`TypeMapping` is no longer cow-shaped.
Before, `TypeMapping` defined a `to_owned` method, which would make an
owned copy of the type mapping. This let us apply type mappings to
function literals lazily. The primary part of a function that you have
to apply the type mapping to is its signature. The hypothesis was that
doing this lazily would prevent us from constructing the signature of a
function just to apply a type mapping; if you never ended up needed the
updated function signature, that would be extraneous work.
But looking at the CI for this PR, it looks like that hypothesis is
wrong! And this definitely cleans up the code quite a bit. It also means
that over time we can consider replacing all of these `TypeMapping` enum
variants with separate `TypeTransformer` impls.
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
Fixes a bug observed by @AlexWaygood where `C[Any] <: C[object]` should
hold for a class that is covariant in its type parameter (and similar
subtyping relations involving dynamic types for other variance
configurations).
## Test Plan
New and updated Markdown tests
While working on #20093, I kept running into test failures due to
constraint sets not simplifying as much as they could, and therefore not
being easily testable against "always true" and "always false".
This PR updates our constraint set representation to use BDDs. Because
BDDs are reduced and ordered, they are canonical — equivalent boolean
formulas are represented by the same interned BDD node.
That said, there is a wrinkle, in that the "variables" that we use in
these BDDs — the individual constraints like `Lower ≤ T ≤ Upper` are not
always independent of each other.
As an example, given types `A ≤ B ≤ C ≤ D` and a typevar `T`, the
constraints `A ≤ T ≤ C` and `B ≤ T ≤ D` "overlap" — their intersection
is non-empty. So we should be able to simplify
```
(A ≤ T ≤ C) ∧ (B ≤ T ≤ D) == (B ≤ T ≤ C)
```
That's not a simplification that the BDD structure can perform itself,
since those three constraints are modeled as separate BDD variables, and
are therefore "opaque" to the BDD algorithms.
That means we need to perform this kind of simplification ourselves. We
look at pairs of constraints that appear in a BDD and see if they can be
simplified relative to each other, and if so, replace the pair with the
simplification. A large part of the toil of getting this PR to work was
identifying all of those patterns and getting that substitution logic
correct.
With this new representation, all existing tests pass, as well as some
new ones that represent test failures that were occuring on #20093.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
Follow up on #20495. The improvement suggested by @AlexWaygood cannot be
applied as-is since the `argument_matches` vector is indexed by argument
number, while the two boolean vectors are indexed by parameter number.
Still coalescing the latter two saves one allocation.
## Summary
Closes: https://github.com/astral-sh/ty/issues/551
This PR adds support for step 4 of the overload call evaluation
algorithm which states that:
> If the argument list is compatible with two or more overloads,
determine whether one or more of the overloads has a variadic parameter
(either `*args` or `**kwargs`) that maps to a corresponding argument
that supplies an indeterminate number of positional or keyword
arguments. If so, eliminate overloads that do not have a variadic
parameter.
And, with that, the overload call evaluation algorithm has been
implemented completely end to end as stated in the typing spec.
## Test Plan
Expand the overload call test suite.
## Summary
This removes a hack in the protocol satisfiability check that was
previously needed to work around missing assignability-modeling of
inferable type variables. Assignability of type variables is not
implemented fully, but some recent changes allow us to remove that hack
with limited impact on the ecosystem (and the test suite). The change in
the typing conformance test is favorable.
## Test Plan
* Adapted Markdown tests
* Made sure that this change works in combination with
https://github.com/astral-sh/ruff/pull/20517
## Summary
Closes: https://github.com/astral-sh/ty/issues/1236
This PR fixes a bug where the variadic argument wouldn't match against
the variadic parameter in certain scenarios.
This was happening because I didn't realize that the `all_elements`
iterator wouldn't keep on returning the variable element (which is
correct, I just didn't realize it back then).
I don't think we can use the `resize` method here because we don't know
how many parameters this variadic argument is matching against as this
is where the actual parameter matching occurs.
## Test Plan
Expand test cases to consider a few more combinations of arguments and
parameters which are variadic.
## Summary
This applies the trick that we use for `builtins.open` to similar
functions that have the same problem. The reason is that the problem
would otherwise become even more pronounced once we add understanding of
the implicit type of `self` parameters, because then something like
`(base_path / "test.bin").open("rb")` also leads to a wrong return type
and can result in false positives.
## Test Plan
New Markdown tests
## Summary
I found this bug while working on #20528.
The minimum reproducible code is:
```python
from __future__ import annotations
from typing import NamedTuple
from ty_extensions import is_disjoint_from, static_assert
class Path(NamedTuple):
prev: Path | None
key: str
static_assert(not is_disjoint_from(Path, Path))
```
A stack overflow occurs when a nominal instance type inherits from
`NamedTuple` and is defined recursively.
This PR fixes this bug.
## Test Plan
mdtest updated
### Summary
This PR includes two changes, both of which are necessary to resolve
https://github.com/astral-sh/ty/issues/1196:
* For a generic class `C[T]`, we previously used `C[Unknown]` as the
upper bound of the `Self` type variable. There were two problems with
this. For one, when `Self` appeared in contravariant position, we would
materialize its upper bound to `Bottom[C[Unknown]]` (which might
simplify to `C[Never]` if `C` is covariant in `T`) when accessing
methods on `Top[C[Unknown]]`. This would result in `invalid-argument`
errors on the `self` parameter. Also, using an upper bound of
`C[Unknown]` would mean that inside methods, references to `T` would be
treated as `Unknown`. This could lead to false negatives. To fix this,
we now use `C[T]` (with a "nested" typevar) as the upper bound for
`Self` on `C[T]`.
* In order to make this work, we needed to allow assignability/subtyping
of inferable typevars to other types, since we now check assignability
of e.g. `C[int]` to `C[T]` (when checking assignability to the upper
bound of `Self`) when calling an instance-method on `C[int]` whose
`self` parameter is annotated as `self: Self` (or implicitly `Self`,
following https://github.com/astral-sh/ruff/pull/18007).
closes https://github.com/astral-sh/ty/issues/1196
closes https://github.com/astral-sh/ty/issues/1208
### Test Plan
Regression tests for both issues.
## Summary
@ibraheemdev notes this example failed
```py
from typing import Callable
class X:
...
def f(callable: Callable[[], X]) -> X:
return callable()
x = f(X)
```
Resolves https://github.com/astral-sh/ty/issues/1210
The issue was that we set the `Self` to the class type instead of the
instance type of the class.
## Test Plan
Fix tests in `is_subtype_of.md`
## Summary
Fixes https://github.com/astral-sh/ty/issues/1218.
This bug doesn't currently cause us any real-world issues, because we
don't yet understand the signatures typeshed gives us for `isinstance()`
and `issubclass()` (typeshed's annotations there use PEP-613 type
aliases). #20107 demonstrates that this will start causing us issues as
soon as we add support for PEP-613 aliases, however, so it makes sense
to fix it now.
## Test Plan
Added mdtests
Coming soon: The Renovate bot (GitHub App) will be renamed to Mend. PRs
from Renovate will soon appear from 'Mend'. Learn more
[here](https://redirect.github.com/renovatebot/renovate/discussions/37842).
