## Summary
This PR fixes a bug to raise a syntax error when an unparenthesized
generator expression is used as an argument to a call when there are
more than one argument.
For reference, the grammar is:
```
primary:
| ...
| primary genexp
| primary '(' [arguments] ')'
| ...
genexp:
| '(' ( assignment_expression | expression !':=') for_if_clauses ')'
```
The `genexp` requires the parenthesis as mentioned in the grammar. So,
the grammar for a call expression is either a name followed by a
generator expression or a name followed by a list of argument. In the
former case, the parenthesis are excluded because the generator
expression provides them while in the later case, the parenthesis are
explicitly provided for a list of arguments which means that the
generator expression requires it's own parenthesis.
This was discovered in https://github.com/astral-sh/ruff/issues/12420.
## Test Plan
Add test cases for valid and invalid syntax.
Make sure that the parser from CPython also raises this at the parsing
step:
```console
$ python3.13 -m ast parser/_.py
File "parser/_.py", line 1
total(1, 2, x for x in range(5), 6)
^^^^^^^^^^^^^^^^^^^
SyntaxError: Generator expression must be parenthesized
$ python3.13 -m ast parser/_.py
File "parser/_.py", line 1
sum(x for x in range(10), 10)
^^^^^^^^^^^^^^^^^^^^
SyntaxError: Generator expression must be parenthesized
```
## Summary
This PR updates the linter, specifically the token-based rules, to work
on the tokens that come after a syntax error.
For context, the token-based rules only diagnose the tokens up to the
first lexical error. This PR builds up an error resilience by
introducing a `TokenIterWithContext` which updates the `nesting` level
and tries to reflect it with what the lexer is seeing. This isn't 100%
accurate because if the parser recovered from an unclosed parenthesis in
the middle of the line, the context won't reduce the nesting level until
it sees the newline token at the end of the line.
resolves: #11915
## Test Plan
* Add test cases for a bunch of rules that are affected by this change.
* Run the fuzzer for a long time, making sure to fix any other bugs.
## Summary
This PR splits the re-lexing logic into two parts:
1. `TokenSource`: The token source will be responsible to find the
position the lexer needs to be moved to
2. `Lexer`: The lexer will be responsible to reduce the nesting level
and move itself to the new position if recovered from a parenthesized
context
This split makes it easy to find the new lexer position without needing
to implement the backwards lexing logic again which would need to handle
cases involving:
* Different kinds of newlines
* Line continuation character(s)
* Comments
* Whitespaces
### F-strings
This change did reveal one thing about re-lexing f-strings. Consider the
following example:
```py
f'{'
# ^
f'foo'
```
Here, the quote as highlighted by the caret (`^`) is the start of a
string inside an f-string expression. This is unterminated string which
means the token emitted is actually `Unknown`. The parser tries to
recover from it but there's no newline token in the vector so the new
logic doesn't recover from it. The previous logic does recover because
it's looking at the raw characters instead.
The parser would be at `FStringStart` (the one for the second line) when
it calls into the re-lexing logic to recover from an unterminated
f-string on the first line. So, moving backwards the first character
encountered is a newline character but the first token encountered is an
`Unknown` token.
This is improved with #12067fixes: #12046fixes: #12036
## Test Plan
Update the snapshot and validate the changes.
## Summary
This PR fixes the lexer logic to **not** consume the newline character
for an unterminated string literal.
Currently, the lexer would consume it to be part of the string itself
but that would be bad for recovery because then the lexer wouldn't emit
the newline token ever. This PR fixes that to avoid consuming the
newline character in that case.
This was discovered during https://github.com/astral-sh/ruff/pull/12060.
## Test Plan
Update the snapshots and validate them.
## Summary
This PR fixes a bug introduced in
https://github.com/astral-sh/ruff/pull/12008 which didn't consider the
two character newline after the line continuation character.
For example, consider the following code highlighted with whitespaces:
```py
call(foo # comment \\r\n
\r\n
def bar():\r\n
....pass\r\n
```
The lexer is at `def` when it's running the re-lexing logic and trying
to move back to a newline character. It encounters `\n` and it's being
escaped (incorrect) but `\r` is being escaped, so it moves the lexer to
`\n` character. This creates an overlap in token ranges which causes the
panic.
```
Name 0..4
Lpar 4..5
Name 5..8
Comment 9..20
NonLogicalNewline 20..22 <-- overlap between
Newline 21..22 <-- these two tokens
NonLogicalNewline 22..23
Def 23..26
...
```
fixes: #12028
## Test Plan
Add a test case with line continuation and windows style newline
character.
## Summary
(I'm pretty sure I added this in the parser re-write but must've got
lost in the rebase?)
This PR raises a syntax error if the type parameter list is empty.
As per the grammar, there should be at least one type parameter:
```
type_params:
| invalid_type_params
| '[' type_param_seq ']'
type_param_seq: ','.type_param+ [',']
```
Verified via the builtin `ast` module as well:
```console
$ python3.13 -m ast parser/_.py
Traceback (most recent call last):
[..]
File "parser/_.py", line 1
def foo[]():
^
SyntaxError: Type parameter list cannot be empty
```
## Test Plan
Add inline test cases and update the snapshots.
## Summary
This PR updates the parser test infrastructure to validate the token
ranges.
From the code documentation:
```
/// Verifies that:
/// * the ranges are strictly increasing when loop the tokens in insertion order
/// * all ranges are within the length of the source code
```
Follow-up from #12016 and #12017resolves: #11938
## Test Plan
Make sure that there are no failures.
## Summary
This PR updates the unterminated string error range to not include the
final newline character.
This is a follow-up to #12016 and required for #12019
This is not done for when the unterminated string goes till the end of
file (not a newline character). The unterminated f-string range is
correct.
### Why is this required for #12019 ?
Because otherwise the token ranges will overlap. For example:
```py
f"{"
f"{foo!r"
```
Here, the re-lexing logic recovers from an unterminated f-string and
thus emitting a `Newline` token for the one at the end of the first
line. But, currently the `Unknown` and the `Newline` token would overlap
because the `Unknown` token (unterminated string literal) range would
include the newline character.
## Test Plan
Update and validate the snapshot.
## Summary
This PR fixes the range highlighted for the line continuation error.
Previously, it would highlight an incorrect range:
```
1 | call(a, b, \\\
| ^^ Syntax Error: unexpected character after line continuation character
2 |
3 | def bar():
|
```
And now:
```
|
1 | call(a, b, \\\
| ^ Syntax Error: unexpected character after line continuation character
2 |
3 | def bar():
|
```
This is implemented by avoiding to update the token range for the
`Unknown` token which is emitted when there's a lexical error. Instead,
the `push_error` helper method will be responsible to update the range
to the error location.
This actually becomes a requirement which can be seen in follow-up PRs.
## Test Plan
Update and validate the snapshot.
## Summary
This PR fixes a bug where the re-lexing logic didn't consider the line
continuation character being present before the newline character. This
meant that the lexer was being moved back to the newline character which
is actually ignored via `\`.
Considering the following code:
```py
f'middle {'string':\
'format spec'}
```
The old token stream is:
```
...
Colon 18..19
FStringMiddle 19..29 (flags = F_STRING)
Newline 20..21
Indent 21..29
String 29..42
Rbrace 42..43
...
```
Notice how the ranges are overlapping between the `FStringMiddle` token
and the tokens emitted after moving the lexer backwards.
After this fix, the new token stream which is without moving the lexer
backwards in this scenario:
```
FStringStart 0..2 (flags = F_STRING)
FStringMiddle 2..9 (flags = F_STRING)
Lbrace 9..10
String 10..18
Colon 18..19
FStringMiddle 19..29 (flags = F_STRING)
FStringEnd 29..30 (flags = F_STRING)
Name 30..36
Name 37..41
Unknown 41..44
Newline 44..45
```
fixes: #12004
## Test Plan
Add test cases and update the snapshots.
