Commit Graph

17 Commits

Author SHA1 Message Date
Douglas Creager e867830848
[ty] Don't include already-bound legacy typevars in function generic context (#19558)
We now correctly exclude legacy typevars from enclosing scopes when
constructing the generic context for a generic function.

more detail:

A function is generic if it refers to legacy typevars in its signature:

```py
from typing import TypeVar

T = TypeVar("T")

def f(t: T) -> T:
    return t
```

Generic functions are allowed to appear inside of other generic
contexts. When they do, they can refer to the typevars of those
enclosing generic contexts, and that should not rebind the typevar:

```py
from typing import TypeVar, Generic

T = TypeVar("T")
U = TypeVar("U")

class C(Generic[T]):
    @staticmethod
    def method(t: T, u: U) -> None: ...

# revealed: def method(t: int, u: U) -> None
reveal_type(C[int].method)
```

This substitution was already being performed correctly, but we were
also still including the enclosing legacy typevars in the method's own
generic context, which can be seen via `ty_extensions.generic_context`
(which has been updated to work on generic functions and methods):

```py
from ty_extensions import generic_context

# before: tuple[T, U]
# after: tuple[U]
reveal_type(generic_context(C[int].method))
```

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
2025-07-25 18:14:19 -04:00
Shunsuke Shibayama de1f8177be
[ty] Improve protocol member type checking and relation handling (#18847)
Co-authored-by: Alex Waygood <alex.waygood@gmail.com>
2025-06-29 10:46:33 +00:00
Matthew Mckee e8ea40012a
[ty] Add generic inference for dataclasses (#18443)
## Summary

An issue seen here https://github.com/astral-sh/ty/issues/500

The `__init__` method of dataclasses had no inherited generic context,
so we could not infer the type of an instance from a constructor call
with generics

## Test Plan

Add tests to classes.md` in generics folder
2025-06-03 09:59:43 -07:00
Alex Waygood 0a11baf29c
[ty] Implement implicit inheritance from `Generic[]` for PEP-695 generic classes (#18283) 2025-05-26 20:40:16 +01:00
Alex Waygood d02c9ada5d
[ty] Do not carry the generic context of `Protocol` or `Generic` in the `ClassBase` enum (#17989)
## Summary

It doesn't seem to be necessary for our generics implementation to carry
the `GenericContext` in the `ClassBase` variants. Removing it simplifies
the code, fixes many TODOs about `Generic` or `Protocol` appearing
multiple times in MROs when each should only appear at most once, and
allows us to more accurately detect runtime errors that occur due to
`Generic` or `Protocol` appearing multiple times in a class's bases.

In order to remove the `GenericContext` from the `ClassBase` variant, it
turns out to be necessary to emulate
`typing._GenericAlias.__mro_entries__`, or we end up with a large number
of false-positive `inconsistent-mro` errors. This PR therefore also does
that.

Lastly, this PR fixes the inferred MROs of PEP-695 generic classes,
which implicitly inherit from `Generic` even if they have no explicit
bases.

## Test Plan

mdtests
2025-05-22 21:37:03 -04:00
Douglas Creager ce43dbab58
[ty] Promote literals when inferring class specializations from constructors (#18102)
This implements the stopgap approach described in
https://github.com/astral-sh/ty/issues/336#issuecomment-2880532213 for
handling literal types in generic class specializations.

With this approach, we will promote any literal to its instance type,
but _only_ when inferring a generic class specialization from a
constructor call:

```py
class C[T]:
    def __init__(self, x: T) -> None: ...

reveal_type(C("string"))  # revealed: C[str]
```

If you specialize the class explicitly, we still use whatever type you
provide, even if it's a literal:

```py
from typing import Literal

reveal_type(C[Literal[5]](5))  # revealed: C[Literal[5]]
```

And this doesn't apply at all to generic functions:

```py
def f[T](x: T) -> T:
    return x

reveal_type(f(5))  # revealed: Literal[5]
```

---

As part of making this happen, we also generalize the `TypeMapping`
machinery. This provides a way to apply a function to type, returning a
new type. Complicating matters is that for function literals, we have to
apply the mapping lazily, since the function's signature is not created
until (and if) someone calls its `signature` method. That means we have
to stash away the mappings that we want to apply to the signatures
parameter/return annotations once we do create it. This requires some
minor `Cow` shenanigans to continue working for partial specializations.
2025-05-19 15:42:54 -04:00
Douglas Creager 4fad15805b
[ty] Use first matching constructor overload when inferring specializations (#18204)
This is a follow-on to #18155. For the example raised in
https://github.com/astral-sh/ty/issues/370:

```py
import tempfile

with tempfile.TemporaryDirectory() as tmp: ...
```

the new logic would notice that both overloads of `TemporaryDirectory`
match, and combine their specializations, resulting in an inferred type
of `str | bytes`.

