Commit Graph

774 Commits

Author SHA1 Message Date
Shunsuke Shibayama b6da8547d9 [ty] disallow explicit specialization of type variables themselves 2025-12-12 18:31:33 +09:00
Carl Meyer 0138cd238a
[ty] avoid fixpoint unioning of types containing current-cycle Divergent (#21910)
Partially addresses https://github.com/astral-sh/ty/issues/1732

## Summary

Don't union the previous type in fixpoint iteration if the previous type
contains a `Divergent` from the current cycle and the latest type does
not. The theory here, as outlined by @mtshiba at
https://github.com/astral-sh/ty/issues/1732#issuecomment-3609937420, is
that oscillation can't occur by removing and then reintroducing a
`Divergent` type repeatedly, since `Divergent` types are only introduced
at the start of fixpoint iteration.

## Test Plan

Removes a `Divergent` type from the added mdtest, doesn't otherwise
regress any tests.
2025-12-11 19:52:34 -08:00
Shunsuke Shibayama 5e42926eee
[ty] improve bad specialization results & error messages (#21840)
## Summary

This PR includes the following changes:

* When attempting to specialize a non-generic type (or a type that is
already specialized), the result is `Unknown`. Also, the error message
is improved.
* When an implicit type alias is incorrectly specialized, the result is
`Unknown`. Also, the error message is improved.
* When only some of the type alias bounds and constraints are not
satisfied, not all substitutions are `Unknown`.
* Double specialization is prohibited. e.g. `G[int][int]`

Furthermore, after applying this PR, the fuzzing tests for seeds 1052
and 4419, which panic in main, now pass.
This is because the false recursions on type variables have been
removed.

```python
# name_2[0] => Unknown
class name_1[name_2: name_2[0]]:
    def name_4(name_3: name_2, /):
        if name_3:
            pass

#  (name_5 if unique_name_0 else name_1)[0] => Unknown
def name_4[name_5: (name_5 if unique_name_0 else name_1)[0], **name_1](): ...
```

## Test Plan

New corpus test
mdtest files updated
2025-12-11 19:21:34 -08:00
Jack O'Connor ddb7645e9d
[ty] support `NewType`s of `float` and `complex` (#21886)
Fixes https://github.com/astral-sh/ty/issues/1818.
2025-12-12 00:43:09 +00:00
Douglas Creager c8851ecf70
[ty] Defer all parameter and return type annotations (#21906)
As described in astral-sh/ty#1729, we previously had a salsa cycle when
inferring the signature of many function definitions.

The most obvious case happened when (a) the function was decorated, (b)
it had no PEP-695 type params, and (c) annotations were not always
deferred (e.g. in a stub file). We currently evaluate and apply function
decorators eagerly, as part of `infer_function_definition`. Applying a
decorator requires knowing the signature of the function being
decorated. There were two places where signature construction called
`infer_definition_types` cyclically.

The simpler case was that we were looking up the generic context and
decorator list of the function to determine whether it has an implicit
`self` parameter. Before, we used `infer_definition_types` to determine
that information. But since we're in the middle of signature
construction for the function, we can just thread the information
through directly.

The harder case is that signature construction requires knowing the
inferred parameter and return type annotations. When (b) and (c) hold,
those type annotations are inferred in `infer_function_definition`! (In
theory, we've already finished that by the time we start applying
decorators, but signature construction doesn't know that.)

If annotations are deferred, the params/return annotations are inferred
in `infer_deferred_types`; if there are PEP-695 type params, they're
inferred in `infer_function_type_params`. Both of those are different
salsa queries, and don't induce this cycle.

So the quick fix here is to always defer inference of the function
params/return, so that they are always inferred under a different salsa
query.

A more principled fix would be to apply decorators lazily, just like we
construct signatures lazily. But that is a more invasive fix.

Fixes astral-sh/ty#1729

---------

Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
2025-12-11 15:00:18 -05:00
Carl Meyer 4fdb4e8219
[ty] avoid unions of generic aliases of the same class in fixpoint (#21909)
Partially addresses https://github.com/astral-sh/ty/issues/1732
Fixes https://github.com/astral-sh/ty/issues/1800

## Summary

At each fixpoint iteration, we union the "previous" and "current"
iteration types, to ensure that the type can only widen at each
iteration. This prevents oscillation and ensures convergence.

But some unions triggered by this behavior (in particular, unions of
differently-specialized generic-aliases of the same class) never
simplify, and cause spurious errors. Since we haven't seen examples of
oscillating types involving class-literal or generic-alias types, just
don't union those.

There may be more thorough/principled ways to avoid undesirable unions
in fixpoint iteration, but this narrow change seems like it results in
strict improvement.

## Test Plan

Removes two false positive `unsupported-class-base` in mdtests, and
several in the ecosystem, without causing other regression.
2025-12-11 09:53:43 -08:00
Luca Chiodini 5a9d6a91ea
[ty] Uniformly use "not supported" in diagnostics (#21916) 2025-12-11 15:03:55 +00:00
Charlie Marsh 5c320990f7
[ty] Avoid inferring types for invalid binary expressions in string annotations (#21911)
## Summary

Closes https://github.com/astral-sh/ty/issues/1847.

