## Summary
This PR updates Salsa to pull in Ibraheem's multithreading improvements (https://github.com/salsa-rs/salsa/pull/921).
## Performance
A small regression for single-threaded benchmarks is expected because
papaya is slightly slower than a `Mutex<FxHashMap>` in the uncontested
case (~10%). However, this shouldn't matter as much in practice because:
1. Salsa has a fast-path when only using 1 DB instance which is the
common case in production. This fast-path is not impacted by the changes
but we measure the slow paths in our benchmarks (because we use multiple
db instances)
2. Fixing the 10x slowdown for the congested case (multi threading)
outweights the downsides of a 10% perf regression for single threaded
use cases, especially considering that ty is heavily multi threaded.
## Test Plan
`cargo test`
## Summary
Setting `TY_MEMORY_REPORT=full` will generate and print a memory usage
report to the CLI after a `ty check` run:
```
=======SALSA STRUCTS=======
`Definition` metadata=7.24MB fields=17.38MB count=181062
`Expression` metadata=4.45MB fields=5.94MB count=92804
`member_lookup_with_policy_::interned_arguments` metadata=1.97MB fields=2.25MB count=35176
...
=======SALSA QUERIES=======
`File -> ty_python_semantic::semantic_index::SemanticIndex`
metadata=11.46MB fields=88.86MB count=1638
`Definition -> ty_python_semantic::types::infer::TypeInference`
metadata=24.52MB fields=86.68MB count=146018
`File -> ruff_db::parsed::ParsedModule`
metadata=0.12MB fields=69.06MB count=1642
...
=======SALSA SUMMARY=======
TOTAL MEMORY USAGE: 577.61MB
struct metadata = 29.00MB
struct fields = 35.68MB
memo metadata = 103.87MB
memo fields = 409.06MB
```
Eventually, we should integrate these numbers into CI in some form. The
one limitation currently is that heap allocations in salsa structs (e.g.
interned values) are not tracked, but memoized values should have full
coverage. We may also want a peak memory usage counter (that accounts
for non-salsa memory), but that is relatively simple to profile manually
(e.g. `time -v ty check`) and would require a compile-time option to
avoid runtime overhead.
This causes spurious query cycles.
This PR also includes an update to Salsa, which gives us db events on
cycle iteration, so we can write tests asserting the absence of a cycle.
## Summary
Update Salsa to pull in https://github.com/salsa-rs/salsa/pull/788 which
fixes the, by now, famous *access to field whilst the value is being
initialized*.
This PR also re-enables all tests that previously triggered the panic.
## Test Plan
`cargo test`
Update to latest Salsa main branch, so as to get a baseline for
measuring the perf effect of https://github.com/salsa-rs/salsa/pull/786
on red-knot in isolation from other recent changes in Salsa main branch.
## Summary
Another salsa upgrade.
The main motivation is to stay on a recent salsa version because there
are still a lot of breaking changes happening.
The most significant changes in this update:
* Salsa no longer derives `Debug` by default. It now requires
`interned(debug)` (or similar)
* This version ships the foundation for garbage collecting interned
values. However, this comes at the cost that queries now track which
interned values they created (or read). The micro benchmarks in the
salsa repo showed a significant perf regression. Will see if this also
visible in our benchmarks.
## Test Plan
`cargo test`
Pulls in the latest Salsa main branch, which supports fixpoint
iteration, and uses it to handle all query cycles.
With this, we no longer need to skip any corpus files to avoid panics.
Latest perf results show a 6% incremental and 1% cold-check regression.
This is not a "no cycles" regression, as tomllib and typeshed do trigger
some definition cycles (previously handled by our old
`infer_definition_types` fallback to `Unknown`). We don't currently have
a benchmark we can use to measure the pure no-cycles regression, though
I expect there would still be some regression; the fixpoint iteration
feature in Salsa does add some overhead even for non-cyclic queries.