This PR contains the following updates:
| Package | Type | Update | Change |
|---|---|---|---|
| [hashbrown](https://redirect.github.com/rust-lang/hashbrown) |
workspace.dependencies | minor | `0.15.0` -> `0.16.0` |
---
> [!WARNING]
> Some dependencies could not be looked up. Check the Dependency
Dashboard for more information.
---
### Release Notes
<details>
<summary>rust-lang/hashbrown (hashbrown)</summary>
###
[`v0.16.0`](https://redirect.github.com/rust-lang/hashbrown/blob/HEAD/CHANGELOG.md#0160---2025-08-28)
[Compare
Source](https://redirect.github.com/rust-lang/hashbrown/compare/v0.15.5...v0.16.0)
##### Changed
- Bump foldhash, the default hasher, to 0.2.0.
- Replaced `DefaultHashBuilder` with a newtype wrapper around `foldhash`
instead
of re-exporting it directly.
</details>
---
### Configuration
📅 **Schedule**: Branch creation - "before 4am on Monday" (UTC),
Automerge - At any time (no schedule defined).
🚦 **Automerge**: Disabled by config. Please merge this manually once you
are satisfied.
♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the
rebase/retry checkbox.
🔕 **Ignore**: Close this PR and you won't be reminded about this update
again.
---
- [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check
this box
---
This PR was generated by [Mend Renovate](https://mend.io/renovate/).
View the [repository job
log](https://developer.mend.io/github/astral-sh/ruff).
<!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiI0MS45Ny4xMCIsInVwZGF0ZWRJblZlciI6IjQxLjk3LjEwIiwidGFyZ2V0QnJhbmNoIjoibWFpbiIsImxhYmVscyI6WyJpbnRlcm5hbCJdfQ==-->
---------
Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com>
Co-authored-by: Micha Reiser <micha@reiser.io>
Co-authored-by: David Peter <mail@david-peter.de>
Co-authored-by: Ibraheem Ahmed <ibraheem@ibraheem.ca>
## Summary
This PR adds support for unpacking `**kwargs` argument.
This can be matched against any standard (positional or keyword),
keyword-only, or keyword variadic parameter that haven't been matched
yet.
This PR also takes care of special casing `TypedDict` because the key
names and the corresponding value type is known, so we can be more
precise in our matching and type checking step. In the future, this
special casing would be extended to include `ParamSpec` as well.
Part of astral-sh/ty#247
## Test Plan
Add test cases for various scenarios.
## Summary
This change reduces MD test compilation time from 6s to 3s on my laptop.
We don't need to build the unit tests and the corpus tests when we're
only interested in Markdown-based tests.
## Test Plan
local benchmarks
## Summary
Part of https://github.com/astral-sh/ty/issues/168. Infer more precise types for collection literals (currently, only `list` and `set`). For example,
```py
x = [1, 2, 3] # revealed: list[Unknown | int]
y: list[int] = [1, 2, 3] # revealed: list[int]
```
This could easily be extended to `dict` literals, but I am intentionally limiting scope for now.
Fixes: https://github.com/astral-sh/ty/issues/1173
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR will change the logic of binding Self type variables to bind
self to the immediate function that it's used on.
Since we are binding `self` to methods and not the class itself we need
to ensure that we bind self consistently.
The fix is to traverse scopes containing the self and find the first
function inside a class and use that function to bind the typevar for
self.
If no such scope is found we fallback to the normal behavior. Using Self
outside of a class scope is not legal anyway.
## Test Plan
Added a new mdtest.
Checked the diagnostics that are not emitted anymore in [primer
results](https://github.com/astral-sh/ruff/pull/20366#issuecomment-3289411424).
It looks good altough I don't completely understand what was wrong
before.
---------
Co-authored-by: Douglas Creager <dcreager@dcreager.net>
This is somewhat inspired by a similar abstraction in
`ruff_linter`. The main idea is to create an importer once
for a module that you want to add imports to. And then call
`import` to generate an edit for each symbol you want to
add.
I haven't done any performance profiling here yet. I don't
know if it will be a bottleneck. In particular, I do expect
`Importer::import` (but not `Importer::new`) to get called
many times for a single completion request when auto-import
is enabled. Particularly in projects with a lot of unimported
symbols. Because I don't know the perf impact, I didn't do
any premature optimization here. But there are surely some
low hanging fruit if this does prove to be a problem.
New tests make up a big portion of the diff here. I tried to
think of a bunch of different cases, although I'm sure there
are more.
I think this is a better home for it. This way, `ty_ide`
more clearly owns how the "kind" of a completion is computed.
In particular, it is computed differently for things where
we know its type versus unimported symbols.
In the course of writing the "add an import" implementation,
I realized that we needed to know which symbols were in scope
and how they were defined. This was necessary to be able to
determine how to add a new import in a way that (minimally)
does not conflict with existing symbols.
I'm not sure that this is fully correct (especially for
symbol bindings) and it's unclear to me in which cases a
definition site will be missing. But this seems to work for
some of the basic cases that I tried.
The names of the submodules returned should be *complete*. This
is the contract of `Module::name`. However, we were previously
only returning the basename of the submodule.
## Summary
Catch infinite recursion in binary-compare inference.
Fixes the stack overflow in `graphql-core` in mypy-primer.
## Test Plan
Added two tests that stack-overflowed before this PR.
## Summary
Use `Type::Divergent` to short-circuit diverging types in type
expressions. This avoids panicking in a wide variety of cases of
recursive type expressions.
Avoids many panics (but not yet all -- I'll be tracking down the rest)
from https://github.com/astral-sh/ty/issues/256 by falling back to
Divergent. For many of these recursive type aliases, we'd like to
support them properly (i.e. really understand the recursive nature of
the type, not just fall back to Divergent) but that will be future work.
This switches `Type::has_divergent_type` from using `any_over_type` to a
custom set of visit methods, because `any_over_type` visits more than we
need to visit, and exercises some lazy attributes of type, causing
significantly more work. This change means this diff doesn't regress
perf; it even reclaims some of the perf regression from
https://github.com/astral-sh/ruff/pull/20333.
## Test Plan
Added mdtest for recursive type alias that panics on main.
Verified that we can now type-check `packaging` (and projects depending
on it) without panic; this will allow moving a number of mypy-primer
projects from `bad.txt` to `good.txt` in a subsequent PR.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements F406
https://docs.astral.sh/ruff/rules/undefined-local-with-nested-import-star-usage/
as a semantic syntax error
## Test Plan
I have written inline tests as directed in #17412
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Previously, we used a very fine-grained representation for individual
constraints: each constraint was _either_ a range constraint, a
not-equivalent constraint, or an incomparable constraint. These three
pieces are enough to represent all of the "real" constraints we need to
create — range constraints and their negation.
However, it meant that we weren't picking up as many chances to simplify
constraint sets as we could. Our simplification logic depends on being
able to look at _pairs_ of constraints or clauses to see if they
simplify relative to each other. With our fine-grained representation,
we could easily encounter situations that we should have been able to
simplify, but that would require looking at three or more individual
constraints.