## Summary
I look at the token stream a lot, not specifically in the playground but
in the terminal output and it's annoying to scroll a lot to find
specific location. Most of the information is also redundant.
The final format we end up with is: `<kind> <range> (flags = ...)` e.g.,
`String 0..4 (flags = BYTE_STRING)` where the flags part is only
populated if there are any flags set.
## Summary
This PR does some housekeeping into moving certain structs into related
modules. Specifically,
1. Move `LexicalError` from `lexer.rs` to `error.rs` which also contains
the `ParseError`
2. Move `Token`, `TokenFlags` and `TokenValue` from `lexer.rs` to
`token.rs`
## Summary
This PR removes the duplication around `is_trivia` functions.
There are two of them in the codebase:
1. In `pycodestyle`, it's for newline, indent, dedent, non-logical
newline and comment
2. In the parser, it's for non-logical newline and comment
The `TokenKind::is_trivia` method used (1) but that's not correct in
that context. So, this PR introduces a new `is_non_logical_token` helper
method for the `pycodestyle` crate and updates the
`TokenKind::is_trivia` implementation with (2).
This also means we can remove `Token::is_trivia` method and the
standalone `token_source::is_trivia` function and use the one on
`TokenKind`.
## Test Plan
`cargo insta test`
## Summary
This PR avoids moving back the lexer for a triple-quoted f-string during
the re-lexing phase.
The reason this is a problem is that for a triple-quoted f-string the
newlines are part of the f-string itself, specifically they'll be part
of the `FStringMiddle` token. So, if we moved the lexer back, there
would be a `Newline` token whose range would be in between an
`FStringMiddle` token. This creates a panic in downstream usage.
fixes: #11937
## Test Plan
Add test cases and validate the snapshots.
## Summary
This PR updates the linter to show all the parse errors as diagnostics
instead of just the first one.
Note that this doesn't affect the parse error displayed as error log
message. This will be removed in a follow-up PR.
### Breaking?
I don't think this is a breaking change even though this might give more
diagnostics. The main reason is that this shouldn't affect any users
because it'll only give additional diagnostics in the case of multiple
syntax errors.
## Test Plan
Add an integration test case which would raise more than one parse
error.
## Summary
This PR updates the re-lexing logic to avoid consuming the trailing
whitespace and move the lexer explicitly to the last newline character
encountered while moving backwards.
Consider the following code snippet as taken from the test case
highlighted with whitespace (`.`) and newline (`\n`) characters:
```py
# There are trailing whitespace before the newline character but those whitespaces are
# part of the comment token
f"""hello {x # comment....\n
# ^
y = 1\n
```
The parser is at `y` when it's trying to recover from an unclosed `{`,
so it calls into the re-lexing logic which tries to move the lexer back
to the end of the previous line. But, as it consumed all whitespaces it
moved the lexer to the location marked by `^` in the above code snippet.
But, those whitespaces are part of the comment token. This means that
the range for the two tokens were overlapping which introduced the
panic.
Note that this is only a bug when there's a comment with a trailing
whitespace otherwise it's fine to move the lexer to the whitespace
character. This is because the lexer would just skip the whitespace
otherwise. Nevertheless, this PR updates the logic to move it explicitly
to the newline character in all cases.
fixes: #11929
## Test Plan
Add test cases and update the snapshot. Make sure that it doesn't panic
on the code snippet in the linked issue.
## Summary
This PR is a follow-up on #11845 to add the re-lexing logic for normal
list parsing.
A normal list parsing is basically parsing elements without any
separator in between i.e., there can only be trivia tokens in between
the two elements. Currently, this is only being used for parsing
**assignment statement** and **f-string elements**. Assignment
statements cannot be in a parenthesized context, but f-string can have
curly braces so this PR is specifically for them.
I don't think this is an ideal recovery but the problem is that both
lexer and parser could add an error for f-strings. If the lexer adds an
error it'll emit an `Unknown` token instead while the parser adds the
error directly. I think we'd need to move all f-string errors to be
emitted by the parser instead. This way the parser can correctly inform
the lexer that it's out of an f-string and then the lexer can pop the
current f-string context out of the stack.
## Test Plan
Add test cases, update the snapshots, and run the fuzzer.
## Summary
This PR implements the re-lexing logic in the parser.
This logic is only applied when recovering from an error during list
parsing. The logic is as follows:
1. During list parsing, if an unexpected token is encountered and it
detects that an outer context can understand it and thus recover from
it, it invokes the re-lexing logic in the lexer
2. This logic first checks if the lexer is in a parenthesized context
and returns if it's not. Thus, the logic is a no-op if the lexer isn't
in a parenthesized context
3. It then reduces the nesting level by 1. It shouldn't reset it to 0
because otherwise the recovery from nested list parsing will be
incorrect
4. Then, it tries to find last newline character going backwards from
the current position of the lexer. This avoids any whitespaces but if it
encounters any character other than newline or whitespace, it aborts.
5. Now, if there's a newline character, then it needs to be re-lexed in
a logical context which means that the lexer needs to emit it as a
`Newline` token instead of `NonLogicalNewline`.
6. If the re-lexing gives a different token than the current one, the
token source needs to update it's token collection to remove all the
tokens which comes after the new current position.
It turns out that the list parsing isn't that happy with the results so
it requires some re-arranging such that the following two errors are
raised correctly:
1. Expected comma
2. Recovery context error
For (1), the following scenarios needs to be considered:
* Missing comma between two elements
* Half parsed element because the grammar doesn't allow it (for example,
named expressions)
For (2), the following scenarios needs to be considered:
1. If the parser is at a comma which means that there's a missing
element otherwise the comma would've been consumed by the first `eat`
call above. And, the parser doesn't take the re-lexing route on a comma
token.
2. If it's the first element and the current token is not a comma which
means that it's an invalid element.
resolves: #11640
## Test Plan
- [x] Update existing test snapshots and validate them
- [x] Add additional test cases specific to the re-lexing logic and
validate the snapshots
- [x] Run the fuzzer on 3000+ valid inputs
- [x] Run the fuzzer on invalid inputs
- [x] Run the parser on various open source projects
- [x] Make sure the ecosystem changes are none
## Summary
This PR adds a new enum to determine the kind of terminator token i.e.,
is it actually terminates the list or is it used for error recovery.
This is important because the parser should take the error recovery
route in case the terminator token is used for better error recovery.
This will then try to re-lex the token if it's the case.
I haven't updated any reference to use this new enum as otherwise it'll
update the snapshots. I plan to do that in a follow-up PR so that it's
easier to reason about.
## Test plan
`cargo insta test`
## Summary
This PR separates the terminator token for f-string elements depending
on the context. A list of f-string element can occur either in a regular
f-string or a format spec of an f-string. The terminator token is
different depending on that context.
## Test Plan
`cargo insta test` and verify the updated snapshots.
## Summary
This PR re-uses the `ruff_python_trivia::is_python_whitespace` in the
lexer instead of defining its own. This was mainly to avoid circular
dependency which was resolved in #11261.
## Summary
This PR updates the parser to remove building the `CommentRanges` and
instead it'll be built by the linter and the formatter when it's
required.
For the linter, it'll be built and owned by the `Indexer` while for the
formatter it'll be built from the `Tokens` struct and passed as an
argument.
## Test Plan
`cargo insta test`
## Summary
This PR updates the return type of `parse_type_annotation` from `Expr`
to `Parsed<ModExpression>`. This is to allow accessing the tokens for
the parsed sub-expression in the follow-up PR.
## Test Plan
`cargo insta test`
## Summary
This PR fixes a bug where the lexer didn't consider the BOM into the
start offset.
fixes: #11731
## Test Plan
Add multiple test cases which involves BOM character in the source for
the lexer and verify the snapshot.
## Summary
This PR updates the lexer checkpoint to store the cursor offset instead
of cloning the cursor itself. This reduces the size of `LexerCheckpoint`
from 136 to 112 bytes and also removes the need for lifetime.