I think this regression is within the reasonable range for this feature.
We can do further optimization work later, but I don't think it's the
top priority right now. So going ahead and acknowledging the regression
on CodSpeed.
Mypy primer is happy, so this doesn't regress anything on our
currently-checked projects. I expect it probably unlocks adding a number
of new projects to our ecosystem check that previously would have
panicked.
Fixes#13792Fixes#14672
Update to latest Salsa main branch. This provides a point of comparison
for the perf impact of fixpoint iteration, which is based on latest
Salsa main.
This requires an update to the locked version of our boxcar dep, since
Salsa now depends on a newer version of boxcar.
## Summary
Transition to using coarse-grained tracked structs (depends on
https://github.com/salsa-rs/salsa/pull/657). For now, this PR doesn't
add any `#[tracked]` fields, meaning that any changes cause the entire
struct to be invalidated. It also changes `AstNodeRef` to be
compared/hashed by pointer address, instead of performing a deep AST
comparison.
## Test Plan
This yields a 10-15% improvement on my machine (though weirdly some runs
were 5-10% without being flagged as inconsistent by criterion, is there
some non-determinism involved?). It's possible that some of this is
unrelated, I'll try applying the patch to the current salsa version to
make sure.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This PR adds a fuzzer harness for red knot that runs the type checker on
source code that contains invalid syntax.
Additionally, this PR also updates the `init-fuzzer.sh` script to
increase the corpus size to:
* Include various crates that includes Python source code
* Use the 3.13 CPython source code
And, remove any non-Python files from the final corpus so that when the
fuzzer tries to minify the corpus, it doesn't produce files that only
contains documentation content as that's just noise.
## Test Plan
Run `./fuzz/init-fuzzer.sh`, say no to the large dataset.
Run the fuzzer with `cargo +night fuzz run red_knot_check_invalid_syntax
-- -timeout=5`
## Summary
This PR removes unused dependencies from `fuzz` crate and syncs the
`similar` crate to the workspace version. This will help in resolve
https://github.com/astral-sh/ruff/pull/12442.
## Test Plan
Build the fuzz crate:
For Mac (it requires the nightly build):
```
cargo +nightly fuzz build
```
## Summary
This PR updates the entire parser stack in multiple ways:
### Make the lexer lazy
* https://github.com/astral-sh/ruff/pull/11244
* https://github.com/astral-sh/ruff/pull/11473
Previously, Ruff's lexer would act as an iterator. The parser would
collect all the tokens in a vector first and then process the tokens to
create the syntax tree.
The first task in this project is to update the entire parsing flow to
make the lexer lazy. This includes the `Lexer`, `TokenSource`, and
`Parser`. For context, the `TokenSource` is a wrapper around the `Lexer`
to filter out the trivia tokens[^1]. Now, the parser will ask the token
source to get the next token and only then the lexer will continue and
emit the token. This means that the lexer needs to be aware of the
"current" token. When the `next_token` is called, the current token will
be updated with the newly lexed token.
The main motivation to make the lexer lazy is to allow re-lexing a token
in a different context. This is going to be really useful to make the
parser error resilience. For example, currently the emitted tokens
remains the same even if the parser can recover from an unclosed
parenthesis. This is important because the lexer emits a
`NonLogicalNewline` in parenthesized context while a normal `Newline` in
non-parenthesized context. This different kinds of newline is also used
to emit the indentation tokens which is important for the parser as it's
used to determine the start and end of a block.
Additionally, this allows us to implement the following functionalities:
1. Checkpoint - rewind infrastructure: The idea here is to create a
checkpoint and continue lexing. At a later point, this checkpoint can be
used to rewind the lexer back to the provided checkpoint.
2. Remove the `SoftKeywordTransformer` and instead use lookahead or
speculative parsing to determine whether a soft keyword is a keyword or
an identifier
3. Remove the `Tok` enum. The `Tok` enum represents the tokens emitted
by the lexer but it contains owned data which makes it expensive to
clone. The new `TokenKind` enum just represents the type of token which
is very cheap.