---------

Co-authored-by: David Peter <mail@david-peter.de>
2025-12-11 09:40:19 +01:00
Ibraheem Ahmed 29bf2cd201
[ty] Support implicit type of `cls` in signatures (#21771)
## Summary

Extends https://github.com/astral-sh/ruff/pull/20517 to support the
implicit type of `cls` in `@classmethod` signatures. Part of
https://github.com/astral-sh/ty/issues/159.
2025-12-10 16:56:20 -05:00
Jack O'Connor 1b44d7e2a7
[ty] add `SyntheticTypedDictType` and implement `normalized` and `is_equivalent_to` (#21784) 2025-12-10 20:36:36 +00:00
Ibraheem Ahmed a2fb2ee06c
[ty] Fix disjointness checks with type-of `@final` classes (#21770)
## Summary

We currently perform a subtyping check, similar to what we were doing
for `@final` instances before
https://github.com/astral-sh/ruff/pull/21167, which is incorrect, e.g.
we currently consider `type[X[Any]]` and `type[X[T]]]` disjoint (where
`X` is `@final`).
2025-12-10 15:15:10 -05:00
Douglas Creager 3e00221a6c
[ty] Fix negation upper bounds in constraint sets (#21897)
This fixes the logic error that @sharkdp
[found](https://github.com/astral-sh/ruff/pull/21871#discussion_r2605755588)
in the constraint set upper bound normalization logic I introduced in
#21871.

I had originally claimed that `(T ≤ α & ~β)` should simplify into `(T ≤
α) ∧ ¬(T ≤ β)`. But that also suggests that `T ≤ ~β` should simplify to
`¬(T ≤ β)` on its own, and that's not correct.

The correct simplification is that `~α` is an "atomic" type, not an
"intersection" for the purposes of our upper bound simplifcation. So `(T
≤ α & ~β)` should simplify to `(T ≤ α) ∧ (T ≤ ~β)`. That is, break apart
the elements of a (proper) intersection, regardless of whether each
element is negated or not.

This PR fixes the logic, adds a test case, and updates the comments to
be hopefully more clear and accurate.
2025-12-10 15:07:50 -05:00
Ibraheem Ahmed 5dc0079e78
[ty] Fix disjointness checks on `@final` class instances (#21769)
## Summary

This was left unfinished in
https://github.com/astral-sh/ruff/pull/21167. This is required to fix
our disjointness checks with type-of a final class, which is currently
broken, and blocking https://github.com/astral-sh/ty/issues/159.
2025-12-10 14:17:22 -05:00
Carl Meyer 951766d1fb
[ty] default-specialize class-literal types in assignment to generic-alias types (#21883)
Fixes https://github.com/astral-sh/ty/issues/1832, fixes
https://github.com/astral-sh/ty/issues/1513

## Summary

A class object `C` (for which we infer an unspecialized `ClassLiteral`
type) should always be assignable to the type `type[C]` (which is
default-specialized, if `C` is generic). We already implemented this for
most cases, but we missed the case of a generic final type, where we
simplify `type[C]` to the `GenericAlias` type for the default
specialization of `C`. So we also need to implement this assignability
of generic `ClassLiteral` types as-if default-specialized.

## Test Plan

Added mdtests that failed before this PR.

---------

Co-authored-by: David Peter <mail@david-peter.de>
2025-12-10 17:18:08 +01:00
David Peter 7bf50e70a7
[ty] Generics: Respect typevar bounds when matching against a union (#21893)
## Summary

Respect typevar bounds and constraints when matching against a union.
For example:

```py
def accepts_t_or_int[T_str: str](x: T_str | int) -> T_str:
    raise NotImplementedError

reveal_type(accepts_t_or_int("a"))  # ok, reveals `Literal["a"]`
reveal_type(accepts_t_or_int(1))  # ok, reveals `Unknown`

class Unrelated: ...

# error: [invalid-argument-type] "Argument type `Unrelated` does not
# satisfy upper bound `str` of type variable `T_str`"
accepts_t_or_int(Unrelated())
```

Previously, the last call succeed without any errors. Worse than that,
we also incorrectly solved `T_str = Unrelated`, which often lead to
downstream errors.

closes https://github.com/astral-sh/ty/issues/1837

## Ecosystem impact

Looks good!

* Lots of removed false positives, often because we previously selected
a wrong overload for a generic function (because we didn't respect the
typevar bound in an earlier overload).
* We now understand calls to functions accepting an argument of type
`GenericPath: TypeAlias = AnyStr | PathLike[AnyStr]`. Previously, we
would incorrectly match a `Path` argument against the `AnyStr` typevar
(violating its constraints), but now we match against `PathLike`.

## Performance

Another regression on `colour`. This package uses `numpy` heavily. And
`numpy` is the codebase that originally lead me to this bug. The fix
here allows us to infer more precise `np.array` types in some cases, so
it's reasonable that we just need to perform more work.

The fix here also requires us to look at more union elements when we
would previously short-circuit incorrectly, so some more work needs to
be done in the solver.

## Test Plan

New Markdown tests
2025-12-10 14:58:57 +01:00
Ibraheem Ahmed ff7086d9ad
[ty] Infer type of implicit `cls` parameter in method bodies (#21685)
## Summary

Extends https://github.com/astral-sh/ruff/pull/20922 to infer
unannotated `cls` parameters as `type[Self]` in method bodies.

Part of https://github.com/astral-sh/ty/issues/159.
2025-12-10 10:31:28 +01:00
Charlie Marsh d2aabeaaa2
[ty] Respect `kw_only` from parent class (#21820)
## Summary

Closes https://github.com/astral-sh/ty/issues/1769.

