## Summary
Add very early support for dataclasses. This is mostly to make sure that
we do not emit false positives on dataclass construction, but it also
lies some foundations for future extensions.
This seems like a good initial step to merge to me, as it basically
removes all false positives on dataclass constructor calls. This allows
us to use the ecosystem checks for making sure we don't introduce new
false positives as we continue to work on dataclasses.
## Ecosystem analysis
I re-ran the mypy_primer evaluation of [the `__init__`
PR](https://github.com/astral-sh/ruff/pull/16512) locally with our
current mypy_primer version and project selection. It introduced 1597
new diagnostics. Filtering those by searching for `__init__` and
rejecting those that contain `invalid-argument-type` (those could not
possibly be solved by this PR) leaves 1281 diagnostics. The current
version of this PR removes 1171 diagnostics, which leaves 110
unaccounted for. I extracted the lint + file path for all of these
diagnostics and generated a diff (of diffs), to see which
`__init__`-diagnostics remain. I looked at a subset of these: There are
a lot of `SomeClass(*args)` calls where we don't understand the
unpacking yet (this is not even related to `__init__`). Some others are
related to `NamedTuple`, which we also don't support yet. And then there
are some errors related to `@attrs.define`-decorated classes, which
would probably require support for `dataclass_transform`, which I made
no attempt to include in this PR.
## Test Plan
New Markdown tests.
## Summary
There is a new official URL for the typing documentation:
https://typing.python.org/
Change all https://typing.readthedocs.io/ links to use the new sub
domain, which is slightly shorter and looks more official.
## Test Plan
Tested to see if each and every new URL is accessible. I noticed that
some links go to https://typing.python.org/en/latest/source/stubs.html
which seems to be outdated, but that is a separate issue. The same page
shows up for the old URL.
## Summary
This PR adds support for stub packages, except for partial stub packages
(a stub package is always considered non-partial).
I read the specification at
[typing.python.org/en/latest/spec/distributing.html#stub-only-packages](https://typing.python.org/en/latest/spec/distributing.html#stub-only-packages)
but I found it lacking some details, especially on how to handle
namespace packages or when the regular and stub packages disagree on
whether they're namespace packages. I tried to document my decisions in
the mdtests where the specification isn't clear and compared the
behavior to Pyright.
Mypy seems to only support stub packages in the venv folder. At least,
it never picked up my stub packages otherwise. I decided not to spend
too much time fighting mypyp, which is why I focused the comparison
around Pyright
Closes https://github.com/astral-sh/ruff/issues/16612
## Test plan
Added mdtests
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
I decided to disable the new
[`needless_continue`](https://rust-lang.github.io/rust-clippy/master/index.html#needless_continue)
rule because I often found the explicit `continue` more readable over an
empty block or having to invert the condition of an other branch.
## Test Plan
`cargo test`
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
If a package in `site-packages` had this directory structure:
```py
# bar/__init__.py
from .a import A
# bar/a.py
class A: ...
```
then we would fail to resolve the `from .a import A` import _if_ (as is
usually the case!) the `site-packages` search path was located inside a
`.venv` directory that was a subdirectory of the project's first-party
search path. The reason for this is a bug in `file_to_module` in the
module resolver. In this loop, we would identify that
`/project_root/.venv/lib/python3.13/site-packages/foo/__init__.py` can
be turned into a path relative to the first-party search path
(`/project_root`):
6e2b8f9696/crates/red_knot_python_semantic/src/module_resolver/resolver.rs (L101-L110)
but we'd then try to turn the relative path
(.venv/lib/python3.13/site-packages/foo/__init__.py`) into a module
path, realise that it wasn't a valid module path... and therefore
immediately `break` out of the loop before trying any other search paths
(such as the `site-packages` search path).
This bug was originally reported on Discord by @MatthewMckee4.
## Test Plan
I added a unit test for `file_to_module` in `resolver.rs`, and an
integration test that shows we can now resolve the import correctly in
`infer.rs`.
## Summary
Rewrites the virtual env discovery to:
* Only use of `System` APIs, this ensures that the discovery will also
work when using a memory file system (testing or WASM)
* Don't traverse ancestor directories. We're not convinced that this is
necessary. Let's wait until someone shows us a use case where it is
needed
* Start from the project root and not from the current working
directory. This ensures that Red Knot picks up the right venv even when
using `knot --project ../other-dir`
## Test Plan
Existing tests, @ntBre tested that the `file_watching` tests no longer
pick up his virtual env in a parent directory
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
Fixes#16744
Code from
bbf4f830b5/crates/uv-python/src/virtualenv.rs (L124-L144)
## Test Plan
Manual testing
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This PR adds some branches so that we infer `Todo` types for attribute
access on instances of `super()` and subtypes of `type[Enum]`. It reduces
false positives in the short term until we implement full support for
these features.