For instance, negating a range constraint would produce:
```
¬(Base ≤ T ≤ Super) = ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨
((Super ≤ T) ∧ (T ≠ Super)) ∨ (T ≁ Super)
```
That is, `T` must be (strictly) less than `Base`, (strictly) greater
than `Super`, or incomparable to either.
If we tried to union those back together, we should get `always`, since
`x ∨ ¬x` should always be true, no matter what `x` is. But instead we
would get:
```
(Base ≤ T ≤ Super) ∨ ((T ≤ Base) ∧ (T ≠ Base)) ∨ (T ≁ Base) ∨ ((Super ≤ T) ∧ (T ≠
Super)) ∨ (T ≁ Super)
```
Nothing would simplify relative to each other, because we'd have to look
at all five union elements to see that together they do in fact combine
to `always`.
The fine-grained representation was nice, because it made it easier to
[work out the math](https://dcreager.net/theory/constraints/) for
intersections and unions of each kind of constraint. But being able to
simplify is more important, since the example above comes up immediately
in #20093 when trying to handle constrained typevars.
The fix in this PR is to go back to a more coarse-grained
representation, where each individual constraint consists of a positive
range (which might be `always` / `Never ≤ T ≤ object`), and zero or more
negative ranges. The intuition is to think of a constraint as a region
of the type space (representable as a range) with zero or more "holes"
removed from it.
With this representation, negating a range constraint produces:
```
¬(Base ≤ T ≤ Super) = (always ∧ ¬(Base ≤ T ≤ Super))
```
(That looks trivial, because it is! We just move the positive range to
the negative side.)
The math is not that much harder than before, because there are only
three combinations to consider (each for intersection and union) —
though the fact that there can be multiple holes in a constraint does
require some nested loops. But the mdtest suite gives me confidence that
this is not introducing any new issues, and it definitely removes a
troublesome TODO.
(As an aside, this change also means that we are back to having each
clause contain no more than one individual constraint for any typevar.
This turned out to be important, because part of our simplification
logic was also depending on that!)
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This mainly removes an internal inconsistency, where we didn't remove
the `Self` type variable when eagerly binding `Self` to an instance
type. It has no observable effect, apparently.
builds on top of https://github.com/astral-sh/ruff/pull/20328
## Test Plan
None
## Summary
Fixes https://github.com/astral-sh/ty/issues/1161
Include `NamedTupleFallback` members in `NamedTuple` instance
completions.
- Augment instance attribute completions when completing on NamedTuple
instances by merging members from
`_typeshed._type_checker_internals.NamedTupleFallback`
## Test Plan
Adds a minimal completion test `namedtuple_fallback_instance_methods`
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This project was [recently removed from
mypy_primer](https://github.com/astral-sh/ruff/pull/20378), so we need
to remove it from `good.txt` in order for ecosystem-analyzer to work
correctly.
## Test Plan
Run mypy_primer and ecosystem-analyzer on this branch.
## Summary
https://github.com/astral-sh/ruff/pull/20165 added a lot of false
positives around calls to `builtins.open()`, because our missing support
for PEP-613 type aliases means that we don't understand typeshed's
overloads for `builtins.open()` at all yet, and therefore always select
the first overload. This didn't use to matter very much, but now that we
have a much stricter implementation of protocol assignability/subtyping
it matters a lot, because most of the stdlib functions dealing with I/O
(`pickle`, `marshal`, `io`, `json`, etc.) are annotated in typeshed as
taking in protocols of some kind.
In lieu of full PEP-613 support, which is blocked on various things and
might not land in time for our next alpha release, this PR adds some
temporary special-casing for `builtins.open()` to avoid the false
positives. We just infer `Todo` for anything that isn't meant to match
typeshed's first `open()` overload. This should be easy to rip out again
once we have proper support for PEP-613 type aliases, which hopefully
should be pretty soon!
## Test Plan
Added an mdtest
## Summary
Fixes https://github.com/astral-sh/ty/issues/377.
We were treating any function as being assignable to any callback
protocol, because we were trying to figure out a type's `Callable`
supertype by looking up the `__call__` attribute on the type's
meta-type. But a function-literal's meta-type is `types.FunctionType`,
and `types.FunctionType.__call__` is `(...) -> Any`, which is not very
helpful!
While working on this PR, I also realised that assignability between
class-literals and callback protocols was somewhat broken too, so I
fixed that at the same time.
## Test Plan
Added mdtests
## Summary
This looks like it should fix the errors that we've been seeing in sympy
in recent mypy-primer runs.
## Test Plan
I wasn't able to reproduce the sympy failures locally; it looks like
there is probably a dependency on the order in which files are checked.
So I don't have a minimal reproducible example, and wasn't able to add a
test :/ Obviously I would be happier if we could commit a regression
test here, but since the change is straightforward and clearly
desirable, I'm not sure how many hours it's worth trying to track it
down.
Mypy-primer is still failing in CI on this PR, because it fails on the
"old" ty commit already (i.e. on main). But it passes [on a no-op PR
stacked on top of this](https://github.com/astral-sh/ruff/pull/20370),
which strongly suggests this PR fixes the problem.
## Summary
This PR addresses an issue for a variadic argument when involved in
argument type expansion of overload call evaluation.
The issue is that the expansion of the variadic argument could result in
argument list of different arity. For example, in `*args: tuple[int] |
tuple[int, str]`, the expansion would lead to the variadic argument
being unpacked into 1 and 2 element respectively. This means that the
parameter matching that was performed initially isn't sufficient and
each expanded argument list would need to redo the parameter matching
again.
This is currently done by redoing the parameter matching directly,
maintaining the state of argument forms (and the conflicting forms), and
updating the `Bindings` values if it changes.
Closes: astral-sh/ty#735
## Test Plan
Update existing mdtest.
This PR removes the `Constraints` trait. We removed the `bool`
implementation several weeks back, and are using `ConstraintSet`
everywhere. There have been discussions about trying to include the
reason for an assignability failure as part of the result, but that
there are no concrete plans to do so soon, and it's not clear that we'll
need the `Constraints` trait to do that. (We can ideally just update the
`ConstraintSet` type directly.)
In the meantime, this just complicates the code for no good reason.
This PR is a pure refactoring, and contains no behavioral changes.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Previously, `Type::object` would find the definition of the `object`
class in typeshed, load that in (to produce a `ClassLiteral` and
`ClassType`), and then create a `NominalInstance` of that class.
It's possible that we are using a typeshed that doesn't define `object`.
We will not be able to do much useful work with that kind of typeshed,
but it's still a possibility that we have to support at least without
panicking. Previously, we would handle this situation by falling back on
`Unknown`.
In most cases, that's a perfectly fine fallback! But `object` is also
our top type — the type of all values. `Unknown` is _not_ an acceptable
stand-in for the top type.
This PR adds a new `NominalInstance` variant for "instances of
`object`". Unlike other nominal instances, we do not need to load in
`object`'s `ClassType` to instantiate this variant. We will use this new
variant even when the current typeshed does not define an `object`
class, ensuring that we have a fully static representation of our top
type at all times.
There are several operations that need access to a nominal instance's
class, and for this new `object` variant we load it lazily only when
it's needed. That means this operation is now fallible, since this is
where the "typeshed doesn't define `object`" failure shows up.