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
2025-12-10 10:12:18 +01:00
David Peter a9be810c38
[ty] Type inference for `@asynccontextmanager` (#21876)
## Summary

This PR adds special handling for `asynccontextmanager` calls as a
temporary solution for https://github.com/astral-sh/ty/issues/1804. We
will be able to remove this soon once we have support for generic
protocols in the solver.

closes https://github.com/astral-sh/ty/issues/1804

## Ecosystem

```diff
+ tests/test_downloadermiddleware.py:305:56: error[invalid-argument-type] Argument to bound method `download` is incorrect: Expected `Spider`, found `Unknown | Spider | None`
+ tests/test_downloadermiddleware.py:305:56: warning[possibly-missing-attribute] Attribute `spider` may be missing on object of type `Crawler | None`
```
These look like true positives

```diff
+ pymongo/asynchronous/database.py:1021:35: error[invalid-assignment] Object of type `(AsyncClientSession & ~AlwaysTruthy & ~AlwaysFalsy) | (_ServerMode & ~AlwaysFalsy) | Unknown | Primary` is not assignable to `_ServerMode | None`
+ pymongo/asynchronous/database.py:1025:17: error[invalid-argument-type] Argument to bound method `_conn_for_reads` is incorrect: Expected `_ServerMode`, found `_ServerMode | None`
```

Known problems or true positives, just caused by the new type for
`session`

```diff
- src/integrations/prefect-sqlalchemy/prefect_sqlalchemy/database.py:269:16: error[invalid-return-type] Return type does not match returned value: expected `Connection | AsyncConnection`, found `_GeneratorContextManager[Unknown, None, None] | _AsyncGeneratorContextManager[Unknown, None] | Connection | AsyncConnection`
+ src/integrations/prefect-sqlalchemy/prefect_sqlalchemy/database.py:269:16: error[invalid-return-type] Return type does not match returned value: expected `Connection | AsyncConnection`, found `_GeneratorContextManager[Unknown, None, None] | _AsyncGeneratorContextManager[AsyncConnection, None] | Connection | AsyncConnection`
```

Just a more concrete type

```diff
- src/prefect/flow_engine.py:1277:24: error[missing-argument] No argument provided for required parameter `cls`
- src/prefect/server/api/server.py:696:49: error[missing-argument] No argument provided for required parameter `cls`
- src/prefect/task_engine.py:1426:24: error[missing-argument] No argument provided for required parameter `cls`
```

Good

## Test Plan

* Adapted and newly added Markdown tests
* Tested on internal codebase
2025-12-09 22:49:00 +01:00
Carl Meyer 8727a7b179
Fix stack overflow with recursive generic protocols (depth limit) (#21858)
## Summary

This fixes https://github.com/astral-sh/ty/issues/1736 where recursive
generic protocols with growing specializations caused a stack overflow.

The issue occurred with protocols like:
```python
class C[T](Protocol):
    a: 'C[set[T]]'
```

When checking `C[set[int]]` against e.g. `C[Unknown]`, member `a`
requires checking `C[set[set[int]]]`, which requires
`C[set[set[set[int]]]]`, etc. Each level has different type
specializations, so the existing cycle detection (using full types as
cache keys) didn't catch the infinite recursion.

This fix adds a simple recursion depth limit (64) to the CycleDetector.
When the depth exceeds the limit, we return the fallback value (assume
compatible) to safely terminate the recursion.

This is a bit of a blunt hammer, but it should be broadly effective to
prevent stack overflow in any nested-relation case, and it's hard to
imagine that non-recursive nested relation comparisons of depth > 64
exist much in the wild.

## Test Plan

Added mdtest.
2025-12-09 09:05:18 -08:00
David Peter aea2bc2308
[ty] Infer type variables within generic unions (#21862)
## Summary

This PR allows our generics solver to find a solution for `T` in cases
like the following:
```py
def extract_t[T](x: P[T] | Q[T]) -> T:
    raise NotImplementedError

reveal_type(extract_t(P[int]()))  # revealed: int
reveal_type(extract_t(Q[str]()))  # revealed: str
```

closes https://github.com/astral-sh/ty/issues/1772
closes https://github.com/astral-sh/ty/issues/1314

## Ecosystem

The impact here looks very good!

It took me a long time to figure this out, but the new diagnostics on
bokeh are actually true positives. I should have tested with another
type-checker immediately, I guess. All other type checkers also emit
errors on these `__init__` calls. MRE
[here](https://play.ty.dev/5c19d260-65e2-4f70-a75e-1a25780843a2) (no
error on main, diagnostic on this branch)

A lot of false positives on home-assistant go away for calls to
functions like
[`async_listen`](180053fe98/homeassistant/core.py (L1581-L1587))
which take a `event_type: EventType[_DataT] | str` parameter. We can now
solve for `_DataT` here, which was previously falling back to its
default value, and then caused problems because it was used as an
argument to an invariant generic class.

## Test Plan

New Markdown tests
2025-12-09 16:22:59 +01:00
Dhruv Manilawala c35bf8f441
[ty] Fix overload filtering to prefer more "precise" match (#21859)
## Summary

fixes: https://github.com/astral-sh/ty/issues/1809

I took this chance to add some debug level tracing logs for overload
call evaluation similar to Doug's implementation in `constraints.rs`.