## Test Plan
`cargo insta test`
## Summary
This PR removes the following dependencies from the `ruff_python_parser`
crate:
* `anyhow` (moved to dev dependencies)
* `is-macro`
* `itertools`
The main motivation is that they aren't used much.
Additionally, it updates the return type of `parse_type_annotation` to
use a more specific `ParseError` instead of the generic `anyhow::Error`.
## Test Plan
`cargo insta test`
## Summary
This PR updates the logic for parsing type annotation to accept a
`ExprStringLiteral` node instead of the string value and the range.
The main motivation of this change is to simplify the implementation of
`parse_type_annotation` function with:
* Use the `opener_len` and `closer_len` from the string flags to get the
raw contents range instead of extracting it via
* `str::leading_quote(expression).unwrap().text_len()`
* `str::trailing_quote(expression).unwrap().text_len()`
* Avoid comparing the string content if we already know that it's
implicitly concatenated
## Test Plan
`cargo insta test`
## Summary
This PR re-orders the lexer methods in the following order:
1. `next_token`
2. `lex_token`
3. `eat_indentation`
4. `handle_indentation`
5. `skip_whitespace`
6. `consume_ascii_character`
7. `try_single_char_prefix`
8. `try_double_char_prefix`
9. `lex_identifier`
10. `lex_fstring_start`
11. `lex_fstring_middle_or_end`
12. `lex_string`
13. `lex_number`
14. `lex_number_radix`
15. `lex_decimal_number`
16. `radix_run`
17. `lex_comment`
18. `lex_ipython_escape_command`
19. `consume_end`
Following was considered for the ordering:
* 1 is the main entry point which delegates to 2
* 3, 4, 5 are all related to whitespace which is done first
* 6 is the entrypoint for an ascii character which delegates to 9, 12,
13, 17, 18, 19
* Others are grouped around similar kind of methods
## Summary
This PR updates the entire parser stack in multiple ways:
### Make the lexer lazy
* https://github.com/astral-sh/ruff/pull/11244
* https://github.com/astral-sh/ruff/pull/11473
Previously, Ruff's lexer would act as an iterator. The parser would
collect all the tokens in a vector first and then process the tokens to
create the syntax tree.
The first task in this project is to update the entire parsing flow to
make the lexer lazy. This includes the `Lexer`, `TokenSource`, and
`Parser`. For context, the `TokenSource` is a wrapper around the `Lexer`
to filter out the trivia tokens[^1]. Now, the parser will ask the token
source to get the next token and only then the lexer will continue and
emit the token. This means that the lexer needs to be aware of the
"current" token. When the `next_token` is called, the current token will
be updated with the newly lexed token.
The main motivation to make the lexer lazy is to allow re-lexing a token
in a different context. This is going to be really useful to make the
parser error resilience. For example, currently the emitted tokens
remains the same even if the parser can recover from an unclosed
parenthesis. This is important because the lexer emits a
`NonLogicalNewline` in parenthesized context while a normal `Newline` in
non-parenthesized context. This different kinds of newline is also used
to emit the indentation tokens which is important for the parser as it's
used to determine the start and end of a block.
Additionally, this allows us to implement the following functionalities:
1. Checkpoint - rewind infrastructure: The idea here is to create a
checkpoint and continue lexing. At a later point, this checkpoint can be
used to rewind the lexer back to the provided checkpoint.
2. Remove the `SoftKeywordTransformer` and instead use lookahead or
speculative parsing to determine whether a soft keyword is a keyword or
an identifier
3. Remove the `Tok` enum. The `Tok` enum represents the tokens emitted
by the lexer but it contains owned data which makes it expensive to
clone. The new `TokenKind` enum just represents the type of token which
is very cheap.
This brings up a question as to how will the parser get the owned value
which was stored on `Tok`. This will be solved by introducing a new
`TokenValue` enum which only contains a subset of token kinds which has
the owned value. This is stored on the lexer and is requested by the
parser when it wants to process the data. For example:
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L1260-L1262)
[^1]: Trivia tokens are `NonLogicalNewline` and `Comment`
### Remove `SoftKeywordTransformer`
* https://github.com/astral-sh/ruff/pull/11441
* https://github.com/astral-sh/ruff/pull/11459
* https://github.com/astral-sh/ruff/pull/11442
* https://github.com/astral-sh/ruff/pull/11443
* https://github.com/astral-sh/ruff/pull/11474
For context,
https://github.com/RustPython/RustPython/pull/4519/files#diff-5de40045e78e794aa5ab0b8aacf531aa477daf826d31ca129467703855408220
added support for soft keywords in the parser which uses infinite
lookahead to classify a soft keyword as a keyword or an identifier. This
is a brilliant idea as it basically wraps the existing Lexer and works
on top of it which means that the logic for lexing and re-lexing a soft
keyword remains separate. The change here is to remove
`SoftKeywordTransformer` and let the parser determine this based on
context, lookahead and speculative parsing.
* **Context:** The transformer needs to know the position of the lexer
between it being at a statement position or a simple statement position.
This is because a `match` token starts a compound statement while a
`type` token starts a simple statement. **The parser already knows
this.**
* **Lookahead:** Now that the parser knows the context it can perform
lookahead of up to two tokens to classify the soft keyword. The logic
for this is mentioned in the PR implementing it for `type` and `match
soft keyword.
* **Speculative parsing:** This is where the checkpoint - rewind
infrastructure helps. For `match` soft keyword, there are certain cases
for which we can't classify based on lookahead. The idea here is to
create a checkpoint and keep parsing. Based on whether the parsing was
successful and what tokens are ahead we can classify the remaining
cases. Refer to #11443 for more details.
If the soft keyword is being parsed in an identifier context, it'll be
converted to an identifier and the emitted token will be updated as
well. Refer
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L487-L491).
The `case` soft keyword doesn't require any special handling because
it'll be a keyword only in the context of a match statement.
### Update the parser API
* https://github.com/astral-sh/ruff/pull/11494
* https://github.com/astral-sh/ruff/pull/11505
Now that the lexer is in sync with the parser, and the parser helps to
determine whether a soft keyword is a keyword or an identifier, the
lexer cannot be used on its own. The reason being that it's not
sensitive to the context (which is correct). This means that the parser
API needs to be updated to not allow any access to the lexer.
Previously, there were multiple ways to parse the source code:
1. Passing the source code itself
2. Or, passing the tokens
Now that the lexer and parser are working together, the API
corresponding to (2) cannot exists. The final API is mentioned in this
PR description: https://github.com/astral-sh/ruff/pull/11494.
### Refactor the downstream tools (linter and formatter)
* https://github.com/astral-sh/ruff/pull/11511
* https://github.com/astral-sh/ruff/pull/11515
* https://github.com/astral-sh/ruff/pull/11529
* https://github.com/astral-sh/ruff/pull/11562
* https://github.com/astral-sh/ruff/pull/11592
And, the final set of changes involves updating all references of the
lexer and `Tok` enum. This was done in two-parts:
1. Update all the references in a way that doesn't require any changes
from this PR i.e., it can be done independently
* https://github.com/astral-sh/ruff/pull/11402
* https://github.com/astral-sh/ruff/pull/11406
* https://github.com/astral-sh/ruff/pull/11418
* https://github.com/astral-sh/ruff/pull/11419
* https://github.com/astral-sh/ruff/pull/11420
* https://github.com/astral-sh/ruff/pull/11424
2. Update all the remaining references to use the changes made in this
PR
For (2), there were various strategies used:
1. Introduce a new `Tokens` struct which wraps the token vector and add
methods to query a certain subset of tokens. These includes:
1. `up_to_first_unknown` which replaces the `tokenize` function
2. `in_range` and `after` which replaces the `lex_starts_at` function
where the former returns the tokens within the given range while the
latter returns all the tokens after the given offset
2. Introduce a new `TokenFlags` which is a set of flags to query certain
information from a token. Currently, this information is only limited to
any string type token but can be expanded to include other information
in the future as needed. https://github.com/astral-sh/ruff/pull/11578
3. Move the `CommentRanges` to the parsed output because this
information is common to both the linter and the formatter. This removes
the need for `tokens_and_ranges` function.