This new approach also has the benefit of avoiding some salsa cycles
that were cropping up while I was debugging #20093, since the new
constraint set representation was trying to instantiate `Type::object`
while in the middle of processing its definition in typeshed. Cycle
handling was kicking in correctly and returning the `Unknown` fallback
mentioned above. But the constraint set implementation depends on
`Type::object` being a distinct and fully static type, highlighting that
this is a correctness fix, not just an optimization fix.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
Use `Type::Divergent` to avoid "too many iterations" panic on an
infinitely-nested tuple in an implicit instance attribute.
The regression here is from checking all tuple elements to see if they
contain a Divergent type. It's 5% on one project, 1% on another, and
zero on the rest. I spent some time looking into eliminating this
regression by tracking a flag on inference results to note if they could
possibly contain any Divergent type, but this doesn't really work --
there are too many different ways a type containing a Divergent type
could enter an inference result. Still thinking about whether there are
other ways to reduce this. One option is if we see certain kinds of
non-atomic types that are commonly expensive to check for Divergent, we
could make `has_divergent_type` a Salsa query on those types.
## Test Plan
Added mdtest.
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
The debug representation isn't as useful as calling `.display(db)`, but
it's still kind-of annoying when `dbg!()` calls don't compile locally
due to the compiler not being able to guarantee that an object of type
`impl Constraints` implements `Debug`
## Summary
`CallableTypeOf[bound_method]` would previously bind `self` to the
bound method type itself, instead of binding it to the instance type
stored inside the bound method type.
## Test Plan
Added regression test
This PR adds a new `ty_extensions.ConstraintSet` class, which is used to
expose constraint sets to our mdtest framework. This lets us write a
large collection of unit tests that exercise the invariants and rewrite
rules of our constraint set implementation.
As part of this, `is_assignable_to` and friends are updated to return a
`ConstraintSet` instead of a `bool`, and we implement
`ConstraintSet.__bool__` to return when a constraint set is always
satisfied. That lets us still use
`static_assert(is_assignable_to(...))`, since the assertion will coerce
the constraint set to a bool, and also lets us
`reveal_type(is_assignable_to(...))` to see more detail about
whether/when the two types are assignable. That lets us get rid of
`reveal_when_assignable_to` and friends, since they are now redundant
with the expanded capabilities of `is_assignable_to`.
## Summary
When adding an enum literal `E = Literal[Color.RED]` to a union which
already contained a subtype of that enum literal(!), we were previously
not simplifying the union correctly. My assumption is that our property
tests didn't catch that earlier, because the only possible non-trivial
subytpe of an enum literal that I can think of is `Any & E`. And in
order for that to be detected by the property tests, it would have to
randomly generate `Any & E | E` and then also compare that with `E` on
the other side (in an equivalence test, or the subtyping-antisymmetry
test).
closes https://github.com/astral-sh/ty/issues/1155
## Test Plan
* Added a regression test.
* I also ran the property tests for a while, but probably not for two
months worth of daily CI runs.
The constraint representation that we added in #19997 was subtly wrong,
in that it didn't correctly model that type assignability is a _partial_
order — it's possible for two types to be incomparable, with neither a
subtype of the other. That means the negation of a constraint like `T ≤
t` (typevar `T` must be a subtype of `t`) is **_not_** `t < T`, but
rather `t < T ∨ T ≁ t` (using ≁ to mean "not comparable to").
That means we need to update our constraint representation to be an
enum, so that we can track both _range_ constraints (upper/lower bound
on the typevar), and these new _incomparable_ constraints.
Since we need an enum now, that also lets us simplify how we were
modeling range constraints. Before, we let the lower/upper bounds be
either open (<) or closed (≤). Now, range constraints are always closed,
and we add a third kind of constraint for _not equivalent_ (≠). We can
translate an open upper bound `T < t` into `T ≤ t ∧ T ≠ t`.
We already had the logic for doing adding _clauses_ to a _set_ by doing
a pairwise simplification. We copy that over to where we add
_constraints_ to a _clause_. To calculate the intersection or union of
two constraints, the new enum representation makes it easy to break down
all of the possibilities into a small number of cases: intersect range
with range, intersect range with not-equivalent, etc. I've done the math
[here](https://dcreager.net/theory/constraints/) to show that the
simplifications for each of these cases is correct.
## Summary
This is a follow-up to https://github.com/astral-sh/ruff/pull/19321.
Now lazy snapshots are updated to take into account new bindings on
every symbol reassignment.
```python
def outer(x: A | None):
if x is None:
x = A()
reveal_type(x) # revealed: A
def inner() -> None:
# lazy snapshot: {x: A}
reveal_type(x) # revealed: A
inner()
def outer() -> None:
x = None
x = 1
def inner() -> None:
# lazy snapshot: {x: Literal[1]} -> {x: Literal[1, 2]}
reveal_type(x) # revealed: Literal[1, 2]
inner()
x = 2
```
Closesastral-sh/ty#559.
## Test Plan
Some TODOs in `public_types.md` now work properly.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
Adds support for generic PEP695 type aliases, e.g.,
```python
type A[T] = T
reveal_type(A[int]) # A[int]
```
Resolves https://github.com/astral-sh/ty/issues/677.
## Summary
Support cases like the following, where we need the generic context to
include both `Self` and `T` (not just `T`):
```py
from typing import Self
class C:
def method[T](self: Self, arg: T): ...
C().method(1)
```
closes https://github.com/astral-sh/ty/issues/1131
## Test Plan
Added regression test
## Summary
The sub-checks for assignability and subtyping of materializations
performed in `has_relation_in_invariant_position` and
`is_subtype_in_invariant_position` need to propagate the
`HasRelationToVisitor`, or we can stack overflow.
A side effect of this change is that we also propagate the
`ConstraintSet` through, rather than using `C::from_bool`, which I think
may also become important for correctness in cases involving type
variables (though it isn't testable yet, since we aren't yet actually
creating constraints other than always-true and always-false.)
## Test Plan
Added mdtest (derived from code found in pydantic) which
stack-overflowed before this PR.
With this change incorporated, pydantic now checks successfully on my
draft PR for PEP 613 TypeAlias support.
Now that https://github.com/astral-sh/ruff/pull/20263 is merged, we can
update mypy_primer and add the new `egglog-python` project to
`good.txt`. The ecosystem-analyzer run shows that we now add 1,356
diagnostics (where we had over 5,000 previously, due to the unsupported
project layout).
## Summary
Add backreferences to the original item declaration in TypedDict
diagnostics.
Thanks to @AlexWaygood for the suggestion.
## Test Plan
Updated snapshots
## Summary
An annotated assignment `name: annotation` without a right-hand side was
previously not covered by the range returned from
`DefinitionKind::full_range`, because we did expand the range to include
the right-hand side (if there was one), but failed to include the
annotation.
## Test Plan
Updated snapshot tests
## Summary
Add support for `typing.ReadOnly` as a type qualifier to mark
`TypedDict` fields as being read-only. If you try to mutate them, you
get a new diagnostic:
<img width="787" height="234" alt="image"
src="https://github.com/user-attachments/assets/f62fddf9-4961-4bcd-ad1c-747043ebe5ff"
/>
## Test Plan
* New Markdown tests
* The typing conformance changes are all correct. There are some false
negatives, but those are related to the missing support for the
functional form of `TypedDict`, or to overriding of fields via
inheritance. Both of these topics are tracked in
https://github.com/astral-sh/ty/issues/154
Closesastral-sh/ty#456. Part of astral-sh/ty#994.