## Test Plan

- Add new mdtests
- Tested it against `sqlalchemy.select` in pyx which results in the
correct overload being matched
2025-12-09 20:29:34 +05:30
Charlie Marsh 385dd2770b
[ty] Avoid double-inference on non-tuple argument to `Annotated` (#21837)
## Summary

If you pass a non-tuple to `Annotated`, we end up running inference on
it twice. I _think_ the only case here is `Annotated[]`, where we insert
a (fake) empty `Name` node in the slice.

Closes https://github.com/astral-sh/ty/issues/1801.
2025-12-08 10:24:05 -05:00
David Peter 4686111681
[ty] More SQLAlchemy test updates (#21846)
Minor updates to the SQLAlchemy test suite. I verified all expected
results using pyright.
2025-12-08 15:22:55 +01:00
David Peter c99e10eedc
[ty] Increase SQLAlchemy test coverage (#21843)
## Summary

Increase our SQLAlchemy test coverage to make sure we understand
`Session.scalar`, `Session.scalars`, `Session.execute` (and their async
equivalents), as well as `Result.tuples`, `Result.one_or_none`,
`Row._tuple`.
2025-12-08 14:36:13 +01:00
Dhruv Manilawala a364195335
[ty] Avoid diagnostic when `typing_extensions.ParamSpec` uses `default` parameter (#21839)
## Summary

fixes: https://github.com/astral-sh/ty/issues/1798

## Test Plan

Add mdtest.
2025-12-08 12:34:30 +00:00
David Peter dfd6ed0524
[ty] mdtests with external dependencies (#20904)
## Summary

This PR adds the possibility to write mdtests that specify external
dependencies in a `project` section of TOML blocks. For example, here is
a test that makes sure that we understand Pydantic's dataclass-transform
setup:

````markdown
```toml
[environment]
python-version = "3.12"
python-platform = "linux"

[project]
dependencies = ["pydantic==2.12.2"]
```

```py
from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str

user = User(id=1, name="Alice")
reveal_type(user.id)  # revealed: int
reveal_type(user.name)  # revealed: str

# error: [missing-argument] "No argument provided for required parameter
`name`"
invalid_user = User(id=2)
```
````

## How?

Using the `python-version` and the `dependencies` fields from the
Markdown section, we generate a `pyproject.toml` file, write it to a
temporary directory, and use `uv sync` to install the dependencies into
a virtual environment. We then copy the Python source files from that
venv's `site-packages` folder to a corresponding directory structure in
the in-memory filesystem. Finally, we configure the search paths
accordingly, and run the mdtest as usual.

I fully understand that there are valid concerns here:
* Doesn't this require network access? (yes, it does)
* Is this fast enough? (`uv` caching makes this almost unnoticeable,
actually)
* Is this deterministic? ~~(probably not, package resolution can depend
on the platform you're on)~~ (yes, hopefully)

For this reason, this first version is opt-in, locally. ~~We don't even
run these tests in CI (even though they worked fine in a previous
iteration of this PR).~~ You need to set `MDTEST_EXTERNAL=1`, or use the
new `-e/--enable-external` command line option of the `mdtest.py`
runner. For example:
```bash
# Skip mdtests with external dependencies (default):
uv run crates/ty_python_semantic/mdtest.py

# Run all mdtests, including those with external dependencies:
uv run crates/ty_python_semantic/mdtest.py -e

# Only run the `pydantic` tests. Use `-e` to make sure it is not skipped:
uv run crates/ty_python_semantic/mdtest.py -e pydantic
```

## Why?

I believe that this can be a useful addition to our testing strategy,
which lies somewhere between ecosystem tests and normal mdtests.
Ecosystem tests cover much more code, but they have the disadvantage
that we only see second- or third-order effects via diagnostic diffs. If
we unexpectedly gain or lose type coverage somewhere, we might not even
notice (assuming the gradual guarantee holds, and ecosystem code is
mostly correct). Another disadvantage of ecosystem checks is that they
only test checked-in code that is usually correct. However, we also want
to test what happens on wrong code, like the code that is momentarily
written in an editor, before fixing it. On the other end of the spectrum
we have normal mdtests, which have the disadvantage that they do not
reflect the reality of complex real-world code. We experience this
whenever we're surprised by an ecosystem report on a PR.

That said, these tests should not be seen as a replacement for either of
these things. For example, we should still strive to write detailed
self-contained mdtests for user-reported issues. But we might use this
new layer for regression tests, or simply as a debugging tool. It can
also serve as a tool to document our support for popular third-party
libraries.

## Test Plan

* I've been locally using this for a couple of weeks now.
* `uv run crates/ty_python_semantic/mdtest.py -e`
2025-12-08 11:44:20 +01:00
Dhruv Manilawala ac882f7e63
[ty] Handle various invalid explicit specializations for `ParamSpec` (#21821)
## Summary

fixes: https://github.com/astral-sh/ty/issues/1788

## Test Plan

Add new mdtests.

---------

Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
2025-12-08 05:20:41 +00:00
Alex Waygood 857fd4f683
[ty] Add test case for fixed panic (#21832) 2025-12-07 15:58:11 +00:00
Charlie Marsh 285d6410d3
[ty] Avoid double-analyzing tuple in `Final` subscript (#21828)
## Summary

As-is, a single-element tuple gets destructured via:

```rust
let arguments = if let ast::Expr::Tuple(tuple) = slice {
    &*tuple.elts
} else {
    std::slice::from_ref(slice)
};
```

But then, because it's a single element, we call
`infer_annotation_expression_impl`, passing in the tuple, rather than
the first element.