## Test Plan
- [x] Update and verify the test snapshots
- [x] Make sure the entire test suite is passing
- [x] Make sure there are no changes in the ecosystem checks
- [x] Run the fuzzer on the parser
- [x] Run this change on dozens of open-source projects
### Running this change on dozens of open-source projects
Refer to the PR description to get the list of open source projects used
for testing.
Now, the following tests were done between `main` and this branch:
1. Compare the output of `--select=E999` (syntax errors)
2. Compare the output of default rule selection
3. Compare the output of `--select=ALL`
**Conclusion: all output were same**
## What's next?
The next step is to introduce re-lexing logic and update the parser to
feed the recovery information to the lexer so that it can emit the
correct token. This moves us one step closer to having error resilience
in the parser and provides Ruff the possibility to lint even if the
source code contains syntax errors.
## Summary
This PR updates the `TokenKind::is_keyword` check to include soft
keywords. To account for this change, it adds a new
`is_non_soft_keyword` method.
The usage in logical line rules were updated to use the
`is_non_soft_keyword` method but it'll be updated to use `is_keyword` in
a follow-up PR (#11446).
While, the parser usages were kept as is. And because of that, the
snapshots for two test cases were updated in a better direction.
## Test Plan
`cargo insta test`
## Summary
This moves the string-prefix enumerations in `ruff_python_ast` to a
separate submodule. I think this helps clarify that these prefixes are
purely abstract: they only depend on each other, and do not depend on
any of the other code in `nodes.rs` in any way. Moreover, while various
AST nodes _use_ them, they're not really nodes themselves, so they feel
slightly out of place in `nodes.rs`.
I considered moving all of them to `str.rs`, but it felt like enough
code that it could be a separate submodule.
## Test Plan
`cargo test`
## Summary
Alternative to #11237
This PR adds a new `Tokens` struct which is a newtype wrapper around a
vector of lexer output. This allows us to add a `kinds` method which
returns an iterator over the corresponding `TokenKind`. This iterator is
implemented as a separate `TokenKindIter` struct to allow using the type
and provide additional methods like `peek` directly on the iterator.
This exposes the linter to access the stream of `TokenKind` instead of
`Tok`.
Edit: I've made the necessary downstream changes and plan to merge the
entire stack at once.
## Summary
This PR adds a newtype wrapper around `Vec<FStringElement>` that derefs
to a `&Vec<FStringElement>`.
Both f-string and format specifier are made up of `Vec<FStringElement>`.
By creating a newtype wrapper around it, we can share the methods for
both parent types.
## Summary
This PR renames `AnyStringKind` to `AnyStringFlags` and `AnyStringFlags`
to `AnyStringFlagsInner`.
The main motivation is to have consistent usage of "kind" and "flags".
For each string kind, it's "flags" like `StringLiteralFlags`,
`BytesLiteralFlags`, and `FStringFlags` but it was `AnyStringKind` for
the "any" variant.
## Summary
This PR adds a basic README for the `ruff_python_parser` crate and
updates the CONTRIBUTING docs with the fuzzer and benchmark section.
Additionally, it also updates some inline documentation within the
parser crate and splits the `parse_program` function into
`parse_single_expression` and `parse_module` which will be called by
matching against the `Mode`.
This PR doesn't go into too much internal detail around the parser logic
due to the following reasons:
1. Where should the docs go? Should it be as a module docs in `lib.rs`
or in README?
2. The parser is still evolving and could include a lot of refactors
with the future work (feedback loop and improved error recovery and
resilience)
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR refactors unary expression parsing with the following changes:
* Ability to get `OperatorPrecedence` from a unary operator (`UnaryOp`)
* Implement methods on `TokenKind`
* Add `as_unary_operator` which returns an `Option<UnaryOp>`
* Add `as_unary_arithmetic_operator` which returns an `Option<UnaryOp>`
(used for pattern parsing)
* Rename `is_unary` to `is_unary_arithmetic_operator` (used in the
linter)
resolves: #10752
## Test Plan
Verify that the existing test cases pass, no ecosystem changes, run the
Python based fuzzer on 3000 random inputs and run it on dozens of
open-source repositories.
## Summary
This PR refactors the binary expression parsing in a way to make it
readable and easy to understand. It draws inspiration from the suggested
edits in the linked messages in #10752.
### Changes
* Ability to get the precedence of an operator
* From a boolean operator (`BinOp`) to `OperatorPrecedence`
* From a binary operator (`Operator`) to `OperatorPrecedence`
* No comparison operator because all of them have the same precedence
* Implement methods on `TokenKind` to convert it to an appropriate
operator enum
* Add `as_boolean_operator` which returns an `Option<BoolOp>`
* Add `as_binary_operator` which returns an `Option<Operator>`
* No `as_comparison_operator` because it requires lookahead and I'm not
sure if `token.as_comparison_operator(peek)` is a good way to implement
it
* Introduce `BinaryLikeOperator`
* Constructed from two tokens using the methods from the second point
* Add `precedence` method using the conversion methods mentioned in the
first point
* Make most of the functions in `TokenKind` private to the module
* Use `self` instead of `&self` for `TokenKind`
fixes: #11072
## Test Plan
Refer #11088
## Summary
This PR does a few things but the main change is that is makes
associativity a property of operator precedence.
1. Rename `Precedence` -> `OperatorPrecedence`
2. Rename `parse_expression_with_precedence` ->
`parse_binary_expression_or_higher`
3. Move `current_binding_power` to `OperatorPrecedence::try_from_tokens`
[^1]
4. Add a `OperatorPrecedence::is_right_associative` method
5. Move from `increment_precedence` to using `<=` / `<` to check if the
parsing loop needs to stop [^2]
[^1]: Another alternative would be to have two separate methods to avoid
lookahead as it's required only for once case (`not in`). So,
`try_from_current_token(current).or_else(|| try_from_next_token(current,
peek))`
[^2]: This will allow us to easily make the refactors mentioned in
#10752
## Test Plan
Make sure the precedence parsing algorithm is still correct by running
the test suite, fuzz testing it and running it against a dozen or so
open-source repositories.
## Summary
This PR adds a new `ExpressionContext` struct which is used in
expression parsing.
This solves the following problem:
1. Allowing starred expression with different precedence
2. Allowing yield expression in certain context
3. Remove ambiguity with `in` keyword when parsing a `for ... in`
statement
For context, (1) was solved by adding `parse_star_expression_list` and
`parse_star_expression_or_higher` in #10623, (2) was solved by by adding
`parse_yield_expression_or_else` in #10809, and (3) was fixed in #11009.
All of the mentioned functions have been removed in favor of the context
flags.
As mentioned in #11009, an ideal solution would be to implement an
expression context which is what this PR implements. This is passed
around as function parameter and the call stack is used to automatically
reset the context.
### Recovery
How should the parser recover if the target expression is invalid when
an expression can consume the `in` keyword?
1. Should the `in` keyword be part of the target expression?
2. Or, should the expression parsing stop as soon as `in` keyword is
encountered, no matter the expression?
For example:
```python
for yield x in y: ...
# Here, should this be parsed as
for (yield x) in (y): ...
# Or
for (yield x in y): ...
# where the `in iter` part is missing
```
Or, for binary expression parsing:
```python
for x or y in z: ...
# Should this be parsed as
for (x or y) in z: ...
# Or
for (x or y in z): ...