After all the foundational work, this is only a small change, but let's
see if it exposes any unresolved issues.
## Summary
Part of astral-sh/ty#994. The goal of this PR was to add correct
behavior for attribute access on the top and bottom materializations.
This is necessary for the end goal of using the top materialization for
narrowing generics (`isinstance(x, list)`): we want methods like
`x.append` to work correctly in that case.
It turned out to be convenient to represent materialization as a
TypeMapping, so it can be stashed in the `type_mappings` list of a
function object. This also allowed me to remove most concrete
`materialize` methods, since they usually just delegate to the subparts
of the type, the same as other type mappings. That is why the net effect
of this PR is to remove a few hundred lines.
## Test Plan
I added a few more tests. Much of this PR is refactoring and covered by
existing tests.
## Followups
Assigning to attributes of top materializations is not yet covered. This
seems less important so I'd like to defer it.
I noticed that the `materialize` implementation of `Parameters` was
wrong; it did the same for the top and bottom materializations. This PR
makes the bottom materialization slightly more reasonable, but
implementing this correctly will require extending the struct.
## Summary
Two minor cleanups:
- Return `Option<ClassType>` rather than `Option<ClassLiteral>` from
`TypeInferenceBuilder::class_context_of_current_method`. Now that
`ClassType::is_protocol` exists as a method as well as
`ClassLiteral::is_protocol`, this simplifies most of the call-sites of
the `class_context_of_current_method()` method.
- Make more use of the `MethodDecorator::try_from_fn_type` method in
`class.rs`. Under the hood, this method uses the new methods
`FunctionType::is_classmethod()` and `FunctionType::is_staticmethod()`
that @sharkdp recently added, so it gets the semantics more precisely
correct than the code it's replacing in `infer.rs` (by accounting for
implicit staticmethods/classmethods as well as explicit ones). By using
these methods we can delete some code elsewhere (the
`FunctionDecorators::from_decorator_types()` constructor)
## Test Plan
Existing tests
## Summary
A small set of additional tests for `TypedDict` that I wrote while going
through the spec. Note that this certainly doesn't make the test suite
exhaustive (see remaining open points in the updated list here:
https://github.com/astral-sh/ty/issues/154).
This PR adds two new `ty_extensions` functions,
`reveal_when_assignable_to` and `reveal_when_subtype_of`. These are
closely related to the existing `is_assignable_to` and `is_subtype_of`,
but instead of returning when the property (always) holds, it produces a
diagnostic that describes _when_ the property holds. (This will let us
construct mdtests that print out constraints that are not always true or
always false — though we don't currently have any instances of those.)
I did not replace _every_ occurrence of the `is_property` variants in
the mdtest suite, instead focusing on the generics-related tests where
it will be important to see the full detail of the constraint sets.
As part of this, I also updated the mdtest harness to accept the shorter
`# revealed:` assertion format for more than just `reveal_type`, and
updated the existing uses of `reveal_protocol_interface` to take
advantage of this.
## Summary
Pull this out of https://github.com/astral-sh/ruff/pull/18473 as an
isolated change to make sure it has no adverse effects.
The wrong behavior is observable on `main` for something like
```py
class C:
def __new__(cls) -> "C":
cls.x = 1
C.x # previously: Attribute `x` can only be accessed on instances
# now: Type `<class 'C'>` has no attribute `x`
```
where we currently treat `x` as an *instance* attribute (because we
consider `__new__` to be a normal function and `cls` to be the "self"
attribute). With this PR, we do not consider `x` to be an attribute,
neither on the class nor on instances of `C`. If this turns out to be an
important feature, we should add it intentionally, instead of
accidentally.
## Test Plan
Ecosystem checks.
<!--
Thank you for contributing to Ruff/ty! To help us out with reviewing,
please consider the following:
- Does this pull request include a summary of the change? (See below.)
- Does this pull request include a descriptive title? (Please prefix
with `[ty]` for ty pull
requests.)
- Does this pull request include references to any relevant issues?
-->
## Summary
This PR implements
https://docs.astral.sh/ruff/rules/yield-from-in-async-function/ as a
syntax semantic error
## Test Plan
<!-- How was it tested? -->
I have written a simple inline test as directed in
[https://github.com/astral-sh/ruff/issues/17412](https://github.com/astral-sh/ruff/issues/17412)
---------
Signed-off-by: 11happy <soni5happy@gmail.com>
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
Co-authored-by: Brent Westbrook <36778786+ntBre@users.noreply.github.com>
This re-works the `all_symbols` based added previously to work across
all modules available, and not just what is directly in the workspace.
Note that we always pass an empty string as a query, which makes the
results always empty. We'll fix this in a subsequent commit.
This is to facilitate recursive traversal of all modules in an
environment. This way, we can keep asking for submodules.
This also simplifies how this is used in completions, and probably makes
it faster. Namely, since we return the `Module` itself, callers don't
need to invoke the full module resolver just to get the module type.
Note that this doesn't include namespace packages. (Which were
previously not supported in `Module::all_submodules`.) Given how they
can be spread out across multiple search paths, they will likely require
special consideration here.
This is similar to a change made in the "list top-level modules"
implementation that had been masked by poor Salsa failure modes.
Basically, if we can't find a root here, it *must* be a bug. And if we
just silently skip over it, we risk voiding Salsa's purity contract,
leading to more difficult to debug panics.
This did cause one test to fail, but only because the test wasn't
properly setting up roots.
## Summary
Thread visitors through the rest of `apply_type_mapping`: callable and
protocol types.
## Test Plan
Added mdtest that previously stack overflowed.
## Summary
We have the ability to defer type inference of some parts of
definitions, so as to allow us to create a type that may need to be
recursively referenced in those other parts of the definition.
We also have the ability to do type inference in a context where all
name resolution should be deferred (that is, names should be looked up
from all-reachable-definitions rather than from the location of use.)
This is used for all annotations in stubs, or if `from __future__ import
annotations` is active.
Previous to this PR, these two concepts were linked: deferred-inference
always implied deferred-name-resolution, though we also supported
deferred-name-resolution without deferred-inference, via
`DeferredExpressionState`.
For the upcoming `typing.TypeAlias` support, I will defer inference of
the entire RHS of the alias (so as to support cycles), but that doesn't
imply deferred name resolution; at runtime, the RHS of a name annotated
as `typing.TypeAlias` is executed eagerly.
So this PR fully de-couples the two concepts, instead explicitly setting
the `DeferredExpressionState` in those cases where we should defer name
resolution.
It also fixes a long-standing related bug, where we were deferring name
resolution of all names in class bases, if any of the class bases
contained a stringified annotation.
## Test Plan
Added test that failed before this PR.
## Summary
Fuzzer seed 208 seems to be timing out all fuzzer runs on PRs today.