This PR updates the logic to match our other handling of other calls,
where we only keep the _first_ matching overload. The result for this
example then becomes `str`, matching the runtime behavior. (We still do
not implement the full [overload resolution
algorithm](https://typing.python.org/en/latest/spec/overload.html#overload-call-evaluation)
from the spec.)
2025-05-19 15:12:28 -04:00
Douglas Creager 97058e8093
[ty] Infer function call typevars in both directions (#18155)
This primarily comes up with annotated `self` parameters in
constructors:

```py
class C[T]:
    def __init__(self: C[int]): ...
```

Here, we want infer a specialization of `{T = int}` for a call that hits
this overload.

Normally when inferring a specialization of a function call, typevars
appear in the parameter annotations, and not in the argument types. In
this case, this is reversed: we need to verify that the `self` argument
(`C[T]`, as we have not yet completed specialization inference) is
assignable to the parameter type `C[int]`.

To do this, we simply look for a typevar/type in both directions when
performing inference, and apply the inferred specialization to argument
types as well as parameter types before verifying assignability.

As a wrinkle, this exposed that we were not checking
subtyping/assignability for function literals correctly. Our function
literal representation includes an optional specialization that should
be applied to the signature. Before, function literals were considered
subtypes of (assignable to) each other only if they were identical Salsa
objects. Two function literals with different specializations should
still be considered subtypes of (assignable to) each other if those
specializations result in the same function signature (typically because
the function doesn't use the typevars in the specialization).

Closes https://github.com/astral-sh/ty/issues/370
Closes https://github.com/astral-sh/ty/issues/100
Closes https://github.com/astral-sh/ty/issues/258

---------

Co-authored-by: Carl Meyer <carl@astral.sh>
2025-05-19 11:45:40 -04:00
Douglas Creager bdccb37b4a
[ty] Apply function specialization to all overloads (#18020)
Function literals have an optional specialization, which is applied to
the parameter/return type annotations lazily when the function's
signature is requested. We were previously only applying this
specialization to the final overload of an overloaded function.

This manifested most visibly for `list.__add__`, which has an overloaded
definition in the typeshed:


b398b83631/crates/ty_vendored/vendor/typeshed/stdlib/builtins.pyi (L1069-L1072)

Closes https://github.com/astral-sh/ty/issues/314
2025-05-12 13:48:54 -04:00
Andrew Gallant 346e82b572 ty_python_semantic: add union type context to function call type errors
This context gets added only when calling a function through a union
type.
2025-05-09 13:40:51 -04:00
Alex Waygood d1bb10a66b
[ty] Understand classes that inherit from subscripted `Protocol[]` as generic (#17832) 2025-05-09 17:39:15 +01:00
Alex Waygood 9b694ada82
[ty] Report duplicate `Protocol` or `Generic` base classes with `[duplicate-base]`, not `[inconsistent-mro]` (#17971) 2025-05-08 23:41:22 +01:00
Charlie Marsh a2e9a7732a
Update class literal display to use `<class 'Foo'>` style (#17889)
## Summary

Closes https://github.com/astral-sh/ruff/issues/17238.
2025-05-06 20:11:25 -04:00
Douglas Creager 9085f18353
[ty] Propagate specializations to ancestor base classes (#17892)
@AlexWaygood discovered that even though we've been propagating
specializations to _parent_ base classes correctly, we haven't been
passing them on to _grandparent_ base classes:
https://github.com/astral-sh/ruff/pull/17832#issuecomment-2854360969

```py
class Bar[T]:
    x: T

class Baz[T](Bar[T]): ...
class Spam[T](Baz[T]): ...

reveal_type(Spam[int]().x) # revealed: `T`, but should be `int`
```

This PR updates the MRO machinery to apply the current specialization
when starting to iterate the MRO of each base class.
2025-05-06 14:25:21 -04:00
Douglas Creager ada4c4cb1f
[ty] Don't require default typevars when specializing (#17872)
If a typevar is declared as having a default, we shouldn't require a
type to be specified for that typevar when explicitly specializing a
generic class:

```py
class WithDefault[T, U = int]: ...

reveal_type(WithDefault[str]())  # revealed: WithDefault[str, int]
```

---------

Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
2025-05-05 18:29:30 -04:00
Douglas Creager 47e3aa40b3
[ty] Specialize bound methods and nominal instances (#17865)
Fixes
https://github.com/astral-sh/ruff/pull/17832#issuecomment-2851224968. We
had a comment that we did not need to apply specializations to generic
aliases, or to the bound `self` of a bound method, because they were
already specialized. But they might be specialized with a type variable,
which _does_ need to be specialized, in the case of a "multi-step"
specialization, such as:

```py
class LinkedList[T]: ...

class C[U]:
    def method(self) -> LinkedList[U]:
        return LinkedList[U]()
```

---------

Co-authored-by: Alex Waygood <Alex.Waygood@Gmail.com>
2025-05-05 17:17:36 -04:00
Micha Reiser b51c4f82ea
Rename Red Knot (#17820) 2025-05-03 19:49:15 +02:00