## Summary
Support `as` patterns in reachability analysis:
```py
from typing import assert_never
def f(subject: str | int):
match subject:
case int() as x:
pass
case str():
pass
case _:
assert_never(subject) # would previously emit an error
```
Note that we still don't support inferring correct types for the bound
name (`x`).
Closes https://github.com/astral-sh/ty/issues/928
## Test Plan
New Markdown tests
## Summary
Implements proper reachability analysis and — in effect — exhaustiveness
checking for `match` statements. This allows us to check the following
code without any errors (leads to *"can implicitly return `None`"* on
`main`):
```py
from enum import Enum, auto
class Color(Enum):
RED = auto()
GREEN = auto()
BLUE = auto()
def hex(color: Color) -> str:
match color:
case Color.RED:
return "#ff0000"
case Color.GREEN:
return "#00ff00"
case Color.BLUE:
return "#0000ff"
```
Note that code like this already worked fine if there was a
`assert_never(color)` statement in a catch-all case, because we would
then consider that `assert_never` call terminal. But now this also works
without the wildcard case. Adding a member to the enum would still lead
to an error here, if that case would not be handled in `hex`.
What needed to happen to support this is a new way of evaluating match
pattern constraints. Previously, we would simply compare the type of the
subject expression against the patterns. For the last case here, the
subject type would still be `Color` and the value type would be
`Literal[Color.BLUE]`, so we would infer an ambiguous truthiness.
Now, before we compare the subject type against the pattern, we first
generate a union type that corresponds to the set of all values that
would have *definitely been matched* by previous patterns. Then, we
build a "narrowed" subject type by computing `subject_type &
~already_matched_type`, and compare *that* against the pattern type. For
the example here, `already_matched_type = Literal[Color.RED] |
Literal[Color.GREEN]`, and so we have a narrowed subject type of `Color
& ~(Literal[Color.RED] | Literal[Color.GREEN]) = Literal[Color.BLUE]`,
which allows us to infer a reachability of `AlwaysTrue`.
<details>
<summary>A note on negated reachability constraints</summary>
It might seem that we now perform duplicate work, because we also record
*negated* reachability constraints. But that is still important for
cases like the following (and possibly also for more realistic
scenarios):
```py
from typing import Literal
def _(x: int | str):
match x:
case None:
pass # never reachable
case _:
y = 1
y
```
</details>
closes https://github.com/astral-sh/ty/issues/99
## Test Plan
* I verified that this solves all examples from the linked ticket (the
first example needs a PEP 695 type alias, because we don't support
legacy type aliases yet)
* Verified that the ecosystem changes are all because of removed false
positives
* Updated tests
## Summary
I noticed that our type narrowing and reachability analysis was
incorrect for class patterns that are not irrefutable. The test cases
below compare the old and the new behavior:
```py
from dataclasses import dataclass
@dataclass
class Point:
x: int
y: int
class Other: ...
def _(target: Point):
y = 1
match target:
case Point(0, 0):
y = 2
case Point(x=0, y=1):
y = 3
case Point(x=1, y=0):
y = 4
reveal_type(y) # revealed: Literal[1, 2, 3, 4] (previously: Literal[2])
def _(target: Point | Other):
match target:
case Point(0, 0):
reveal_type(target) # revealed: Point
case Point(x=0, y=1):
reveal_type(target) # revealed: Point (previously: Never)
case Point(x=1, y=0):
reveal_type(target) # revealed: Point (previously: Never)
case Other():
reveal_type(target) # revealed: Other (previously: Other & ~Point)
```
## Test Plan
New Markdown test
This is a follow-on to #19410 that further reduces the memory usage of
our reachability constraints. When finishing the building of a use-def
map, we walk through all of the "final" states and mark only those
reachability constraints as "used". We then throw away the interior TDD
nodes of any reachability constraints that weren't marked as used.
(This helps because we build up quite a few intermediate TDD nodes when
constructing complex reachability constraints. These nodes can never be
accessed if they were _only_ used as an intermediate TDD node. The
marking step ensures that we keep any nodes that ended up being referred
to in some accessible use-def map state.)
## Summary
`ty` does not understand that calls to functions which have been
annotated as having a return type of `Never` / `NoReturn` are terminal.
This PR fixes that, by adding new reachability constraints when call
expressions are seen. If the call expression evaluates to `Never`, the
code following it will be considered to be unreachable. Note that, for
adding these constraints, we only consider call expressions at the
statement level, and that too only inside function scopes. This is
because otherwise, the number of such constraints becomes too high, and
evaluating them later on during type inference results in a major
performance degradation.
Fixes https://github.com/astral-sh/ty/issues/180
## Test Plan
New mdtests.