Closes https://github.com/astral-sh/ty/issues/1793.
Closes https://github.com/astral-sh/ty/issues/1768.

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-07 14:27:14 +00:00
Charlie Marsh ef45c97dab
[ty] Allow `tuple[Any, ...]` to assign to `tuple[int, *tuple[int, ...]]` (#21803)
## Summary

Closes https://github.com/astral-sh/ty/issues/1750.
2025-12-05 19:04:23 +00:00
Shunsuke Shibayama 2f05ffa2c8
[ty] more detailed description of "Size limit on unions of literals" in mdtest (#21804) 2025-12-05 17:34:39 +00:00
Dhruv Manilawala b623189560
[ty] Complete support for `ParamSpec` (#21445)
## Summary

Closes: https://github.com/astral-sh/ty/issues/157

This PR adds support for the following capabilities involving a
`ParamSpec` type variable:
- Representing `P.args` and `P.kwargs` in the type system
- Matching against a callable containing `P` to create a type mapping
- Specializing `P` against the stored parameters

The value of a `ParamSpec` type variable is being represented using
`CallableType` with a `CallableTypeKind::ParamSpecValue` variant. This
`CallableTypeKind` is expanded from the existing `is_function_like`
boolean flag. An `enum` is used as these variants are mutually
exclusive.

For context, an initial iteration made an attempt to expand the
`Specialization` to use `TypeOrParameters` enum that represents that a
type variable can specialize into either a `Type` or `Parameters` but
that increased the complexity of the code as all downstream usages would
need to handle both the variants appropriately. Additionally, we'd have
also need to establish an invariant that a regular type variable always
maps to a `Type` while a paramspec type variable always maps to a
`Parameters`.

I've intentionally left out checking and raising diagnostics when the
`ParamSpec` type variable and it's components are not being used
correctly to avoid scope increase and it can easily be done as a
follow-up. This would also include the scoping rules which I don't think
a regular type variable implements either.

## Test Plan

Add new mdtest cases and update existing test cases.

Ran this branch on pyx, no new diagnostics.

### Ecosystem analysis

There's a case where in an annotated assignment like:
```py
type CustomType[P] = Callable[...]

def value[**P](...): ...

def another[**P](...):
	target: CustomType[P] = value
```
The type of `value` is a callable and it has a paramspec that's bound to
`value`, `CustomType` is a type alias that's a callable and `P` that's
used in it's specialization is bound to `another`. Now, ty infers the
type of `target` same as `value` and does not use the declared type
`CustomType[P]`. [This is the
assignment](0980b9d9ab/src/async_utils/gen_transform.py (L108))
that I'm referring to which then leads to error in downstream usage.
Pyright and mypy does seem to use the declared type.

There are multiple diagnostics in `dd-trace-py` that requires support
for `cls`.

I'm seeing `Divergent` type for an example like which ~~I'm not sure
why, I'll look into it tomorrow~~ is because of a cycle as mentioned in
https://github.com/astral-sh/ty/issues/1729#issuecomment-3612279974:
```py
from typing import Callable

def decorator[**P](c: Callable[P, int]) -> Callable[P, str]: ...

@decorator
def func(a: int) -> int: ...

# ((a: int) -> str) | ((a: Divergent) -> str)
reveal_type(func)
```

I ~~need to look into why are the parameters not being specialized
through multiple decorators in the following code~~ think this is also
because of the cycle mentioned in
https://github.com/astral-sh/ty/issues/1729#issuecomment-3612279974 and
the fact that we don't support `staticmethod` properly:
```py
from contextlib import contextmanager

class Foo:
    @staticmethod
    @contextmanager
    def method(x: int):
        yield

foo = Foo()
# ty: Revealed type: `() -> _GeneratorContextManager[Unknown, None, None]` [revealed-type]
reveal_type(foo.method)
```

There's some issue related to `Protocol` that are generic over a
`ParamSpec` in `starlette` which might be related to
https://github.com/astral-sh/ty/issues/1635 but I'm not sure. Here's a
minimal example to reproduce:

<details><summary>Code snippet:</summary>
<p>

```py
from collections.abc import Awaitable, Callable, MutableMapping
from typing import Any, Callable, ParamSpec, Protocol

P = ParamSpec("P")

Scope = MutableMapping[str, Any]
Message = MutableMapping[str, Any]
Receive = Callable[[], Awaitable[Message]]
Send = Callable[[Message], Awaitable[None]]

ASGIApp = Callable[[Scope, Receive, Send], Awaitable[None]]

_Scope = Any
_Receive = Callable[[], Awaitable[Any]]
_Send = Callable[[Any], Awaitable[None]]

# Since `starlette.types.ASGIApp` type differs from `ASGIApplication` from `asgiref`
# we need to define a more permissive version of ASGIApp that doesn't cause type errors.
_ASGIApp = Callable[[_Scope, _Receive, _Send], Awaitable[None]]


class _MiddlewareFactory(Protocol[P]):
    def __call__(
        self, app: _ASGIApp, *args: P.args, **kwargs: P.kwargs
    ) -> _ASGIApp: ...


class Middleware:
    def __init__(
        self, factory: _MiddlewareFactory[P], *args: P.args, **kwargs: P.kwargs
    ) -> None:
        self.factory = factory
        self.args = args
        self.kwargs = kwargs


class ServerErrorMiddleware:
    def __init__(
        self,
        app: ASGIApp,
        value: int | None = None,
        flag: bool = False,
    ) -> None:
        self.app = app
        self.value = value
        self.flag = flag

    async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: ...


# ty: Argument to bound method `__init__` is incorrect: Expected `_MiddlewareFactory[(...)]`, found `<class 'ServerErrorMiddleware'>` [invalid-argument-type]
Middleware(ServerErrorMiddleware, value=500, flag=True)
```