## Test Plan
New mdtests added + mypy_primer report
## Summary
Log the origin of the sys path prefix. This should help with debugging
if someone doesn't understand
why Red Knot picks up a certain venv.
## Test Plan
Ran the CLI and tested that it logs the origin
## Summary
Fixes#16744
Allows the cli to find a virtual environment from the VIRTUAL_ENV
environment variable if no `--python` is set
## Test Plan
Manual testing, of:
- Virtual environments explicitly activated using `source .venv/bin/activate`
- Virtual environments implicilty activated via `uv run`
- Broken virtual environments with no `pyvenv.cfg` file
## Summary
Another salsa upgrade.
The main motivation is to stay on a recent salsa version because there
are still a lot of breaking changes happening.
The most significant changes in this update:
* Salsa no longer derives `Debug` by default. It now requires
`interned(debug)` (or similar)
* This version ships the foundation for garbage collecting interned
values. However, this comes at the cost that queries now track which
interned values they created (or read). The micro benchmarks in the
salsa repo showed a significant perf regression. Will see if this also
visible in our benchmarks.
## Test Plan
`cargo test`
## Summary
This PR implements the first part of
https://github.com/astral-sh/ruff/discussions/16440. It ensures that Red
Knot's module resolver is case sensitive on all systems.
This PR combines a few approaches:
1. It uses `canonicalize` on non-case-sensitive systems to get the real
casing of a path. This works for as long as no symlinks or mapped
network drives (the windows `E:\` is mapped to `\\server\share` thingy).
This is the same as what Pyright does
2. If 1. fails, fall back to recursively list the parent directory and
test if the path's file name matches the casing exactly as listed in by
list dir. This is the same approach as CPython takes in its module
resolver. The main downside is that it requires more syscalls because,
unlike CPython, we Red Knot needs to invalidate its caches if a file
name gets renamed (CPython assumes that the folders are immutable).
It's worth noting that the file watching test that I added that renames
`lib.py` to `Lib.py` currently doesn't pass on case-insensitive systems.
Making it pass requires some more involved changes to `Files`. I plan to
work on this next. There's the argument that landing this PR on its own
isn't worth it without this issue being addressed. I think it's still a
good step in the right direction even when some of the details on how
and where the path case sensitive comparison is implemented.
## Test plan
I added multiple integration tests (including a failing one). I tested
that the `case-sensitivity` detection works as expected on Windows,
MacOS and Linux and that the fast-paths are taken accordingly.
## Summary
This PR introduces a new mdtest option `system` that can either be
`in-memory` or `os`
where `in-memory` is the default.
The motivation for supporting `os` is so that we can write OS/system
specific tests
with mdtests. Specifically, I want to write mdtests for the module
resolver,
testing that module resolution is case sensitive.
## Test Plan
I tested that the case-sensitive module resolver test start failing when
setting `system = "os"`
## Summary
This PR achieves the following:
* Add support for checking method calls, and inferring return types from
method calls. For example:
```py
reveal_type("abcde".find("abc")) # revealed: int
reveal_type("foo".encode(encoding="utf-8")) # revealed: bytes
"abcde".find(123) # error: [invalid-argument-type]
class C:
def f(self) -> int:
pass
reveal_type(C.f) # revealed: <function `f`>
reveal_type(C().f) # revealed: <bound method: `f` of `C`>
C.f() # error: [missing-argument]
reveal_type(C().f()) # revealed: int
```
* Implement the descriptor protocol, i.e. properly call the `__get__`
method when a descriptor object is accessed through a class object or an
instance of a class. For example:
```py
from typing import Literal
class Ten:
def __get__(self, instance: object, owner: type | None = None) ->
Literal[10]:
return 10
class C:
ten: Ten = Ten()
reveal_type(C.ten) # revealed: Literal[10]
reveal_type(C().ten) # revealed: Literal[10]
```
* Add support for member lookup on intersection types.
* Support type inference for `inspect.getattr_static(obj, attr)` calls.
This was mostly used as a debugging tool during development, but seems
more generally useful. It can be used to bypass the descriptor protocol.