This brings up a question as to how will the parser get the owned value
which was stored on `Tok`. This will be solved by introducing a new
`TokenValue` enum which only contains a subset of token kinds which has
the owned value. This is stored on the lexer and is requested by the
parser when it wants to process the data. For example:
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L1260-L1262)
[^1]: Trivia tokens are `NonLogicalNewline` and `Comment`
### Remove `SoftKeywordTransformer`
* https://github.com/astral-sh/ruff/pull/11441
* https://github.com/astral-sh/ruff/pull/11459
* https://github.com/astral-sh/ruff/pull/11442
* https://github.com/astral-sh/ruff/pull/11443
* https://github.com/astral-sh/ruff/pull/11474
For context,
https://github.com/RustPython/RustPython/pull/4519/files#diff-5de40045e78e794aa5ab0b8aacf531aa477daf826d31ca129467703855408220
added support for soft keywords in the parser which uses infinite
lookahead to classify a soft keyword as a keyword or an identifier. This
is a brilliant idea as it basically wraps the existing Lexer and works
on top of it which means that the logic for lexing and re-lexing a soft
keyword remains separate. The change here is to remove
`SoftKeywordTransformer` and let the parser determine this based on
context, lookahead and speculative parsing.
* **Context:** The transformer needs to know the position of the lexer
between it being at a statement position or a simple statement position.
This is because a `match` token starts a compound statement while a
`type` token starts a simple statement. **The parser already knows
this.**
* **Lookahead:** Now that the parser knows the context it can perform
lookahead of up to two tokens to classify the soft keyword. The logic
for this is mentioned in the PR implementing it for `type` and `match
soft keyword.
* **Speculative parsing:** This is where the checkpoint - rewind
infrastructure helps. For `match` soft keyword, there are certain cases
for which we can't classify based on lookahead. The idea here is to
create a checkpoint and keep parsing. Based on whether the parsing was
successful and what tokens are ahead we can classify the remaining
cases. Refer to #11443 for more details.
If the soft keyword is being parsed in an identifier context, it'll be
converted to an identifier and the emitted token will be updated as
well. Refer
8196720f80/crates/ruff_python_parser/src/parser/expression.rs (L487-L491).
The `case` soft keyword doesn't require any special handling because
it'll be a keyword only in the context of a match statement.
### Update the parser API
* https://github.com/astral-sh/ruff/pull/11494
* https://github.com/astral-sh/ruff/pull/11505
Now that the lexer is in sync with the parser, and the parser helps to
determine whether a soft keyword is a keyword or an identifier, the
lexer cannot be used on its own. The reason being that it's not
sensitive to the context (which is correct). This means that the parser
API needs to be updated to not allow any access to the lexer.
Previously, there were multiple ways to parse the source code:
1. Passing the source code itself
2. Or, passing the tokens
Now that the lexer and parser are working together, the API
corresponding to (2) cannot exists. The final API is mentioned in this
PR description: https://github.com/astral-sh/ruff/pull/11494.