</p>
</details> 

### Conformance analysis

> ```diff
> -constructors_callable.py:36:13: info[revealed-type] Revealed type:
`(...) -> Unknown`
> +constructors_callable.py:36:13: info[revealed-type] Revealed type:
`(x: int) -> Unknown`
> ```

Requires return type inference i.e.,
https://github.com/astral-sh/ruff/pull/21551

> ```diff
> +constructors_callable.py:194:16: error[invalid-argument-type]
Argument is incorrect: Expected `list[T@__init__]`, found `list[Unknown
| str]`
> +constructors_callable.py:194:22: error[invalid-argument-type]
Argument is incorrect: Expected `list[T@__init__]`, found `list[Unknown
| str]`
> +constructors_callable.py:195:4: error[invalid-argument-type] Argument
is incorrect: Expected `list[T@__init__]`, found `list[Unknown | int]`
> +constructors_callable.py:195:9: error[invalid-argument-type] Argument
is incorrect: Expected `list[T@__init__]`, found `list[Unknown | str]`
> ```

I might need to look into why this is happening...

> ```diff
> +generics_defaults.py:79:1: error[type-assertion-failure] Type
`type[Class_ParamSpec[(str, int, /)]]` does not match asserted type
`<class 'Class_ParamSpec'>`
> ```

which is on the following code
```py
DefaultP = ParamSpec("DefaultP", default=[str, int])

class Class_ParamSpec(Generic[DefaultP]): ...

assert_type(Class_ParamSpec, type[Class_ParamSpec[str, int]])
```

It's occurring because there's no equivalence relationship defined
between `ClassLiteral` and `KnownInstanceType::TypeGenericAlias` which
is what these types are.

Everything else looks good to me!
2025-12-05 22:00:06 +05:30
Douglas Creager e42cdf8495
[ty] Carry generic context through when converting class into `Callable` (#21798)
When converting a class (whether specialized or not) into a `Callable`
type, we should carry through any generic context that the constructor
has. This includes both the generic context of the class itself (if it's
generic) and of the constructor methods (if they are separately
generic).

To help test this, this also updates the `generic_context` extension
function to work on `Callable` types and unions; and adds a new
`into_callable` extension function that works just like
`CallableTypeOf`, but on value forms instead of type forms.

Pulled this out of #21551 for separate review.
2025-12-05 08:57:21 -05:00
Alex Waygood 48f7f42784
[ty] Minor improvements to `assert_type` diagnostics (#21811) 2025-12-05 12:33:30 +00:00
Shunsuke Shibayama 1951f1bbb8
[ty] fix panic when instantiating a type variable with invalid constraints (#21663) 2025-12-04 18:48:38 -08:00
Shunsuke Shibayama 3511b7a06b
[ty] do nothing with `store_expression_type` if `inner_expression_inference_state` is `Get` (#21718)
## Summary

Fixes https://github.com/astral-sh/ty/issues/1688

## Test Plan

N/A
2025-12-04 18:05:41 -08:00
Shunsuke Shibayama f3e5713d90
[ty] increase the limit on the number of elements in a non-recursively defined literal union (#21683)
## Summary

Closes https://github.com/astral-sh/ty/issues/957

As explained in https://github.com/astral-sh/ty/issues/957, literal
union types for recursively defined values ​​can be widened early to
speed up the convergence of fixed-point iterations.
This PR achieves this by embedding a marker in `UnionType` that
distinguishes whether a value is recursively defined.

This also allows us to identify values ​​that are not recursively
defined, so I've increased the limit on the number of elements in a
literal union type for such values.

Edit: while this PR doesn't provide the significant performance
improvement initially hoped for, it does have the benefit of allowing
the number of elements in a literal union to be raised above the salsa
limit, and indeed mypy_primer results revealed that a literal union of
220 elements was actually being used.

## Test Plan

`call/union.md` has been updated
2025-12-04 18:01:48 -08:00
Carl Meyer a9de6b5c3e
[ty] normalize typevar bounds/constraints in cycles (#21800)
Fixes https://github.com/astral-sh/ty/issues/1587

## Summary

Perform cycle normalization on typevar bounds and constraints (similar
to how it was already done for typevar defaults) in order to ensure
convergence in cyclic cases.

There might be another fix here that could avoid the cycle in many more
cases, where we don't eagerly evaluate typevar bounds/constraints on
explicit specialization, but just accept the given specialization and
later evaluate to see whether we need to emit a diagnostic on it. But
the current fix here is sufficient to solve the problem and matches the
patterns we use to ensure cycle convergence elsewhere, so it seems good
for now; left a TODO for the other idea.

This fix is sufficient to make us not panic, but not sufficient to get
the semantics fully correct; see the TODOs in the tests. I have ideas
for fixing that as well, but it seems worth at least getting this in to
fix the panic.

## Test Plan

Test that previously panicked now does not.

