to the `SemanticIndexBuilder`. I tried to look around for existing code
performing the necessary checks, but I definitely could have missed
something or misused the existing code even when I found it.
There's still one TODO around `global` statement handling. I don't think
there's an existing way to look this up, but I'm happy to work on that
here or in a separate PR. This currently only affects detection of one
error (`LoadBeforeGlobalDeclaration` or
[PLE0118](https://docs.astral.sh/ruff/rules/load-before-global-declaration/)
in ruff), so it's not too big of a problem even if we leave the TODO.
Test Plan
--
New mdtests, as well as new errors for existing mdtests
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Allow (instances of) subclasses of `Any` and `Unknown` to be assignable
to (instances of) other classes, unless they are final. This allows us
to get rid of ~1000 false positives, mostly when mock-objects like
`unittest.mock.MagicMock` are assigned to various targets.
## Test Plan
Adapted and new Markdown tests.
## Summary
mypy_primer changes included here:
ebaa9fd27b..4c22d192a4
- Add strawberry as a `good.txt` project (was previously included in our
fork)
- Print Red Knot compilation errors to stderr (thanks @MichaReiser)
## Summary
We currently emit a diagnostic for code like the following:
```py
from typing import Any
# error: Invalid class base with type `GenericAlias` (all bases must be a class, `Any`, `Unknown` or `Todo`)
class C(tuple[Any, ...]): ...
```
The changeset here silences this diagnostic by recognizing instances of
`GenericAlias` in `ClassBase::try_from_type`, and inferring a `@Todo`
type for them. This is a change in preparation for #17557, because `C`
previously had `Unknown` in its MRO …
```py
reveal_type(C.__mro__) # tuple[Literal[C], Unknown, Literal[object]]
```
… which would cause us to think that `C` is assignable to everything.
The changeset also removes some false positive `invalid-base`
diagnostics across the ecosystem.
## Test Plan
Updated Markdown tests.
## Summary
Add parentheses to multi-element intersections, when displayed in a
context that's otherwise potentially ambiguous.
## Test Plan
Update mdtest files
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
#17451 was incomplete. `AlwaysFalsy` and `AlwaysTruthy` are not the only
two types that are super-types of some literals (of a given kind) and
not others. That set also includes intersections containing
`AlwaysTruthy` or `AlwaysFalsy`, and intersections containing literal
types of the same kind. Cover these cases as well.
Fixes#17478.
## Test Plan
Added mdtests.
`QUICKCHECK_TESTS=1000000 cargo test -p red_knot_python_semantic --
--ignored types::property_tests::stable` failed on both
`all_fully_static_type_pairs_are_subtypes_of_their_union` and
`all_type_pairs_are_assignable_to_their_union` prior to this PR, passes
after it.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
I gave up trying to do this one lint at a time and just (mostly)
mechanically translated this entire file in one go.
Generally the messages stay the same (with most moving from an
annotation message to the diagnostic's main message). I added a couple
of `info` sub-diagnostics where it seemed to be the obvious intent.
This finishes the migration for the `INVALID_ASSIGNMENT` lint.
Notice how I'm steadily losing steam in terms of actually improving the
diagnostics. This change is more mechanical, because taking the time to
revamp every diagnostic is a ton of effort. Probably future migrations
will be similar unless there are easy pickings.
We mostly keep things the same here, but the message has been moved from
the annotation to the diagnostic's top-line message. I think this is
perhaps a little worse, but some bigger improvements could be made here.
Indeed, we could perhaps even add a "fix" here.
This moves all INVALID_ASSIGNMENT lints related to unpacking over to the new
diagnostic model.
While we're here, we improve the diagnostic a bit by adding a secondary
annotation covering where the value is. We also split apart the original
singular message into one message for the diagnostic and the "expected
versus got" into annotation messages.
This tests the diagnostic rendering of a case that wasn't previously
covered by snapshots: when unpacking fails because there are too few
values, but where the left hand side can tolerate "N or more." In the
code, this is a distinct diagnostic, so we capture it here.
(Sorry about the diff here, but it made sense to rename the other
sections and that changes the name of the snapshot file.)
I believe this was an artifact of an older iteration of the diagnostic
reporting API. But this is strictly not necessary now, and indeed, might
even be annoying. It is okay, but perhaps looks a little odd, to do
`builder.into_diagnostic("...")` if you don't want to add anything else
to the diagnostic.
I suspect this will be used pretty frequently (I wanted it
immediately). And more practically, this avoids needing to
import `Annotation` to create it.
## Summary
I ran red-knot on every project in mypy-primer. I moved every project
where red-knot ran to completion (fast enough, and mypy-primer could
handle its output) into `good.txt`, so it will run in our CI.
The remaining projects I left listed in `bad.txt`, with a comment
summarizing the failure mode (a few don't fail, they are just slow -- on
a debug build, at least -- or output too many diagnostics for
mypy-primer to handle.)
We will now run CI on 109 projects; 34 are left in `bad.txt`.
## Test Plan
CI on this PR!
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Takes the `good.txt` changes from #17474, and removes the following
projects:
- arrow (not part of mypy_primer upstream)
- freqtrade, hydpy, ibis, pandera, xarray (saw panics locally, all
related to try_metaclass cycles)
Increases the mypy_primer CI run time to ~4 min.