### Refactor the downstream tools (linter and formatter)
* https://github.com/astral-sh/ruff/pull/11511
* https://github.com/astral-sh/ruff/pull/11515
* https://github.com/astral-sh/ruff/pull/11529
* https://github.com/astral-sh/ruff/pull/11562
* https://github.com/astral-sh/ruff/pull/11592
And, the final set of changes involves updating all references of the
lexer and `Tok` enum. This was done in two-parts:
1. Update all the references in a way that doesn't require any changes
from this PR i.e., it can be done independently
* https://github.com/astral-sh/ruff/pull/11402
* https://github.com/astral-sh/ruff/pull/11406
* https://github.com/astral-sh/ruff/pull/11418
* https://github.com/astral-sh/ruff/pull/11419
* https://github.com/astral-sh/ruff/pull/11420
* https://github.com/astral-sh/ruff/pull/11424
2. Update all the remaining references to use the changes made in this
PR
For (2), there were various strategies used:
1. Introduce a new `Tokens` struct which wraps the token vector and add
methods to query a certain subset of tokens. These includes:
1. `up_to_first_unknown` which replaces the `tokenize` function
2. `in_range` and `after` which replaces the `lex_starts_at` function
where the former returns the tokens within the given range while the
latter returns all the tokens after the given offset
2. Introduce a new `TokenFlags` which is a set of flags to query certain
information from a token. Currently, this information is only limited to
any string type token but can be expanded to include other information
in the future as needed. https://github.com/astral-sh/ruff/pull/11578
3. Move the `CommentRanges` to the parsed output because this
information is common to both the linter and the formatter. This removes
the need for `tokens_and_ranges` function.
## Test Plan
- [x] Update and verify the test snapshots
- [x] Make sure the entire test suite is passing
- [x] Make sure there are no changes in the ecosystem checks
- [x] Run the fuzzer on the parser
- [x] Run this change on dozens of open-source projects
### Running this change on dozens of open-source projects
Refer to the PR description to get the list of open source projects used
for testing.
Now, the following tests were done between `main` and this branch:
1. Compare the output of `--select=E999` (syntax errors)
2. Compare the output of default rule selection
3. Compare the output of `--select=ALL`
**Conclusion: all output were same**
## What's next?
The next step is to introduce re-lexing logic and update the parser to
feed the recovery information to the lexer so that it can emit the
correct token. This moves us one step closer to having error resilience
in the parser and provides Ruff the possibility to lint even if the
source code contains syntax errors.
(Supersedes #9152, authored by @LaBatata101)
## Summary
This PR replaces the current parser generated from LALRPOP to a
hand-written recursive descent parser.
It also updates the grammar for [PEP
646](https://peps.python.org/pep-0646/) so that the parser outputs the
correct AST. For example, in `data[*x]`, the index expression is now a
tuple with a single starred expression instead of just a starred
expression.
Beyond the performance improvements, the parser is also error resilient
and can provide better error messages. The behavior as seen by any
downstream tools isn't changed. That is, the linter and formatter can
still assume that the parser will _stop_ at the first syntax error. This
will be updated in the following months.
For more details about the change here, refer to the PR corresponding to
the individual commits and the release blog post.
## Test Plan
Write _lots_ and _lots_ of tests for both valid and invalid syntax and
verify the output.
## Acknowledgements
- @MichaReiser for reviewing 100+ parser PRs and continuously providing
guidance throughout the project
- @LaBatata101 for initiating the transition to a hand-written parser in
#9152
- @addisoncrump for implementing the fuzzer which helped
[catch](https://github.com/astral-sh/ruff/pull/10903)
[a](https://github.com/astral-sh/ruff/pull/10910)
[lot](https://github.com/astral-sh/ruff/pull/10966)
[of](https://github.com/astral-sh/ruff/pull/10896)
[bugs](https://github.com/astral-sh/ruff/pull/10877)
---------
Co-authored-by: Victor Hugo Gomes <labatata101@linuxmail.org>
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This PR adds the implementation for the new Jupyter AST nodes i.e.,
`ExprLineMagic` and `StmtLineMagic`.
## Test Plan
Add test cases for `unparse` containing magic commands
resolves: #6087
**Summary** I accidentally merged earlier while the RustPython parser
rev was still pointing to the feature branch instead of to the merged
main. This make the rev point to the RustPython parser repo main again
**Summary** Fix implemented in
https://github.com/astral-sh/RustPython-Parser/pull/35: Previously,
empty lambda arguments (e.g. `lambda: 1`) would get the range of the
entire expression, which leads to incorrect comment placement. Now empty
lambda arguments get an empty range between the `lambda` and the `:`
tokens.