---------

Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
2025-12-04 15:17:57 -08:00
Aria Desires e2b72fbf99
[ty] cleanup test path (#21781)
Fixes
https://github.com/astral-sh/ruff/pull/21745#discussion_r2586552295
2025-12-03 21:54:50 +00:00
Alex Waygood 14fce0d440
[ty] Improve the display of various special-form types (#21775) 2025-12-03 21:19:59 +00:00
Alex Waygood 8ebecb2a88
[ty] Add subdiagnostic hint if the user wrote `X = Any` rather than `X: Any` (#21777) 2025-12-03 20:42:21 +00:00
Aria Desires 45ac30a4d7
[ty] Teach `ty` the meaning of desperation (try ancestor `pyproject.toml`s as search-paths if module resolution fails) (#21745)
## Summary

This makes an importing file a required argument to module resolution,
and if the fast-path cached query fails to resolve the module, take the
slow-path uncached (could be cached if we want)
`desperately_resolve_module` which will walk up from the importing file
until it finds a `pyproject.toml` (arbitrary decision, we could try
every ancestor directory), at which point it takes one last desperate
attempt to use that directory as a search-path. We do not continue
walking up once we've found a `pyproject.toml` (arbitrary decision, we
could keep going up).

Running locally, this fixes every broken-for-workspace-reasons import in
pyx's workspace!

* Fixes https://github.com/astral-sh/ty/issues/1539
* Improves https://github.com/astral-sh/ty/issues/839

## Test Plan

The workspace tests see a huge improvement on most absolute imports.
2025-12-03 15:04:36 -05:00
Alex Waygood 0280949000
[ty] fix panic when attempting to infer the variance of a PEP-695 class that depends on a recursive type aliases and also somehow protocols (#21778)
Fixes https://github.com/astral-sh/ty/issues/1716.

## Test plan

I added a corpus snippet that causes us to panic on `main` (I tested by
running `cargo run -p ty_python_semantic --test=corpus` without the fix
applied).
2025-12-03 19:01:42 +00:00
David Peter 1f4f8d9950
[ty] Fix flow of associated member states during star imports (#21776)
## Summary

Star-imports can not just affect the state of symbols that they pull in,
they can also affect the state of members that are associated with those
symbols. For example, if `obj.attr` was previously narrowed from `int |
None` to `int`, and a star-import now overwrites `obj`, then the
narrowing on `obj.attr` should be "reset".

This PR keeps track of the state of associated members during star
imports and properly models the flow of their corresponding state
through the control flow structure that we artificially create for
star-imports.

See [this
comment](https://github.com/astral-sh/ty/issues/1355#issuecomment-3607125005)
for an explanation why this caused ty to see certain `asyncio` symbols
as not being accessible on Python 3.14.

closes https://github.com/astral-sh/ty/issues/1355

## Ecosystem impact

```diff
async-utils (https://github.com/mikeshardmind/async-utils)
- src/async_utils/bg_loop.py:115:31: error[invalid-argument-type] Argument to bound method `set_task_factory` is incorrect: Expected `_TaskFactory | None`, found `def eager_task_factory[_T_co](loop: AbstractEventLoop | None, coro: Coroutine[Any, Any, _T_co@eager_task_factory], *, name: str | None = None, context: Context | None = None) -> Task[_T_co@eager_task_factory]`
- Found 30 diagnostics
+ Found 29 diagnostics

mitmproxy (https://github.com/mitmproxy/mitmproxy)
+ mitmproxy/utils/asyncio_utils.py:96:60: warning[unused-ignore-comment] Unused blanket `type: ignore` directive
- test/conftest.py:37:31: error[invalid-argument-type] Argument to bound method `set_task_factory` is incorrect: Expected `_TaskFactory | None`, found `def eager_task_factory[_T_co](loop: AbstractEventLoop | None, coro: Coroutine[Any, Any, _T_co@eager_task_factory], *, name: str | None = None, context: Context | None = None) -> Task[_T_co@eager_task_factory]`
```

All of these seem to be correct, they give us a different type for
`asyncio` symbols that are now imported from different
`sys.version_info` branches (where we previously failed to recognize
some of these as statically true/false).

```diff
dd-trace-py (https://github.com/DataDog/dd-trace-py)
- ddtrace/contrib/internal/asyncio/patch.py:39:12: error[invalid-argument-type] Argument to function `unwrap` is incorrect: Expected `WrappedFunction`, found `def create_task[_T](self, coro: Coroutine[Any, Any, _T@create_task] | Generator[Any, None, _T@create_task], *, name: object = None) -> Task[_T@create_task]`
+ ddtrace/contrib/internal/asyncio/patch.py:39:12: error[invalid-argument-type] Argument to function `unwrap` is incorrect: Expected `WrappedFunction`, found `def create_task[_T](self, coro: Generator[Any, None, _T@create_task] | Coroutine[Any, Any, _T@create_task], *, name: object = None) -> Task[_T@create_task]`
```

Similar, but only results in a diagnostic change.

## Test Plan

Added a regression test
2025-12-03 17:52:31 +01:00
github-actions[bot] b08f0b2caa
[ty] Sync vendored typeshed stubs (#21715)
Co-authored-by: typeshedbot <>
Co-authored-by: David Peter <mail@david-peter.de>
2025-12-03 15:49:51 +00:00
David Peter d6e472f297
[ty] Reachability constraints: minor documentation fixes (#21774) 2025-12-03 16:40:11 +01:00
Douglas Creager 45842cc034
[ty] Fix non-determinism in `ConstraintSet.specialize_constrained` (#21744)
This fixes a non-determinism that we were seeing in the constraint set
tests in https://github.com/astral-sh/ruff/pull/21715.