# where the `in iter` part is missing
```
This need not be solved now, but is very easy to change. For context
this PR does the following:
* For binary, comparison, and unary expressions, stop at `in`
* For lambda, yield expressions, consume the `in`
## Test Plan
1. Add test cases for the `for ... in` statement and verify the
snapshots
2. Make sure the existing test suite pass
3. Run the fuzzer for around 3000 generated source code
4. Run the updated logic on a dozen or so open source repositories
(codename "parser-checkouts")
## Summary
I happened to notice that we box `TypeParams` on `StmtClassDef` but not
on `StmtFunctionDef` and wondered why, since `StmtFunctionDef` is bigger
and sets the size of `Stmt`.
@charliermarsh found that at the time we started boxing type params on
classes, classes were the largest statement type (see #6275), but that's
no longer true.
So boxing type-params also on functions reduces the overall size of
`Stmt`.
## Test Plan
The `<=` size tests are a bit irritating (since their failure doesn't
tell you the actual size), but I manually confirmed that the size is
actually 120 now.
## Summary
This fixes a bug where the parser would panic when there is a "gap" in
the token source.
What's a gap?
The reason it's `<=` instead of just `==` is because there could be
whitespaces between
the two tokens. For example:
```python
# last token end
# | current token (newline) start
# v v
def foo \n
# ^
# assume there's trailing whitespace here
```
Or, there could tokens that are considered "trivia" and thus aren't
emitted by the token
source. These are comments and non-logical newlines. For example:
```python
# last token end
# v
def foo # comment\n
# ^ current token (newline) start
```
In either of the above cases, there's a "gap" between the end of the
last token and start
of the current token.
## Test Plan
Add test cases and update the snapshots.
## Summary
This PR adds a new `Clause::Case` and uses it to parse the body of a
`case` block. Earlier, it was using `Match` which would give an
incorrect error message like:
```
|
1 | match subject:
2 | case 1:
3 | case 2: ...
| ^^^^ Syntax Error: Expected an indented block after `match` statement
|
```
## Test Plan
Add test case and update the snapshot.
## Summary
This PR fixes the bug in with items parsing where it would fail to
recognize that the parenthesized expression is part of a large binary
expression.
## Test Plan
Add test cases and verified the snapshots.
## Summary
This PR fixes the bug in parenthesized with items parsing where the `if`
expression would result into a syntax error.
The reason being that once we identify that the ambiguous left
parenthesis belongs to the context expression, the parser converts the
parsed with item into an equivalent expression. Then, the parser
continuous to parse any postfix expressions. Now, attribute, subscript,
and call are taken into account as they're grouped in
`parse_postfix_expression` but `if` expression has it's own parsing
function.
Use `parse_if_expression` once all postfix expressions have been parsed.
Ideally, I think that `if` could be included in postfix expression
parsing as they can be chained as well (`x if True else y if True else
z`).
## Test Plan
Add test cases and verified the snapshots.
## Summary
This PR fixes a bug in the new parser which involves the parser context
w.r.t. for statement. This is specifically around the `in` keyword which
can be present in the target expression and shouldn't be considered to
be part of the `for` statement header. Ideally it should use a context
which is passed between functions, thus using a call stack to set /
unset a specific variant which will be done in a follow-up PR as it
requires some amount of refactor.
## Test Plan
Add test cases and update the snapshots.
(Supersedes #9152, authored by @LaBatata101)
## Summary
This PR replaces the current parser generated from LALRPOP to a
hand-written recursive descent parser.
It also updates the grammar for [PEP
646](https://peps.python.org/pep-0646/) so that the parser outputs the
correct AST. For example, in `data[*x]`, the index expression is now a
tuple with a single starred expression instead of just a starred
expression.
Beyond the performance improvements, the parser is also error resilient
and can provide better error messages. The behavior as seen by any
downstream tools isn't changed. That is, the linter and formatter can
still assume that the parser will _stop_ at the first syntax error. This
will be updated in the following months.
For more details about the change here, refer to the PR corresponding to
the individual commits and the release blog post.
## Test Plan
Write _lots_ and _lots_ of tests for both valid and invalid syntax and
verify the output.
## Acknowledgements
- @MichaReiser for reviewing 100+ parser PRs and continuously providing
guidance throughout the project
- @LaBatata101 for initiating the transition to a hand-written parser in
#9152
- @addisoncrump for implementing the fuzzer which helped
[catch](https://github.com/astral-sh/ruff/pull/10903)
[a](https://github.com/astral-sh/ruff/pull/10910)
[lot](https://github.com/astral-sh/ruff/pull/10966)
[of](https://github.com/astral-sh/ruff/pull/10896)
[bugs](https://github.com/astral-sh/ruff/pull/10877)
---------
Co-authored-by: Victor Hugo Gomes <labatata101@linuxmail.org>
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
I used `codespell` and `gramma` to identify mispellings and grammar
errors throughout the codebase and fixed them. I tried not to make any
controversial changes, but feel free to revert as you see fit.
## Summary
Fix#10282
This PR updates the Python grammar to include the `*` character in
`*args` `**kwargs` in the range of the `Parameter`
```
def f(*args, **kwargs): pass
# ~~~~ ~~~~~~ <-- range before the PR
# ^^^^^ ^^^^^^^^ <-- range after
```
The invalid syntax `def f(*, **kwargs): ...` is also now correctly
reported.
## Test Plan
Test cases were added to `function.rs`.
This PR modifies our AST so that nodes for string literals, bytes literals and f-strings all retain the following information:
- The quoting style used (double or single quotes)
- Whether the string is triple-quoted or not
- Whether the string is raw or not
This PR is a followup to #10256. Like with that PR, this PR does not, in itself, fix any bugs. However, it means that we will have the necessary information to preserve quoting style and rawness of strings in the `ExprGenerator` in a followup PR, which will allow us to provide a fix for https://github.com/astral-sh/ruff/issues/7799.
The information is recorded on the AST nodes using a bitflag field on each node, similarly to how we recorded the information on `Tok::String`, `Tok::FStringStart` and `Tok::FStringMiddle` tokens in #10298. Rather than reusing the bitflag I used for the tokens, however, I decided to create a custom bitflag for each AST node.
Using different bitflags for each node allows us to make invalid states unrepresentable: it is valid to set a `u` prefix on a string literal, but not on a bytes literal or an f-string. It also allows us to have better debug representations for each AST node modified in this PR.
The expression types in our AST are called `ExprYield`, `ExprAwait`,
`ExprStringLiteral` etc, except `ExprNamedExpr`, `ExprIfExpr` and
`ExprGenratorExpr`. This seems to align with [Python AST's
naming](https://docs.python.org/3/library/ast.html) but feels
inconsistent and excessive.
This PR removes the `Expr` postfix from `ExprNamedExpr`, `ExprIfExpr`,
and `ExprGeneratorExpr`.
## Summary
This PR fixes the `DebugText` implementation to use the expression range
instead of the parenthesized range.
Taking the following code snippet as an example:
```python
x = 1
print(f"{ ( x ) = }")
```
The output of running it would be:
```
( x ) = 1
```
Notice that the whitespace between the parentheses and the expression is
preserved as is.
Currently, we don't preserve this information in the AST which defeats
the purpose of `DebugText` as the main purpose of the struct is to
preserve whitespaces _around_ the expression.
This is also problematic when generating the code from the AST node as
then the generator has no information about the parentheses the
whitespaces between them and the expression which would lead to the
removal of the parentheses in the generated code.
I noticed this while working on the f-string formatting where the debug
text would be used to preserve the text surrounding the expression in
the presence of debug expression. The parentheses were being dropped
then which made me realize that the problem is instead in the parser.
## Test Plan
1. Add a test case for the parser
2. Add a test case for the generator
## Summary
This PR reduces the size of `Expr` from 80 to 64 bytes, by reducing the
sizes of...
- `ExprCall` from 72 to 56 bytes, by using boxed slices for `Arguments`.
- `ExprCompare` from 64 to 48 bytes, by using boxed slices for its
various vectors.