This has happened on multiple unrelated PRs, as well as on an initial
version of this PR that made a comment-only change in ty and didn't skip
any seeds, so the timeout appears to be consistent in CI, on ty main
branch, as of today, but it started happening due to some change in a
factor outside ty; not sure what.
I checked the code generated for seed 208 locally, and it takes about
30s to check on current ty main branch. This is slow for a fuzzer seed,
but shouldn't be slow enough to make it time out after 20min in CI (even
accounting for GH runners being slower than my laptop.)
I tried to bisect the slowness of checking that code locally, but I
didn't go back far enough to find the change that made it slow. In fact
it seems like it became significantly faster in the last few days (on an
older checkout I had to stop it after several minutes.) So whatever the
cause of the slowness, it's not a recent change in ty.
I don't want to rabbit-hole on this right now (fuzzer-discovered issues
are lower-priority than real-world-code issues), and need a working CI,
so skip this seed for now until we can investigate it.
## Test Plan
CI. This PR contains a no-op (comment) change in ty, so that the fuzz
test is triggered in CI and we can verify it now works (as well as
verify, on the previous commit, that the fuzzer job is timing out on
that seed, even with just a no-op change in ty.)
Reverts astral-sh/ruff#20156. As @sharkdp noted in his post-merge
review, there were several issues with that PR that I didn't spot before
merging — but I'm out for four days now, and would rather not leave
things in an inconsistent state for that long. I'll revisit this on
Wednesday.
## Summary
These projects all check successfully now.
(Pandas still takes 9s, as the comment in `bad.txt` said, but I don't
think this is slow enough to exclude it; mypy-primer overall still runs
in 4 minutes, faster than e.g. the test suite on Windows.)
## Test Plan
mypy-primer CI.
## Summary
This error is about assigning to attributes rather than reading
attributes, so I think `invalid-assignment` makes more sense than
`invalid-attribute-access`
## Test Plan
existing mdtests updated
## Summary
In `is_disjoint_from_impl`, we should unpack type aliases before we
check `TypedDict`. This change probably doesn't have any visible effect
until we have a more discriminating implementation of disjointness for
`TypedDict`, but making the change now can avoid some confusion/bugs in
future.
In `type_ordering.rs`, we should order `TypedDict` near more similar
types, and leave Union/Intersection together at the end of the list.
This is not necessary for correctness, but it's more consistent and it
could have saved me some confusion trying to figure out why I was only
getting an unreachable panic when my code example included a `TypedDict`
type.
## Test Plan
None besides existing tests.
## Summary
Now that we have `Type::TypeAlias`, which can wrap a union, and the
possibility of unions including non-unpacked type aliases (which is
necessary to support recursive type aliases), we can no longer assume in
`UnionType::normalized_impl` that normalizing each element of an
existing union will result in a set of elements that we can order and
then place raw into `UnionType` to create a normalized union. It's now
possible for those elements to themselves include union types (unpacked
from an alias). So instead, we need to feed those elements into the full
`UnionBuilder` (with alias-unpacking turned on) to flatten/normalize
them, and then order them.
## Test Plan
Added mdtest.
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
## Summary
This PR fixes various TODOs around overload call when a variadic
argument is used.
The reason this bug existed is because the specialization wouldn't
account for unpacking the type of the variadic argument.
This is fixed by expanding `MatchedArgument` to contain the type of that
argument _only_ when it is a variadic argument. The reason is that
there's a split for when the argument type is inferred -- the
non-variadic arguments are inferred using `infer_argument_types` _after_
parameter matching while the variadic argument type is inferred _during_
the parameter matching. And, the `MatchedArgument` is populated _during_
parameter matching which means the unpacking would need to happen during
parameter matching.
This split seems a bit inconsistent but I don't want to spend a lot of
time on trying to merge them such that all argument type inference
happens in a single place. I might look into it while adding support for
`**kwargs`.
## Test Plan
Update existing tests by resolving the todos.
The ecosystem changes looks correct to me except for the `slice` call
but it seems that it's unrelated to this PR as we infer `slice[Any, Any,
Any]` for a `slice(1, 2, 3)` call on `main` as well
([playground](https://play.ty.dev/9eacce00-c7d5-4dd5-a932-4265cb2bb4f6)).
This PR adds an implementation of constraint sets.
An individual constraint restricts the specialization of a single
typevar to be within a particular lower and upper bound: the typevar can
only specialize to types that are a supertype of the lower bound, and a
subtype of the upper bound. (Note that lower and upper bounds are fully
static; we take the bottom and top materializations of the bounds to
remove any gradual forms if needed.) Either bound can be “closed” (where
the bound is a valid specialization), or “open” (where it is not).
You can then build up more complex constraint sets using union,
intersection, and negation operations. We use a disjunctive normal form
(DNF) representation, just like we do for types: a _constraint set_ is
the union of zero or more _clauses_, each of which is the intersection
of zero or more individual constraints. Note that the constraint set
that contains no clauses is never satisfiable (`⋃ {} = 0`); and the
constraint set that contains a single clause, which contains no
constraints, is always satisfiable (`⋃ {⋂ {}} = 1`).
One thing to note is that this PR does not change the logic of the
actual assignability checks, and in particular, we still aren't ever
trying to create an "individual constraint" that constrains a typevar.
Technically we're still operating only on `bool`s, since we only ever
instantiate `C::always_satisfiable` (i.e., `true`) and
`C::unsatisfiable` (i.e., `false`) in the `has_relation_to` methods. So
if you thought that #19838 introduced an unnecessarily complex stand-in
for `bool`, well here you go, this one is worse! (But still seemingly
not yielding a performance regression!) The next PR in this series,
#20093, is where we will actually create some non-trivial constraint
sets and use them in anger.
That said, the PR does go ahead and update the assignability checks to
use the new `ConstraintSet` type instead of `bool`. That part is fairly
straightforward since we had already updated the assignability checks to
use the `Constraints` trait; we just have to actively choose a different
impl type. (For the `is_whatever` variants, which still return a `bool`,
we have to convert the constraint set, but the explicit
`is_always_satisfiable` calls serve as nice documentation of our
intent.)
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
This is a variant of #20076 that moves some complexity out of
`apply_type_mapping_impl` in `generics.rs`. The tradeoff is that now
every place that applies `TypeMapping::Specialization` must take care to
call `.materialize()` afterwards. (A previous version of this didn't
work because I had missed a spot where I had to call `.materialize()`.)
@carljm as asked in
https://github.com/astral-sh/ruff/pull/20076#discussion_r2305385298 .
## Summary
Decrease the maximum number of literals in a union before we collapse to
the supertype. The better fix for this will be
https://github.com/astral-sh/ty/issues/957, but it is very tempting to
solve this for now by simply decreasing the limit by one, to get below
the salsa limit of 200.
closes https://github.com/astral-sh/ty/issues/660
## Test Plan
Added a regression test that would previously lead to a "too many cycle
iterations" panic.
## Summary
With this PR, we stop performing boundness analysis for implicit
instance attributes:
```py
class C:
def __init__(self):
if False:
self.x = 1
C().x # would previously show an error, with this PR we pretend the attribute exists
```
This PR is potentially just a temporary measure until we find a better
fix. But I have already invested a lot of time trying to find the root
cause of https://github.com/astral-sh/ty/issues/758 (and [this
example](https://github.com/astral-sh/ty/issues/758#issuecomment-3206108262),
which I'm not entirely sure is related) and I still don't understand
what is going on. This PR fixes the performance problems in both of
these problems (in a rather crude way).