In this test, we create the following constraint set, and then try to
create a specialization from it:

```
(T@constrained_by_gradual_list = list[Base])
  ∨
(Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
```

That is, `T` is either specifically `list[Base]`, or it's any `list`.
Our current heuristics say that, absent other restrictions, we should
specialize `T` to the more specific type (`list[Base]`).

In the correct test output, we end up creating a BDD that looks like
this:

```
(T@constrained_by_gradual_list = list[Base])
┡━₁ always
└─₀ (Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
    ┡━₁ always
    └─₀ never
```

In the incorrect output, the BDD looks like this:

```
(Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
┡━₁ always
└─₀ never
```

The difference is the ordering of the two individual constraints. Both
constraints appear in the first BDD, but the second BDD only contains `T
is any list`. If we were to force the second BDD to contain both
constraints, it would look like this:

```
(Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
┡━₁ always
└─₀ (T@constrained_by_gradual_list = list[Base])
    ┡━₁ always
    └─₀ never
```

This is the standard shape for an OR of two constraints. However! Those
two constraints are not independent of each other! If `T` is
specifically `list[Base]`, then it's definitely also "any `list`". From
that, we can infer the contrapositive: that if `T` is not any list, then
it cannot be `list[Base]` specifically. When we encounter impossible
situations like that, we prune that path in the BDD, and treat it as
`false`. That rewrites the second BDD to the following:

```
(Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
┡━₁ always
└─₀ (T@constrained_by_gradual_list = list[Base])
    ┡━₁ never   <-- IMPOSSIBLE, rewritten to never
    └─₀ never
```

We then would see that that BDD node is redundant, since both of its
outgoing edges point at the `never` node. Our BDDs are _reduced_, which
means we have to remove that redundant node, resulting in the BDD we saw
above:

```
(Bottom[list[Any]] ≤ T@constrained_by_gradual_list ≤ Top[list[Any]])
┡━₁ always
└─₀ never       <-- redundant node removed
```

The end result is that we were "forgetting" about the `T = list[Base]`
constraint, but only for some BDD variable orderings.

To fix this, I'm leaning in to the fact that our BDDs really do need to
"remember" all of the constraints that they were created with. Some
combinations might not be possible, but we now have the sequent map,
which is quite good at detecting and pruning those.

So now our BDDs are _quasi-reduced_, which just means that redundant
nodes are allowed. (At first I was worried that allowing redundant nodes
would be an unsound "fix the glitch". But it turns out they're real!
[This](https://ieeexplore.ieee.org/abstract/document/130209) is the
paper that introduces them, though it's very difficult to read. Knuth
mentions them in §7.1.4 of
[TAOCP](https://course.khoury.northeastern.edu/csu690/ssl/bdd-knuth.pdf),
and [this paper](https://par.nsf.gov/servlets/purl/10128966) has a nice
short summary of them in §2.)

While we're here, I've added a bunch of `debug` and `trace` level log
messages to the constraint set implementation. I was getting tired of
having to add these by hands over and over. To enable them, just set
`TY_LOG` in your environment, e.g.

```sh
env TY_LOG=ty_python_semantic::types::constraints::SequentMap=trace ty check ...
```

[Note, this has an `internal` label because are still not using
`specialize_constrained` in anything user-facing yet.]
2025-12-03 10:19:39 -05:00
Alex Waygood cd079bd92e
[ty] Improve `@override`, `@final` and Liskov checks in cases where there are multiple reachable definitions (#21767) 2025-12-03 12:51:36 +00:00
Alex Waygood 5756b3809c
[ty] Extend `invalid-explicit-override` to also cover properties decorated with `@override` that do not override anything (#21756) 2025-12-03 11:27:47 +00:00
David Peter 21e5a57296
[ty] Support typevar-specialized dynamic types in generic type aliases (#21730)
## Summary

For a type alias like the one below, where `UnknownClass` is something
with a dynamic type, we previously lost track of the fact that this
dynamic type was explicitly specialized *with a type variable*. If that
alias is then later explicitly specialized itself (`MyAlias[int]`), we
would miscount the number of legacy type variables and emit a
`invalid-type-arguments` diagnostic
([playground](https://play.ty.dev/886ae6cc-86c3-4304-a365-510d29211f85)).
```py
T = TypeVar("T")

MyAlias: TypeAlias = UnknownClass[T] | None
```
The solution implemented here is not pretty, but we can hopefully get
rid of it via https://github.com/astral-sh/ty/issues/1711. Also, once we
properly support `ParamSpec` and `Concatenate`, we should be able to
remove some of this code.

This addresses many of the `invalid-type-arguments` false-positives in
https://github.com/astral-sh/ty/issues/1685. With this change, there are
still some diagnostics of this type left. Instead of implementing even
more (rather sophisticated) workarounds for these cases as well, it
might be much easier to wait for full `ParamSpec`/`Concatenate` support
and then try again.

A disadvantage of this implementation is that we lose track of some
`@Todo` types and replace them with `Unknown`. We could spend more
effort and try to preserve them, but I'm unsure if this is the best use
of our time right now.

## Test Plan

New Markdown tests.
2025-12-03 10:00:02 +01:00