In testing, the parser gets a bit faster, and the linter benchmarks
improve quite a bit.
## Summary
Given:
```python
F"{"ڤ
```
We try to locate the "unclosed left brace" error by subtracting the
quote size from the lexer offset -- so we subtract 1 from the end of the
source, which puts us in the middle of a Unicode character. I don't
think we should try to adjust the offset in this way, since there can be
content _after_ the quote. For example, with the advent of PEP 701, this
string could reasonably be fixed as:
```python
F"{"ڤ"}"
````
Closes https://github.com/astral-sh/ruff/issues/9379.
## Summary
This PR modifies our `Cargo.toml` files to use workspace dependencies
for _all_ dependencies, rather than the status quo of sporadically
trying to use workspace dependencies for those dependencies that are
used across multiple crates. I find the current situation more confusing
and harder to manage, since we have a mix of workspace and crate-local
dependencies, whereas this setup consistently uses the same approach for
all dependencies.
## Summary
I always found it odd that we had to pass this in, since it's really
higher-level context for the error. The awkwardness is further evidenced
by the fact that we pass in fake values everywhere (even outside of
tests). The source path isn't actually used to display the error; it's
only accessed elsewhere to _re-display_ the error in certain cases. This
PR modifies to instead pass the path directly in those cases.
## Summary
This helps a bit with (but does not close) the issues described in
https://github.com/astral-sh/ruff/issues/9311. E.g., now, we at least
see: `error: Failed to format main.py: source contains syntax errors:
invalid syntax. Got unexpected token '=' at byte offset 20`.
## Summary
This PR adds some helper structs to the linter paths to enable passing
in the pre-computed tokens and parsed source code during benchmarking,
to remove lexing and parsing from the overall linter benchmark
measurement. We already remove parsing for the formatter, and we have
separate benchmarks for the lexer and the parser, so this should make it
much easier to measure linter performance changes.
This sets `lto = "thin"` instead of using "fat" LTO, and sets
`codegen-units = 16`. These are the defaults for Cargo's `release`
profile, and I think it may give us faster iteration times, especially
when benchmarking. The point of this PR is to see what kind of impact
this has on benchmarks. It is expected that benchmarks may regress to
some extent.
I did some quick ad hoc experiments to quantify this change in compile
times. Namely, I ran:
cargo build --profile release -p ruff_cli
Then I ran
touch crates/ruff_python_formatter/src/expression/string/docstring.rs
(because that's where i've been working lately) and re-ran
cargo build --profile release -p ruff_cli
This last command is what I timed, since it reflects how much time one
has to wait between making a change and getting a compiled artifact.
Here are my results:
* With status quo `release` profile, build takes 77s
* with `release` but `lto = "thin"`, build takes 41s
* with `release`, but `lto = false`, build takes 19s
* with `release`, but `lto = false` **and** `codegen-units = 16`, build
takes 7s
* with `release`, but `lto = "thin"` **and** `codegen-units = 16`, build
takes 16s (i believe this is the default `release` configuration)
This PR represents the last option. It's not the fastest to compile, but
it's nearly a whole minute faster! The idea is that with `codegen-units
= 16`, we still make use of parallelism, but keep _some_ level of LTO on
to try and re-gain what we lose by increasing the number of codegen
units.
Rebase of #6365 authored by @davidszotten.
## Summary
This PR updates the AST structure for an f-string elements.
The main **motivation** behind this change is to have a dedicated node
for the string part of an f-string. Previously, the existing
`ExprStringLiteral` node was used for this purpose which isn't exactly
correct. The `ExprStringLiteral` node should include the quotes as well
in the range but the f-string literal element doesn't include the quote
as it's a specific part within an f-string. For example,
```python
f"foo {x}"
# ^^^^
# This is the literal part of an f-string
```
The introduction of `FStringElement` enum is helpful which represent
either the literal part or the expression part of an f-string.
### Rule Updates
This means that there'll be two nodes representing a string depending on
the context. One for a normal string literal while the other is a string
literal within an f-string. The AST checker is updated to accommodate
this change. The rules which work on string literal are updated to check
on the literal part of f-string as well.
#### Notes
1. The `Expr::is_literal_expr` method would check for
`ExprStringLiteral` and return true if so. But now that we don't
represent the literal part of an f-string using that node, this improves
the method's behavior and confines to the actual expression. We do have
the `FStringElement::is_literal` method.
2. We avoid checking if we're in a f-string context before adding to
`string_type_definitions` because the f-string literal is now a
dedicated node and not part of `Expr`.
3. Annotations cannot use f-string so we avoid changing any rules which
work on annotation and checks for `ExprStringLiteral`.
## Test Plan
- All references of `Expr::StringLiteral` were checked to see if any of
the rules require updating to account for the f-string literal element
node.
- New test cases are added for rules which check against the literal
part of an f-string.
- Check the ecosystem results and ensure it remains unchanged.
## Performance
There's a performance penalty in the parser. The reason for this remains
unknown as it seems that the generated assembly code is now different
for the `__reduce154` function. The reduce function body is just popping
the `ParenthesizedExpr` on top of the stack and pushing it with the new
location.
- The size of `FStringElement` enum is the same as `Expr` which is what
it replaces in `FString::format_spec`
- The size of `FStringExpressionElement` is the same as
`ExprFormattedValue` which is what it replaces
I tried reducing the `Expr` enum from 80 bytes to 72 bytes but it hardly
resulted in any performance gain. The difference can be seen here:
- Original profile: https://share.firefox.dev/3Taa7ES
- Profile after boxing some node fields:
https://share.firefox.dev/3GsNXpD
### Backtracking
I tried backtracking the changes to see if any of the isolated change
produced this regression. The problem here is that the overall change is
so small that there's only a single checkpoint where I can backtrack and
that checkpoint results in the same regression. This checkpoint is to
revert using `Expr` to the `FString::format_spec` field. After this
point, the change would revert back to the original implementation.
## Review process
The review process is similar to #7927. The first set of commits update
the node structure, parser, and related AST files. Then, further commits
update the linter and formatter part to account for the AST change.
---------
Co-authored-by: David Szotten <davidszotten@gmail.com>
<!--
Thank you for contributing to Ruff! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title?
- Does this pull request include references to any relevant issues?
-->
## Summary
Our `SoftKeywordTokenizer` only respected soft keywords in compound
statement positions -- for example, at the start of a logical line:
```python
type X = int
```
However, type aliases can also appear in simple statement positions,
like:
```python
class Class: type X = int
```
(Note that `match` and `case` are _not_ valid keywords in such
positions.)
This PR upgrades the tokenizer to track both kinds of valid positions.
Closes https://github.com/astral-sh/ruff/issues/8900.
Closes https://github.com/astral-sh/ruff/issues/8899.
## Test Plan
`cargo test`
## Summary
Given `with (a := b): pass`, we truncate the `WithItem` range by one on
both sides such that the parentheses are part of the statement, rather
than the item. However, for `with (a := b) as x: pass`, we want to avoid
this trick.
Closes https://github.com/astral-sh/ruff/issues/8913.
## Summary
This PR fixes the bug in the lexer where the `Mode::Ipython` wasn't
being considered when initializing the soft keyword transformer which
wraps the lexer. This means that if the source code starts with either
`match` or `type` keyword, then the keywords were being considered as
name tokens instead. For example,
```python
match foo:
case bar:
pass
```
This would transform the `match` keyword into an identifier if the mode
is `Ipython`.
The fix is to reverse the condition in the soft keyword initializer so
that any new modes are by default considered as the lexer being at start
of line.
## Test Plan
Add a new test case for `Mode::Ipython` and verify the snapshot.
fixes: #8870
This PR removes several uses of `unsafe`. I generally limited myself to
low hanging fruit that I could see. There are still a few remaining uses
of `unsafe` that looked a bit more difficult to remove (if possible at
all). But this gets rid of a good chunk of them.