For the example above:
```py
from inspect import getattr_static
reveal_type(getattr_static(C, "ten")) # revealed: Ten
```
* Add a new `Type::Callable(…)` variant with the following sub-variants:
* `Type::Callable(CallableType::BoundMethod(…))` — represents bound
method objects, e.g. `C().f` above
* `Type::Callable(CallableType::MethodWrapperDunderGet(…))` — represents
`f.__get__` where `f` is a function
* `Type::Callable(WrapperDescriptorDunderGet)` — represents
`FunctionType.__get__`
* Add new known classes:
* `types.MethodType`
* `types.MethodWrapperType`
* `types.WrapperDescriptorType`
* `builtins.range`
## Performance analysis
On this branch, we do more work. We need to do more call checking, since
we now check all method calls. We also need to do ~twice as many member
lookups, because we need to check if a `__get__` attribute exists on
accessed members.
A brief analysis on `tomllib` shows that we now call `Type::call` 1780
times, compared to 612 calls before.
## Limitations
* Data descriptors are not yet supported, i.e. we do not infer correct
types for descriptor attribute accesses in `Store` context and do not
check writes to descriptor attributes. I felt like this was something
that could be split out as a follow-up without risking a major
architectural change.
* We currently distinguish between `Type::member` (with descriptor
protocol) and `Type::static_member` (without descriptor protocol). The
former corresponds to `obj.attr`, the latter corresponds to
`getattr_static(obj, "attr")`. However, to model some details correctly,
we would also need to distinguish between a static member lookup *with*
and *without* instance variables. The lookup without instance variables
corresponds to `find_name_in_mro`
[here](https://docs.python.org/3/howto/descriptor.html#invocation-from-an-instance).
We currently approximate both using `member_static`, which leads to two
open TODOs. Changing this would be a larger refactoring of
`Type::own_instance_member`, so I chose to leave it out of this PR.
## Test Plan
* New `call/methods.md` test suite for method calls
* New tests in `descriptor_protocol.md`
* New `call/getattr_static.md` test suite for `inspect.getattr_static`
* Various updated tests
## Summary
This PR updates the formatter and linter to use the `PythonVersion`
struct from the `ruff_python_ast` crate internally. While this doesn't
remove the need for the `linter::PythonVersion` enum, it does remove the
`formatter::PythonVersion` enum and limits the use in the linter to
deserializing from CLI arguments and config files and moves most of the
remaining methods to the `ast::PythonVersion` struct.
## Test Plan
Existing tests, with some inputs and outputs updated to reflect the new
(de)serialization format. I think these are test-specific and shouldn't
affect any external (de)serialization.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR moves the `PythonVersion` struct from the
`red_knot_python_semantic` crate to the `ruff_python_ast` crate so that
it can be used more easily in the syntax error detection work. Compared
to that [prototype](https://github.com/astral-sh/ruff/pull/16090/) these
changes reduce us from 2 `PythonVersion` structs to 1.
This does not unify any of the `PythonVersion` *enums*, but I hope to
make some progress on that in a follow-up.
## Test Plan
Existing tests, this should not change any external behavior.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Transition to using coarse-grained tracked structs (depends on
https://github.com/salsa-rs/salsa/pull/657). For now, this PR doesn't
add any `#[tracked]` fields, meaning that any changes cause the entire
struct to be invalidated. It also changes `AstNodeRef` to be
compared/hashed by pointer address, instead of performing a deep AST
comparison.
## Test Plan
This yields a 10-15% improvement on my machine (though weirdly some runs
were 5-10% without being flagged as inconsistent by criterion, is there
some non-determinism involved?). It's possible that some of this is
unrelated, I'll try applying the patch to the current salsa version to
make sure.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
- Add feature to specify a custom typeshed from within Markdown-based
tests
- Port "builtins" unit tests from `infer.rs` to Markdown tests, part of
#13696
## Test Plan
- Tests for the custom typeshed feature
- New Markdown tests for deleted Rust unit tests
## Summary
The `Options` struct is intended to capture the user's configuration
options but
`EnvironmentOptions::venv_path` supports both a `SitePackages::Known`
and `SitePackages::Derived`.
Users should only be able to provide `SitePackages::Derived`—they
specify a path to a venv, and Red Knot derives the path to the
site-packages directory. We'll only use the `Known` variant once we
automatically discover the Python installation.
That's why this PR changes `EnvironmentOptions::venv_path` from
`Option<SitePackages>` to `Option<SystemPathBuf>`.