## Test Plan
Three successful CI runs.
## Summary
* Add initial support for `typing.dataclass_transform`
* Support decorating a function decorator with `@dataclass_transform(…)`
(used by `attrs`, `strawberry`)
* Support decorating a metaclass with `@dataclass_transform(…)` (used by
`pydantic`, but doesn't work yet, because we don't seem to model
`__new__` calls correctly?)
* *No* support yet for decorating base classes with
`@dataclass_transform(…)`. I haven't figured out how this even supposed
to work. And haven't seen it being used.
* Add `strawberry` as an ecosystem project, as it makes heavy use of
`@dataclass_transform`
## Test Plan
New Markdown tests
This is an implementation of the discussion from #16719.
This change will allow list function calls to be replaced with
comprehensions:
```python
result = list()
for i in range(3):
result.append(i + 1)
# becomes
result = [i + 1 for i in range(3)]
```
I added a new test to `PERF401.py` to verify that this fix will now work
for `list()`.
## Summary
This PR is a follow-up to #16852.
Instance variables bound in comprehensions are recorded, allowing type
inference to work correctly.
This required adding support for unpacking in comprehension which
resolves https://github.com/astral-sh/ruff/issues/15369.
## Test Plan
One TODO in `mdtest/attributes.md` is now resolved, and some new test
cases are added.
---------
Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
## Summary
If two types are gradually-equivalent, that means they share the same
set of possible materializations. There's no need to keep two such types
in the same union or intersection; we should simplify them.
Fixes https://github.com/astral-sh/ruff/issues/17465
The one downside here is that now we will simplify e.g. `Unknown |
Todo(...)` to just `Unknown`, if `Unknown` was added to the union first.
This is correct from a type perspective (they are equivalent types), but
it can mean we lose visibility into part of the cause for the type
inferring as unknown. I think this is OK, but if we think it's important
to avoid this, I can add a special case to try to preserve `Todo` over
`Unknown`, if we see them both in the same union or intersection.
## Test Plan
Added and updated mdtests.
## Summary
The long line of projects in `mypy_primer.yaml` is hard to work with
when adding projects or checking whether they are currently run. Use a
one-per-line text file instead.
## Test Plan
Ecosystem check on this PR.
## Summary
add fix safety section to replace_stdout_stderr and
super_call_with_parameters, for #15584
I checked the behavior and found that these two files could only
potentially delete the appended comments, so I submitted them as a PR.
The PR fixes#16457 .
Specifically, `FURB161` is marked safe, but the rule generates safe
fixes only in specific cases. Therefore, we attempt to mark the fix as
unsafe when we are not in one of these cases.
For instances, the fix is marked as aunsafe just in case of strings (as
pointed out in the issue). Let me know if I should change something.
---------
Co-authored-by: Brent Westbrook <brentrwestbrook@gmail.com>
## Summary
Member lookup can be cyclic, with type inference of implicit members. A
sample case is shown in the added mdtest.
There's no clear way to handle such cases other than to fixpoint-iterate
the cycle.
Fixes#17457.
## Test Plan
Added test.
## Summary
This change adds an auto-fix for manual dict comprehensions. It also
copies many of the improvements from #13919 (and associated PRs fixing
issues with it), and moves some of the utility functions from
`manual_list_comprehension.rs` into a separate `helpers.rs` to be used
in both.
## Test Plan
I added a preview test case to showcase the new fix and added a test
case in `PERF403.py` to make sure lines with semicolons function. I
didn't yet make similar tests to the ones I added earlier to
`PERF401.py`, but the logic is the same, so it might be good to add
those to make sure they work.
You can now use subscript expressions in a type expression to explicitly
specialize generic classes, just like you could already do in value
expressions.
This still does not implement bidirectional checking, so a type
annotation on an assignment does not influence how we infer a
specialization for a (not explicitly specialized) constructor call. You
might get an `invalid-assignment` error if (a) we cannot infer a class
specialization from the constructor call (in which case you end up e.g.
trying to assign `C[Unknown]` to `C[int]`) or if (b) we can infer a
specialization, but it doesn't match the annotation.
Closes https://github.com/astral-sh/ruff/issues/17432
## Summary
There was some narrowing constraints not covered from the previous PR
```py
def _(x: object):
if (type(y := x)) is bool:
reveal_type(y) # revealed: bool
```
Also, refactored a bit
## Test Plan
Update type_api.md
In #17403 I added a comment asserting that all same-kind literal types
share all the same super-types. This is true, with two notable
exceptions: the types `AlwaysTruthy` and `AlwaysFalsy`. These two types
are super-types of some literal types within a given kind and not
others: `Literal[0]`, `Literal[""]`, and `Literal[b""]` inhabit
`AlwaysFalsy`, while other literals inhabit `AlwaysTruthy`.
This PR updates the literal-unions optimization to handle these types
correctly.
Fixes https://github.com/astral-sh/ruff/issues/17447
Verified locally that `QUICKCHECK_TESTS=100000 cargo test -p
red_knot_python_semantic -- --ignored types::property_tests::stable` now
passes again.