I put each `unsafe` removal into its own commit with a justification for
why I did it. So I would encourage reviewing this PR commit-by-commit.
That way, we can legislate them independently. It's no problem to drop a
commit if we feel the `unsafe` should stay in that case.
## Summary
This PR updates the string nodes (`ExprStringLiteral`,
`ExprBytesLiteral`, and `ExprFString`) to account for implicit string
concatenation.
### Motivation
In Python, implicit string concatenation are joined while parsing
because the interpreter doesn't require the information for each part.
While that's feasible for an interpreter, it falls short for a static
analysis tool where having such information is more useful. Currently,
various parts of the code uses the lexer to get the individual string
parts.
One of the main challenge this solves is that of string formatting.
Currently, the formatter relies on the lexer to get the individual
string parts, and formats them including the comments accordingly. But,
with PEP 701, f-string can also contain comments. Without this change,
it becomes very difficult to add support for f-string formatting.
### Implementation
The initial proposal was made in this discussion:
https://github.com/astral-sh/ruff/discussions/6183#discussioncomment-6591993.
There were various AST designs which were explored for this task which
are available in the linked internal document[^1].
The selected variant was the one where the nodes were kept as it is
except that the `implicit_concatenated` field was removed and instead a
new struct was added to the `Expr*` struct. This would be a private
struct would contain the actual implementation of how the AST is
designed for both single and implicitly concatenated strings.
This implementation is achieved through an enum with two variants:
`Single` and `Concatenated` to avoid allocating a vector even for single
strings. There are various public methods available on the value struct
to query certain information regarding the node.
The nodes are structured in the following way:
```
ExprStringLiteral - "foo" "bar"
|- StringLiteral - "foo"
|- StringLiteral - "bar"
ExprBytesLiteral - b"foo" b"bar"
|- BytesLiteral - b"foo"
|- BytesLiteral - b"bar"
ExprFString - "foo" f"bar {x}"
|- FStringPart::Literal - "foo"
|- FStringPart::FString - f"bar {x}"
|- StringLiteral - "bar "
|- FormattedValue - "x"
```
[^1]: Internal document:
https://www.notion.so/astral-sh/Implicit-String-Concatenation-e036345dc48943f89e416c087bf6f6d9?pvs=4
#### Visitor
The way the nodes are structured is that the entire string, including
all the parts that are implicitly concatenation, is a single node
containing individual nodes for the parts. The previous section has a
representation of that tree for all the string nodes. This means that
new visitor methods are added to visit the individual parts of string,
bytes, and f-strings for `Visitor`, `PreorderVisitor`, and
`Transformer`.
## Test Plan
- `cargo insta test --workspace --all-features --unreferenced reject`
- Verify that the ecosystem results are unchanged
Update to [Rust
1.74](https://blog.rust-lang.org/2023/11/16/Rust-1.74.0.html) and use
the new clippy lints table.
The update itself introduced a new clippy lint about superfluous hashes
in raw strings, which got removed.
I moved our lint config from `rustflags` to the newly stabilized
[workspace.lints](https://doc.rust-lang.org/stable/cargo/reference/workspaces.html#the-lints-table).
One consequence is that we have to `unsafe_code = "warn"` instead of
"forbid" because the latter now actually bans unsafe code:
```
error[E0453]: allow(unsafe_code) incompatible with previous forbid
--> crates/ruff_source_file/src/newlines.rs:62:17
|
62 | #[allow(unsafe_code)]
| ^^^^^^^^^^^ overruled by previous forbid
|
= note: `forbid` lint level was set on command line
```
---------
Co-authored-by: Charlie Marsh <charlie.r.marsh@gmail.com>
## Summary
This commit adds some additional error checking to the parser such that
assignments that are invalid syntax are rejected. This covers the
obvious cases like `5 = 3` and some not so obvious cases like `x + y =
42`.
This does add an additional recursive call to the parser for the cases
handling assignments. I had initially been concerned about doing this,
but `set_context` is already doing recursion during assignments, so I
didn't feel as though this was changing any fundamental performance
characteristics of the parser. (Also, in practice, I would expect any
such recursion here to be quite shallow since the recursion is done on
the target of an assignment. Such things are rarely nested much in
practice.)
Fixes#6895
## Test Plan
I've added unit tests covering every case that is detected as invalid on
an `Expr`.
## Summary
This PR splits the `Constant` enum as individual literal nodes. It
introduces the following new nodes for each variant:
* `ExprStringLiteral`
* `ExprBytesLiteral`
* `ExprNumberLiteral`
* `ExprBooleanLiteral`
* `ExprNoneLiteral`
* `ExprEllipsisLiteral`
The main motivation behind this refactor is to introduce the new AST
node for implicit string concatenation in the coming PR. The elements of
that node will be either a string literal, bytes literal or a f-string
which can be implemented using an enum. This means that a string or
bytes literal cannot be represented by `Constant::Str` /
`Constant::Bytes` which creates an inconsistency.
This PR avoids that inconsistency by splitting the constant nodes into
it's own literal nodes, literal being the more appropriate naming
convention from a static analysis tool perspective.
This also makes working with literals in the linter and formatter much
more ergonomic like, for example, if one would want to check if this is
a string literal, it can be done easily using
`Expr::is_string_literal_expr` or matching against `Expr::StringLiteral`
as oppose to matching against the `ExprConstant` and enum `Constant`. A
few AST helper methods can be simplified as well which will be done in a
follow-up PR.
This introduces a new `Expr::is_literal_expr` method which is the same
as `Expr::is_constant_expr`. There are also intermediary changes related
to implicit string concatenation which are quiet less. This is done so
as to avoid having a huge PR which this already is.
## Test Plan
1. Verify and update all of the existing snapshots (parser, visitor)
2. Verify that the ecosystem check output remains **unchanged** for both
the linter and formatter
### Formatter ecosystem check
#### `main`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
#### `dhruv/constant-to-literal`
| project | similarity index | total files | changed files |
|----------------|------------------:|------------------:|------------------:|
| cpython | 0.75803 | 1799 | 1647 |
| django | 0.99983 | 2772 | 34 |
| home-assistant | 0.99953 | 10596 | 186 |
| poetry | 0.99891 | 317 | 17 |
| transformers | 0.99966 | 2657 | 330 |
| twine | 1.00000 | 33 | 0 |
| typeshed | 0.99978 | 3669 | 20 |
| warehouse | 0.99977 | 654 | 13 |
| zulip | 0.99970 | 1459 | 22 |
## Summary
This PR adds a new `Singleton` enum for the `PatternMatchSingleton`
node.
Earlier the node was using the `Constant` enum but the value for this
pattern can only be either `None`, `True` or `False`. With the coming PR
to remove the `Constant`, this node required a new type to fill in.
This also has the benefit of narrowing the type down to only the
possible values for the node as evident by the removal of `unreachable`.
## Test Plan
Update the AST snapshots and run `cargo test`.
## Summary
This makes use of memchr and other methods to parse the strings
(hopefully) faster. It might also be worth converting the
`parse_fstring_middle` helper to use similar techniques, but I did not
implement it in this PR.
## Test Plan
This was tested using the existing tests and passed all of them.
## Summary
This was just a bug in the parser ranges, probably since it was
initially implemented. Given `match n % 3, n % 5: ...`, the "subject"
(i.e., the tuple of two binary operators) was using the entire range of
the `match` statement.
Closes https://github.com/astral-sh/ruff/issues/8091.
## Test Plan
`cargo test`
## Summary
This PR fixes a bug to disallow f-strings in match pattern literal.
```
literal_pattern ::= signed_number
| signed_number "+" NUMBER
| signed_number "-" NUMBER
| strings
| "None"
| "True"
| "False"
| signed_number: NUMBER | "-" NUMBER
```
Source:
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-python-grammar-literal_pattern
Also,
```console
$ python /tmp/t.py
File "/tmp/t.py", line 4
case "hello " f"{name}":
^^^^^^^^^^^^^^^^^^
SyntaxError: patterns may only match literals and attribute lookups
```
## Test Plan
Update existing test case and accordingly the snapshots. Also, add a new
test case to verify that the parser does raise an error.