This requires making some changes to the file watcher test, and I
decided to use `extra_paths` over venv path
because our venv validation is annoyingly correct -- making mocking a
venv rather involved.
## Test Plan
`cargo test`
## Summary
This PR adds support for configuring Red Knot in the `tool.knot` section
of the project's
`pyproject.toml` section. Options specified on the CLI precede the
options in the configuration file.
This PR only supports the `environment` and the `src.root` options for
now.
Other options will be added as separate PRs.
There are also a few concerns that I intentionally ignored as part of
this PR:
* Handling of relative paths: We need to anchor paths relative to the
current working directory (CLI), or the project (`pyproject.toml` or
`knot.toml`)
* Tracking the source of a value. Diagnostics would benefit from knowing
from which configuration a value comes so that we can point the user to
the right configuration file (or CLI) if the configuration is invalid.
* Schema generation and there's a lot more; see
https://github.com/astral-sh/ruff/issues/15491
This PR changes the default for first party codes: Our existing default
was to only add the project root. Now, Red Knot adds the project root
and `src` (if such a directory exists).
Theoretically, we'd have to add a file watcher event that changes the
first-party search paths if a user later creates a `src` directory. I
think this is pretty uncommon, which is why I ignored the complexity for
now but I can be persuaded to handle it if it's considered important.
Part of https://github.com/astral-sh/ruff/issues/15491
## Test Plan
Existing tests, new file watching test demonstrating that changing the
python version and platform is correctly reflected.
A small PR to reduce some of the code duplication between the various
branches, make it a little more readable and move the API closer to what
we already have for `KnownClass`
## Summary
Adds a type-check-time Python API that allows us to create and
manipulate types and to test various of their properties. For example,
this can be used to write a Markdown test to make sure that `A & B` is a
subtype of `A` and `B`, but not of an unrelated class `C` (something
that requires quite a bit more code to do in Rust):
```py
from knot_extensions import Intersection, is_subtype_of, static_assert
class A: ...
class B: ...
type AB = Intersection[A, B]
static_assert(is_subtype_of(AB, A))
static_assert(is_subtype_of(AB, B))
class C: ...
static_assert(not is_subtype_of(AB, C))
```
I think this functionality is also helpful for interactive debugging
sessions, in order to query various properties of Red Knot's type
system. Which is something that otherwise requires a custom Rust unit
test, some boilerplate code and constant re-compilation.
## Test Plan
- New Markdown tests
- Tested the modified typeshed_sync workflow locally
## Summary
This changeset adds support for precise type-inference and
boundness-handling of definitions inside control-flow branches with
statically-known conditions, i.e. test-expressions whose truthiness we
can unambiguously infer as *always false* or *always true*.
This branch also includes:
- `sys.platform` support
- statically-known branches handling for Boolean expressions and while
loops
- new `target-version` requirements in some Markdown tests which were
now required due to the understanding of `sys.version_info` branches.
closes#12700closes#15034
## Performance
### `tomllib`, -7%, needs to resolve one additional module (sys)
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./red_knot_main --project /home/shark/tomllib` | 22.2 ± 1.3 | 19.1 |
25.6 | 1.00 |
| `./red_knot_feature --project /home/shark/tomllib` | 23.8 ± 1.6 | 20.8
| 28.6 | 1.07 ± 0.09 |
### `black`, -6%
| Command | Mean [ms] | Min [ms] | Max [ms] | Relative |
|:---|---:|---:|---:|---:|
| `./red_knot_main --project /home/shark/black` | 129.3 ± 5.1 | 119.0 |
137.8 | 1.00 |
| `./red_knot_feature --project /home/shark/black` | 136.5 ± 6.8 | 123.8
| 147.5 | 1.06 ± 0.07 |
## Test Plan
- New Markdown tests for the main feature in
`statically-known-branches.md`
- New Markdown tests for `sys.platform`
- Adapted tests for `EllipsisType`, `Never`, etc
## Summary
Fixes https://github.com/astral-sh/ruff/issues/15027
The `MemoryFileSystem::write_file` API automatically creates
non-existing ancestor directoryes
but we failed to update the status of the now created ancestor
directories in the `Files` data structure.
## Test Plan
Tested that the case in https://github.com/astral-sh/ruff/issues/15027
now passes regardless of whether the *Simple* case is commented out or
not
When importing a nested module, we were correctly creating a binding for
the top-most parent, but we were binding that to the nested module, not
to that parent module. Moreover, we weren't treating those submodules as
members of their containing parents. This PR addresses both issues, so
that nested imports work as expected.