The impact of the proposed change on the ecosystem is small, and the
three new diagnostics are arguably true positives (previously hidden
because we considered the code unreachable, based on e.g. `assert`ions
that depended on implicit instance attributes). So this seems like a
reasonable fix for now.
Note that we still support cases like these:
```py
class D:
if False: # or any other expression that statically evaluates to `False`
x: int = 1
D().x # still an error
class E:
if False: # or any other expression that statically evaluates to `False`
def f(self):
self.x = 1
E().x # still an error
```
closes https://github.com/astral-sh/ty/issues/758
## Test Plan
Updated tests, benchmark results
## Summary
closes https://github.com/astral-sh/ty/issues/692
If the expression (or any child expressions) is not definitely bound the
reachability constraint evaluation is determined as ambiguous.
This fixes the infinite cycles panic in the following code:
```py
from typing import Literal
class Toggle:
def __init__(self: "Toggle"):
if not self.x:
self.x: Literal[True] = True
```
Credit of this solution is for David.
## Test Plan
- Added a test case with too many cycle iterations panic.
- Previous tests.
---------
Co-authored-by: David Peter <mail@david-peter.de>
Part of #994. This adds a new field to the Specialization struct to
record when we're dealing with the top or bottom materialization of an
invariant generic. It also implements subtyping and assignability for
these objects.
Next planned steps after this is done are to implement other operations
on top/bottom materializations; probably attribute access is an
important one.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
There are some situations that we have a confusing diagnostics due to
identical class names.
## Class with same name from different modules
```python
import pandas
import polars
df: pandas.DataFrame = polars.DataFrame()
```
This yields the following error:
**Actual:**
error: [invalid-assignment] "Object of type `DataFrame` is not
assignable to `DataFrame`"
**Expected**:
error: [invalid-assignment] "Object of type `polars.DataFrame` is not
assignable to `pandas.DataFrame`"
## Nested classes
```python
from enum import Enum
class A:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
class C:
class B(Enum):
ACTIVE = "active"
INACTIVE = "inactive"
```
**Actual**:
error: [invalid-assignment] "Object of type `Literal[B.ACTIVE]` is not
assignable to `B`"
**Expected**:
error: [invalid-assignment] "Object of type
`Literal[my_module.C.B.ACTIVE]` is not assignable to `my_module.A.B`"
## Solution
In this MR we added an heuristics to detect when to use a fully
qualified name:
- There is an invalid assignment and;
- They are two different classes and;
- They have the same name
The fully qualified name always includes:
- module name
- nested classes name
- actual class name
There was no `QualifiedDisplay` so I had to implement it from scratch.
I'm very new to the codebase, so I might have done things inefficiently,
so I appreciate feedback.
Should we pre-compute the fully qualified name or do it on demand?
## Not implemented
### Function-local classes
Should we approach this in a different PR?
**Example**:
```python
# t.py
from __future__ import annotations
def function() -> A:
class A:
pass
return A()
class A:
pass
a: A = function()
```
#### mypy
```console
t.py:8: error: Incompatible return value type (got "t.A@5", expected "t.A") [return-value]
```
From my testing the 5 in `A@5` comes from the like number.
#### ty
```console
error[invalid-return-type]: Return type does not match returned value
--> t.py:4:19
|
4 | def function() -> A:
| - Expected `A` because of return type
5 | class A:
6 | pass
7 |
8 | return A()
| ^^^ expected `A`, found `A`
|
info: rule `invalid-return-type` is enabled by default
```
Fixes https://github.com/astral-sh/ty/issues/848
---------
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
While looking at some logging output that I added to
`ReachabilityConstraintBuilder::add_and_constraint` in order to debug
https://github.com/astral-sh/ty/issues/1091, I noticed that it seemed to
suggest that the TDD was built in an imbalanced way for code like the
following, where we have a sequence of non-nested `if` conditions:
```py
def f(t1, t2, t3, t4, …):
x = 0
if t1:
x = 1
if t2:
x = 2
if t3:
x = 3
if t4:
x = 4
…
```
To understand this a bit better, I added some code to the
`ReachabilityConstraintBuilder` to render the resulting TDD. On `main`,
we get a tree that looks like the following, where you can see a pattern
of N sub-trees that grow linearly with N (number of `if` statements).
This results in an overall tree structure that has N² nodes (see graph
below):
<img alt="normal order"
src="https://github.com/user-attachments/assets/aab40ce9-e82a-4fcd-823a-811f05f15f66"
/>
If we zoom in to one of these subgraphs, we can see what the problem is.
When we add new constraints that represent combinations like `t1 AND ~t2
AND ~t3 AND t4 AND …`, they start with the evaluation of "early"
conditions (`t1`, `t2`, …). This means that we have to create new
subgraphs for each new `if` condition because there is little sharing
with the previous structure. We evaluate the Boolean condition in a
right-associative way: `t1 AND (~t2 AND (~t3 AND t4)))`:
<img width="500" align="center"
src="https://github.com/user-attachments/assets/31ea7182-9e00-4975-83df-d980464f545d"
/>
If we change the ordering of TDD atoms, we can change that to a
left-associative evaluation: `(((t1 AND ~t2) AND ~t3) AND t4) …`. This
means that we can re-use previous subgraphs `(t1 AND ~t2)`, which
results in a much more compact graph structure overall (note how "late"
conditions are now at the top, and "early" conditions are further down
in the graph):
<img alt="reverse order"
src="https://github.com/user-attachments/assets/96a6b7c1-3d35-4192-a917-0b2d24c6b144"
/>
If we count the number of TDD nodes for a growing number if `if`
statements, we can see that this change results in a slower growth. It's
worth noting that the growth is still superlinear, though:
<img width="800" height="600" alt="plot"
src="https://github.com/user-attachments/assets/22e8394f-e74e-4a9e-9687-0d41f94f2303"
/>
On the actual code from the referenced ticket (the `t_main.py` file
reduced to its main function, with the main function limited to 2000
lines instead of 11000 to allow the version on `main` to run to
completion), the effect is much more dramatic. Instead of 26 million TDD
nodes (`main`), we now only create 250 thousand (this branch), which is
slightly less than 1%.
The change in this PR allows us to build the semantic index and
type-check the problematic `t_main.py` file in
https://github.com/astral-sh/ty/issues/1091 in 9 seconds. This is still
not great, but an obvious improvement compared to running out of memory
after *minutes* of execution.