## Summary
This PR updates the parser definition to use the precise location when reporting
an invalid f-string conversion flag error.
Taking the following example code:
```python
f"{foo!x}"
```
On earlier version,
```
Error: f-string: invalid conversion character at byte offset 6
```
Now,
```
Error: f-string: invalid conversion character at byte offset 7
```
This becomes more useful when there's whitespace between `!` and the flag value
although that is not valid but we can't detect that now.
## Test Plan
As mentioned above.
## Summary
This PR fixes a bug in the lexer for f-string format spec where it would
consider the `{{` (double curly braces) as an escape pattern.
This is not the case as evident by the
[PEP](https://peps.python.org/pep-0701/#how-to-produce-these-new-tokens)
as well but I missed the part:
> [..]
> * **If in “format specifier mode” (see step 3), an opening brace ({)
or a closing brace (}).**
> * If not in “format specifier mode” (see step 3), an opening brace ({)
or a closing brace (}) that is not immediately followed by another
opening/closing brace.
## Test Plan
Add a test case to verify the fix and update the snapshot.
fixes: #7778
## Summary
This PR fixes a bug where if a Windows newline (`\r\n`) character was
escaped, then only the `\r` was consumed and not `\n` leading to an
unterminated string error.
## Test Plan
Add new test cases to check the newline escapes.
fixes: #7632
## Summary
This PR fixes the bug where the value of a string node type includes the
escaped mac/windows newline character.
Note that the token value still includes them, it's only removed when
parsing the string content.
## Test Plan
Add new test cases for the string node type to check that the escapes
aren't being included in the string value.
fixes: #7723
## Summary
When lexing a number like `0x995DC9BBDF1939FA` that exceeds our small
number representation, we were only storing the portion after the base
(in this case, `995DC9BBDF1939FA`). When using that representation in
code generation, this could lead to invalid syntax, since
`995DC9BBDF1939FA)` on its own is not a valid integer.
This PR modifies the code to store the full span, including the radix
prefix.
See:
https://github.com/astral-sh/ruff/issues/7455#issuecomment-1739802958.
## Test Plan
`cargo test`
I got confused and refactored a bit, now the naming should be more
consistent. This is the basis for the range formatting work.
Chages:
* `format_module` -> `format_module_source` (format a string)
* `format_node` -> `format_module_ast` (format a program parsed into an
AST)
* Added `parse_ok_tokens` that takes `Token` instead of `Result<Token>`
* Call the source code `source` consistently
* Added a `tokens_and_ranges` helper
* `python_ast` -> `module` (because that's the type)
## Summary
This is a follow-up to #7469 that attempts to achieve similar gains, but
without introducing malachite. Instead, this PR removes the `BigInt`
type altogether, instead opting for a simple enum that allows us to
store small integers directly and only allocate for values greater than
`i64`:
```rust
/// A Python integer literal. Represents both small (fits in an `i64`) and large integers.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Int(Number);
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum Number {
/// A "small" number that can be represented as an `i64`.
Small(i64),
/// A "large" number that cannot be represented as an `i64`.
Big(Box<str>),
}
impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Number::Small(value) => write!(f, "{value}"),
Number::Big(value) => write!(f, "{value}"),
}
}
}
```
We typically don't care about numbers greater than `isize` -- our only
uses are comparisons against small constants (like `1`, `2`, `3`, etc.),
so there's no real loss of information, except in one or two rules where
we're now a little more conservative (with the worst-case being that we
don't flag, e.g., an `itertools.pairwise` that uses an extremely large
value for the slice start constant). For simplicity, a few diagnostics
now show a dedicated message when they see integers that are out of the
supported range (e.g., `outdated-version-block`).
An additional benefit here is that we get to remove a few dependencies,
especially `num-bigint`.
## Test Plan
`cargo test`
## Summary
This is only used for the `level` field in relative imports (e.g., `from
..foo import bar`). It seems unnecessary to use a wrapper here, so this
PR changes to a `u32` directly.
## Summary
This PR updates the lexer test snapshots to include the range value as
well. This is mainly a mechanical refactor.
### Motivation
The main motivation is so that we can verify that the ranges are valid
and do not overlap.
## Test Plan
`cargo test`
## Summary
This PR updates the remaining lexer test cases to use the snapshots.
This is mainly a mechanical refactor.
## Motivation
The main motivation is so that when we add the token range values to the
test case output, it's easier to update the test cases.
The reason they were not using the snapshots before was because of the usage of
`test_case` macro. The macros is mainly used for different EOL test cases. If we
just generate the snapshots directly, then the snapshot name would be suffixed
with `-1`, `-2`, etc. as the test function is still the same. So, we'll create
the snapshot ourselves with the platform name for the respective EOL
test cases.
## Test Plan
`cargo test`
## Summary
This PR attempts to address a problem in the parser related to the
range's of `WithItem` nodes in certain contexts -- specifically,
`WithItem` nodes in parentheses that do not have an `as` token after
them.
For example,
[here](https://play.ruff.rs/71be2d0b-2a04-4c7e-9082-e72bff152679):
```python
with (a, b):
pass
```
The range of the `WithItem` `a` is set to the range of `(a, b)`, as is
the range of the `WithItem` `b`. In other words, when we have this kind
of sequence, we use the range of the entire parenthesized context,
rather than the ranges of the items themselves.
Note that this also applies to cases
[like](https://play.ruff.rs/c551e8e9-c3db-4b74-8cc6-7c4e3bf3713a):
```python
with (a, b, c as d):
pass
```
You can see the issue in the parser here:
```rust
#[inline]
WithItemsNoAs: Vec<ast::WithItem> = {
<location:@L> <all:OneOrMore<Test<"all">>> <end_location:@R> => {
all.into_iter().map(|context_expr| ast::WithItem { context_expr, optional_vars: None, range: (location..end_location).into() }).collect()
},
}
```
Fixing this issue is... very tricky. The naive approach is to use the
range of the `context_expr` as the range for the `WithItem`, but that
range will be incorrect when the `context_expr` is itself parenthesized.
For example, _that_ solution would fail here, since the range of the
first `WithItem` would be that of `a`, rather than `(a)`:
```python
with ((a), b):
pass
```
The `with` parsing in general is highly precarious due to ambiguities in
the grammar. Changing it in _any_ way seems to lead to an ambiguous
grammar that LALRPOP fails to translate. Consensus seems to be that we
don't really understand _why_ the current grammar works (i.e., _how_ it
avoids these ambiguities as-is).
The solution implemented here is to avoid changing the grammar itself,
and instead change the shape of the nodes returned by various rules in
the grammar. Specifically, everywhere that we return `Expr`, we instead
return `ParenthesizedExpr`, which includes a parenthesized range and the
underlying `Expr` itself. (If an `Expr` isn't parenthesized, the ranges
will be equivalent.) In `WithItemsNoAs`, we can then use the
parenthesized range as the range for the `WithItem`.
## Summary
This PR adds a new helper method on the `Cursor` called `eat_char2`
which is similar to `eat_char` but accepts 2 characters instead of 1. It'll
`bump` the cursor twice if both characters are found on lookahead.
## Test Plan
`cargo test`
## Summary
This PR fixes a bug which sends the lexer into infinite loop for an invalid input.
The code in question is `[1` where the nesting is never finished. This means
that the lexer will keep emitting the `Err` token forever.
## Test Plan
Add a test case which collects all the tokens from the lexer. This just
makes sure that it doesn't go into infinite loop.
## Summary
The motivation here is that this enables us to implement `Ranged` in
crates that don't depend on `ruff_python_ast`.
Largely a mechanical refactor with a lot of regex, Clippy help, and
manual fixups.
## Test Plan
`cargo test`