As discussed in ~Slack~ whatever chat app I find myself in these days
😄, this requires keeping track of which modules have been imported
within the current file, so that when we resolve member access on a
module reference, we can see if that member has been imported as a
submodule. If so, we return the submodule reference immediately, instead
of checking whether the parent module's definition defines the symbol.
This is currently done in a flow insensitive manner. The `SemanticIndex`
now tracks all of the modules that are imported (via `import`, not via
`from...import`). The member access logic mentioned above currently only
considers module imports in the file containing the attribute
expression.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR renames the `--custom-typeshed-dir`, `target-version`, and
`--current-directory` cli options to `--typeshed`,
`--python-version`, and `--project` as discussed in the CLI proposal
document.
I added aliases for `--target-version` (for Ruff compat) and
`--custom-typeshed-dir` (for Alex)
## Test Plan
Long help
```
An extremely fast Python type checker.
Usage: red_knot [OPTIONS] [COMMAND]
Commands:
server Start the language server
help Print this message or the help of the given subcommand(s)
Options:
--project <PROJECT>
Run the command within the given project directory.
All `pyproject.toml` files will be discovered by walking up the directory tree from the project root, as will the project's virtual environment (`.venv`).
Other command-line arguments (such as relative paths) will be resolved relative to the current working directory."#,
--venv-path <PATH>
Path to the virtual environment the project uses.
If provided, red-knot will use the `site-packages` directory of this virtual environment to resolve type information for the project's third-party dependencies.
--typeshed-path <PATH>
Custom directory to use for stdlib typeshed stubs
--extra-search-path <PATH>
Additional path to use as a module-resolution source (can be passed multiple times)
--python-version <VERSION>
Python version to assume when resolving types
[possible values: 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13]
-v, --verbose...
Use verbose output (or `-vv` and `-vvv` for more verbose output)
-W, --watch
Run in watch mode by re-running whenever files change
-h, --help
Print help (see a summary with '-h')
-V, --version
Print version
```
Short help
```
An extremely fast Python type checker.
Usage: red_knot [OPTIONS] [COMMAND]
Commands:
server Start the language server
help Print this message or the help of the given subcommand(s)
Options:
--project <PROJECT> Run the command within the given project directory
--venv-path <PATH> Path to the virtual environment the project uses
--typeshed-path <PATH> Custom directory to use for stdlib typeshed stubs
--extra-search-path <PATH> Additional path to use as a module-resolution source (can be passed multiple times)
--python-version <VERSION> Python version to assume when resolving types [possible values: 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13]
-v, --verbose... Use verbose output (or `-vv` and `-vvv` for more verbose output)
-W, --watch Run in watch mode by re-running whenever files change
-h, --help Print help (see more with '--help')
-V, --version Print version
```
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
...and remove periods from messages that don't span more than a single
sentence.
This is more consistent with how we present user-facing messages in uv
(which has a defined style guide).
## Summary
This PR changes removes the typeshed stubs from the vendored file system
shipped with ruff
and instead ships an empty "typeshed".
Making the typeshed files optional required extracting the typshed files
into a new `ruff_vendored` crate. I do like this even if all our builds
always include typeshed because it means `red_knot_python_semantic`
contains less code that needs compiling.
This also allows us to use deflate because the compression algorithm
doesn't matter for an archive containing a single, empty file.
## Test Plan
`cargo test`
I verified with ` cargo tree -f "{p} {f}" -p <package> ` that:
* red_knot_wasm: enables `deflate` compression
* red_knot: enables `zstd` compression
* `ruff`: uses stored
I'm not quiet sure how to build the binary that maturin builds but
comparing the release artifact size with `strip = true` shows a `1.5MB`
size reduction
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
## Summary
This PR adds an experimental Ruff subcommand to generate dependency
graphs based on module resolution.
A few highlights:
- You can generate either dependency or dependent graphs via the
`--direction` command-line argument.
- Like Pants, we also provide an option to identify imports from string
literals (`--detect-string-imports`).
- Users can also provide additional dependency data via the
`include-dependencies` key under `[tool.ruff.import-map]`. This map uses
file paths as keys, and lists of strings as values. Those strings can be
file paths or globs.
The dependency resolution uses the red-knot module resolver which is
intended to be fully spec compliant, so it's also a chance to expose the
module resolver in a real-world setting.
The CLI is, e.g., `ruff graph build ../autobot`, which will output a
JSON map from file to files it depends on for the `autobot` project.