**Test Plan** Added a regression test.
149 instances of unstable formatting remaining.
```
$ cargo run --bin ruff_dev --release -- format-dev --stability-check --error-file formatter-ecosystem-errors.txt --multi-project target/checkouts > formatter-ecosystem-progress.txt
$ rg "Unstable formatting" target/formatter-ecosystem-errors.txt | wc -l
149
```
Following https://github.com/astral-sh/RustPython-Parser/pull/27 we now
cherry-pick commits onto our fork instead of rebasing our fork on top of
the upstream which means we do not overwrite history and a tag is not
necessary to preserve the pinned commit.
In the future, we may rewrite the history in our fork. If we do, we
should return to tagging the commits.
## Summary
Previously, `StmtIf` was defined recursively as
```rust
pub struct StmtIf {
pub range: TextRange,
pub test: Box<Expr>,
pub body: Vec<Stmt>,
pub orelse: Vec<Stmt>,
}
```
Every `elif` was represented as an `orelse` with a single `StmtIf`. This
means that this representation couldn't differentiate between
```python
if cond1:
x = 1
else:
if cond2:
x = 2
```
and
```python
if cond1:
x = 1
elif cond2:
x = 2
```
It also makes many checks harder than they need to be because we have to
recurse just to iterate over an entire if-elif-else and because we're
lacking nodes and ranges on the `elif` and `else` branches.
We change the representation to a flat
```rust
pub struct StmtIf {
pub range: TextRange,
pub test: Box<Expr>,
pub body: Vec<Stmt>,
pub elif_else_clauses: Vec<ElifElseClause>,
}
pub struct ElifElseClause {
pub range: TextRange,
pub test: Option<Expr>,
pub body: Vec<Stmt>,
}
```
where `test: Some(_)` represents an `elif` and `test: None` an else.
This representation is different tradeoff, e.g. we need to allocate the
`Vec<ElifElseClause>`, the `elif`s are now different than the `if`s
(which matters in rules where want to check both `if`s and `elif`s) and
the type system doesn't guarantee that the `test: None` else is actually
last. We're also now a bit more inconsistent since all other `else`,
those from `for`, `while` and `try`, still don't have nodes. With the
new representation some things became easier, e.g. finding the `elif`
token (we can use the start of the `ElifElseClause`) and formatting
comments for if-elif-else (no more dangling comments splitting, we only
have to insert the dangling comment after the colon manually and set
`leading_alternate_branch_comments`, everything else is taken of by
having nodes for each branch and the usual placement.rs fixups).
## Merge Plan
This PR requires coordination between the parser repo and the main ruff
repo. I've split the ruff part, into two stacked PRs which have to be
merged together (only the second one fixes all tests), the first for the
formatter to be reviewed by @michareiser and the second for the linter
to be reviewed by @charliermarsh.
* MH: Review and merge
https://github.com/astral-sh/RustPython-Parser/pull/20
* MH: Review and merge or move later in stack
https://github.com/astral-sh/RustPython-Parser/pull/21
* MH: Review and approve
https://github.com/astral-sh/RustPython-Parser/pull/22
* MH: Review and approve formatter PR
https://github.com/astral-sh/ruff/pull/5459
* CM: Review and approve linter PR
https://github.com/astral-sh/ruff/pull/5460
* Merge linter PR in formatter PR, fix ecosystem checks (ecosystem
checks can't run on the formatter PR and won't run on the linter PR, so
we need to merge them first)
* Merge https://github.com/astral-sh/RustPython-Parser/pull/22
* Create tag in the parser, update linter+formatter PR
* Merge linter+formatter PR https://github.com/astral-sh/ruff/pull/5459
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
This formats call expressions with magic trailing comma and parentheses
behaviour but without call chaining
## Test Plan
Lots of new test fixtures, including some that don't work yet