An open question remains whether this change is beneficial for all kinds
of code patterns, or just this linear sequence of `if` statements. It
does not seem unreasonable to think that referring to "earlier"
conditions is generally a good idea, but I learned from Doug that it's
generally not possible to find a TDD-construction heuristic that is
non-pathological for all kinds of inputs. Fortunately, it seems like
this change here results in performance improvements across *all of our
benchmarks*, which should increase the confidence in this change:
| Benchmark | Improvement |
|---------------------|-------------------------|
| hydra-zen | +13% |
| DateType | +5% |
| sympy (walltime) | +4% |
| attrs | +4% |
| pydantic (walltime) | +2% |
| pandas (walltime) | +2% |
| altair (walltime) | +2% |
| static-frame | +2% |
| anyio | +1% |
| freqtrade | +1% |
| colour-science | +1% |
| tanjun | +1% |
closes https://github.com/astral-sh/ty/issues/1091
---------
Co-authored-by: Douglas Creager <dcreager@dcreager.net>
## Summary
Properly preserve type qualifiers when accessing attributes on unions
and intersections. This is a prerequisite for
https://github.com/astral-sh/ruff/pull/19579.
Also fix a completely wrong implementation of
`map_with_boundness_and_qualifiers`. It now closely follows
`map_with_boundness` (just above).
## Test Plan
I thought about it, but didn't find any easy way to test this. This only
affected `Type::member`. Things like validation of attribute writes
(where type qualifiers like `ClassVar` and `Final` are important) were
already handling things correctly.
## Summary
Add a subtly different test case for recursive PEP 695 type aliases,
which does require that we relax our union simplification, so we don't
eagerly unpack aliases from user-provided union annotations.
## Test Plan
Added mdtest.
## Summary
This has been here for awhile (since our initial PEP 695 type alias
support) but isn't really correct. The right-hand-side of a PEP 695 type
alias is a distinct scope, and we don't mark it as an "eager" nested
scope, so it automatically gets "deferred" resolution of names from
outer scopes (just like a nested function). Thus it's
redundant/unnecessary for us to use `DeferredExpressionState::Deferred`
for resolving that RHS expression -- that's for deferring resolution of
individual names within a scope. Using it here causes us to wrongly
ignore applicable outer-scope narrowing.
## Test Plan
Added mdtest that failed before this PR (the second snippet -- the first
snippet always passed.)
## Summary
Implement validation for `TypedDict` constructor calls and dictionary
literal assignments, including support for `total=False` and proper
field management.
Also add support for `Required` and `NotRequired` type qualifiers in
`TypedDict` classes, along with proper inheritance behavior and the
`total=` parameter.
Support both constructor calls and dict literal syntax
part of https://github.com/astral-sh/ty/issues/154
### Basic Required Field Validation
```py
class Person(TypedDict):
name: str
age: int | None
# Error: Missing required field 'name' in TypedDict `Person` constructor
incomplete = Person(age=25)
# Error: Invalid argument to key "name" with declared type `str` on TypedDict `Person`
wrong_type = Person(name=123, age=25)
# Error: Invalid key access on TypedDict `Person`: Unknown key "extra"
extra_field = Person(name="Bob", age=25, extra=True)
```
<img width="773" height="191" alt="Screenshot 2025-08-07 at 17 59 22"
src="https://github.com/user-attachments/assets/79076d98-e85f-4495-93d6-a731aa72a5c9"
/>
### Support for `total=False`
```py
class OptionalPerson(TypedDict, total=False):
name: str
age: int | None
# All valid - all fields are optional with total=False
charlie = OptionalPerson()
david = OptionalPerson(name="David")
emily = OptionalPerson(age=30)
frank = OptionalPerson(name="Frank", age=25)
# But type validation and extra fields still apply
invalid_type = OptionalPerson(name=123) # Error: Invalid argument type
invalid_extra = OptionalPerson(extra=True) # Error: Invalid key access
```
### Dictionary Literal Validation
```py
# Type checking works for both constructors and dict literals
person: Person = {"name": "Alice", "age": 30}
reveal_type(person["name"]) # revealed: str
reveal_type(person["age"]) # revealed: int | None
# Error: Invalid key access on TypedDict `Person`: Unknown key "non_existing"
reveal_type(person["non_existing"]) # revealed: Unknown
```
### `Required`, `NotRequired`, `total`
```python
from typing import TypedDict
from typing_extensions import Required, NotRequired
class PartialUser(TypedDict, total=False):
name: Required[str] # Required despite total=False
age: int # Optional due to total=False
email: NotRequired[str] # Explicitly optional (redundant)
class User(TypedDict):
name: Required[str] # Explicitly required (redundant)
age: int # Required due to total=True
bio: NotRequired[str] # Optional despite total=True
# Valid constructions
partial = PartialUser(name="Alice") # name required, age optional
full = User(name="Bob", age=25) # name and age required, bio optional
# Inheritance maintains original field requirements
class Employee(PartialUser):
department: str # Required (new field)
# name: still Required (inherited)
# age: still optional (inherited)
emp = Employee(name="Charlie", department="Engineering") # ✅
Employee(department="Engineering") # ❌
e: Employee = {"age": 1} # ❌
```
<img width="898" height="683" alt="Screenshot 2025-08-11 at 22 02 57"
src="https://github.com/user-attachments/assets/4c1b18cd-cb2e-493a-a948-51589d121738"
/>
## Implementation
The implementation reuses existing validation logic done in
https://github.com/astral-sh/ruff/pull/19782
### ℹ️ Why I did NOT synthesize an `__init__` for `TypedDict`:
`TypedDict` inherits `dict.__init__(self, *args, **kwargs)` that accepts
all arguments.
The type resolution system finds this inherited signature **before**
looking for synthesized members.
So `own_synthesized_member()` is never called because a signature
already exists.
To force synthesis, you'd have to override Python’s inheritance
mechanism, which would break compatibility with the existing ecosystem.
This is why I went with ad-hoc validation. IMO it's the only viable
approach that respects Python’s
inheritance semantics while providing the required validation.
### Refacto of `Field`
**Before:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
default_ty: Option<Type<'db>>, // NamedTuple and dataclass only
init_only: bool, // dataclass only
init: bool, // dataclass only
is_required: Option<bool>, // TypedDict only
}
```
**After:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
kind: FieldKind<'db>,
}
enum FieldKind<'db> {
NamedTuple { default_ty: Option<Type<'db>> },
Dataclass { default_ty: Option<Type<'db>>, init_only: bool, init: bool },
TypedDict { is_required: bool },
}
```
## Test Plan
Updated Markdown tests
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This PR limits the argument type expansion size for an overload call
evaluation to 512.
The limit chosen is arbitrary but I've taken the 256 limit from Pyright
into account and bumped it x2 to start with.
Initially, I actually started out by trying to refactor the entire
argument type expansion to be lazy. Currently, expanding a single
argument at any position eagerly creates the combination (argument
lists) and returns that (`Vec<CallArguments>`) but I thought we could
make it lazier by converting the return type of `expand` from
`Iterator<Item = Vec<CallArguments>>` to `Iterator<Item = Iterator<Item
= CallArguments>>` but that's proving to be difficult to implement
mainly because we **need** to maintain the previous expansion to
generate the next expansion which is the main reason to use
`std::iter::successors` in the first place.
Another approach would be to eagerly expand all the argument types and
then use the `combinations` from `itertools` to generate the
combinations but we would need to find the "boundary" between arguments
lists produced from expanding argument at position 1 and position 2
because that's important for the algorithm.
Closes: https://github.com/astral-sh/ty/issues/868
## Test Plan
Add test case to demonstrate the limit along with the diagnostic
snapshot stating that the limit has been reached.