## Ecosystem changes
This PR removes the following false-positives:
- "Function can implicitly return `None`, which is not assignable to
...".
- "Name `foo` used when possibly not defind" - because the branch in
which it is not defined has a `NoReturn` call, or when `foo` was
imported in a `try`, and the except had a `NoReturn` call.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Simplifies literal `True` and `False` conditions to `ALWAYS_TRUE` /
`ALWAYS_FALSE` during semantic index building. This allows us to eagerly
evaluate more constraints, which should help with performance (looks
like there is a tiny 1% improvement in instrumented benchmarks), but
also allows us to eliminate definitely-unreachable branches in
control-flow merging. This can lead to better type inference in some
cases because it allows us to retain narrowing constraints without
solving https://github.com/astral-sh/ty/issues/690 first:
```py
def _(c: int | None):
if c is None:
assert False
reveal_type(c) # int, previously: int | None
```
closes https://github.com/astral-sh/ty/issues/713
## Test Plan
* Regression test for https://github.com/astral-sh/ty/issues/713
* Made sure that all ecosystem diffs trace back to removed false
positives
## Summary
Setting `TY_MEMORY_REPORT=full` will generate and print a memory usage
report to the CLI after a `ty check` run:
```
=======SALSA STRUCTS=======
`Definition` metadata=7.24MB fields=17.38MB count=181062
`Expression` metadata=4.45MB fields=5.94MB count=92804
`member_lookup_with_policy_::interned_arguments` metadata=1.97MB fields=2.25MB count=35176
...
=======SALSA QUERIES=======
`File -> ty_python_semantic::semantic_index::SemanticIndex`
metadata=11.46MB fields=88.86MB count=1638
`Definition -> ty_python_semantic::types::infer::TypeInference`
metadata=24.52MB fields=86.68MB count=146018
`File -> ruff_db::parsed::ParsedModule`
metadata=0.12MB fields=69.06MB count=1642
...
=======SALSA SUMMARY=======
TOTAL MEMORY USAGE: 577.61MB
struct metadata = 29.00MB
struct fields = 35.68MB
memo metadata = 103.87MB
memo fields = 409.06MB
```
Eventually, we should integrate these numbers into CI in some form. The
one limitation currently is that heap allocations in salsa structs (e.g.
interned values) are not tracked, but memoized values should have full
coverage. We may also want a peak memory usage counter (that accounts
for non-salsa memory), but that is relatively simple to profile manually
(e.g. `time -v ty check`) and would require a compile-time option to
avoid runtime overhead.
## Summary
* Completely removes the concept of visibility constraints. Reachability
constraints are now used to model the static visibility of bindings and
declarations. Reachability constraints are *much* easier to reason about
/ work with, since they are applied at the beginning of a branch, and
not applied retroactively. Removing the duplication between visibility
and reachability constraints also leads to major code simplifications
[^1]. For an overview of how the new constraint system works, see the
updated doc comment in `reachability_constraints.rs`.
* Fixes a [control-flow modeling bug
(panic)](https://github.com/astral-sh/ty/issues/365) involving `break`
statements in loops
* Fixes a [bug where](https://github.com/astral-sh/ty/issues/624) where
`elif` branches would have wrong reachability constraints
* Fixes a [bug where](https://github.com/astral-sh/ty/issues/648) code
after infinite loops would not be considered unreachble
* Fixes a panic on the `pywin32` ecosystem project, which we should be
able to move to `good.txt` once this has been merged.
* Removes some false positives in unreachable code because we infer
`Never` more often, due to the fact that reachability constraints now
apply retroactively to *all* active bindings, not just to bindings
inside a branch.
* As one example, this removes the `division-by-zero` diagnostic from
https://github.com/astral-sh/ty/issues/443 because we now infer `Never`
for the divisor.
* Supersedes and includes similar test changes as
https://github.com/astral-sh/ruff/pull/18392
closes https://github.com/astral-sh/ty/issues/365
closes https://github.com/astral-sh/ty/issues/624
closes https://github.com/astral-sh/ty/issues/642
closes https://github.com/astral-sh/ty/issues/648
## Benchmarks
Benchmarks on black, pandas, and sympy showed that this is neither a
performance improvement, nor a regression.
## Test Plan
Regression tests for:
- [x] https://github.com/astral-sh/ty/issues/365
- [x] https://github.com/astral-sh/ty/issues/624
- [x] https://github.com/astral-sh/ty/issues/642
- [x] https://github.com/astral-sh/ty/issues/648
[^1]: I'm afraid this is something that @carljm advocated for since the
beginning, and I'm not sure anymore why we have never seriously tried
this before. So I suggest we do *not* attempt to do a historical deep
dive to find out exactly why this ever became so complicated, and just
enjoy the fact that we eventually arrived here.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>