## Summary
This PR wires up the GitHub output format moved to `ruff_db` in #20320
to the ty CLI.
It's a bit smaller than the GitLab version (#20155) because some of the
helpers were already in place, but I did factor out a few
`DisplayDiagnosticConfig` constructor calls in Ruff. I also exposed the
`GithubRenderer` and a wrapper `DisplayGithubDiagnostics` type because
we needed a way to configure the program name displayed in the GitHub
diagnostics. This was previously hard-coded to `Ruff`:
<img width="675" height="247" alt="image"
src="https://github.com/user-attachments/assets/592da860-d2f5-4abd-bc5a-66071d742509"
/>
Another option would be to drop the program name in the output format,
but I think it can be helpful in workflows with multiple programs
emitting annotations (such as Ruff and ty!)
## Test Plan
New CLI test, and a manual test with `--config 'terminal.output-format =
"github"'`
## Summary
I felt it was safer to add the `python` folder *in addition* to a
possibly-existing `src` folder, even though the `src` folder only
contains Rust code for `maturin`-based projects. There might be
non-maturin projects where a `python` folder exists for other reasons,
next to a normal `src` layout.
closes https://github.com/astral-sh/ty/issues/1120
## Test Plan
Tested locally on the egglog-python project.
## Summary
This wires up the GitLab output format moved into `ruff_db` in
https://github.com/astral-sh/ruff/pull/20117 to the ty CLI.
While I was here, I made one unrelated change to the CLI docs. Clap was
rendering the escapes around the `\[default\]` brackets for the `full`
output, so I just switched those to parentheses:
```
--output-format <OUTPUT_FORMAT>
The format to use for printing diagnostic messages
Possible values:
- full: Print diagnostics verbosely, with context and helpful hints \[default\]
- concise: Print diagnostics concisely, one per line
- gitlab: Print diagnostics in the JSON format expected by GitLab Code Quality reports
```
## Test Plan
New CLI test, and a manual test with `--config 'terminal.output-format =
"gitlab"'` to make sure this works as a configuration option too. I also
tried piping the output through jq to make sure it's at least valid JSON
## Summary
Implement validation for `TypedDict` constructor calls and dictionary
literal assignments, including support for `total=False` and proper
field management.
Also add support for `Required` and `NotRequired` type qualifiers in
`TypedDict` classes, along with proper inheritance behavior and the
`total=` parameter.
Support both constructor calls and dict literal syntax
part of https://github.com/astral-sh/ty/issues/154
### Basic Required Field Validation
```py
class Person(TypedDict):
name: str
age: int | None
# Error: Missing required field 'name' in TypedDict `Person` constructor
incomplete = Person(age=25)
# Error: Invalid argument to key "name" with declared type `str` on TypedDict `Person`
wrong_type = Person(name=123, age=25)
# Error: Invalid key access on TypedDict `Person`: Unknown key "extra"
extra_field = Person(name="Bob", age=25, extra=True)
```
<img width="773" height="191" alt="Screenshot 2025-08-07 at 17 59 22"
src="https://github.com/user-attachments/assets/79076d98-e85f-4495-93d6-a731aa72a5c9"
/>
### Support for `total=False`
```py
class OptionalPerson(TypedDict, total=False):
name: str
age: int | None
# All valid - all fields are optional with total=False
charlie = OptionalPerson()
david = OptionalPerson(name="David")
emily = OptionalPerson(age=30)
frank = OptionalPerson(name="Frank", age=25)
# But type validation and extra fields still apply
invalid_type = OptionalPerson(name=123) # Error: Invalid argument type
invalid_extra = OptionalPerson(extra=True) # Error: Invalid key access
```
### Dictionary Literal Validation
```py
# Type checking works for both constructors and dict literals
person: Person = {"name": "Alice", "age": 30}
reveal_type(person["name"]) # revealed: str
reveal_type(person["age"]) # revealed: int | None
# Error: Invalid key access on TypedDict `Person`: Unknown key "non_existing"
reveal_type(person["non_existing"]) # revealed: Unknown
```
### `Required`, `NotRequired`, `total`
```python
from typing import TypedDict
from typing_extensions import Required, NotRequired
class PartialUser(TypedDict, total=False):
name: Required[str] # Required despite total=False
age: int # Optional due to total=False
email: NotRequired[str] # Explicitly optional (redundant)
class User(TypedDict):
name: Required[str] # Explicitly required (redundant)
age: int # Required due to total=True
bio: NotRequired[str] # Optional despite total=True
# Valid constructions
partial = PartialUser(name="Alice") # name required, age optional
full = User(name="Bob", age=25) # name and age required, bio optional
# Inheritance maintains original field requirements
class Employee(PartialUser):
department: str # Required (new field)
# name: still Required (inherited)
# age: still optional (inherited)
emp = Employee(name="Charlie", department="Engineering") # ✅
Employee(department="Engineering") # ❌
e: Employee = {"age": 1} # ❌
```
<img width="898" height="683" alt="Screenshot 2025-08-11 at 22 02 57"
src="https://github.com/user-attachments/assets/4c1b18cd-cb2e-493a-a948-51589d121738"
/>
## Implementation
The implementation reuses existing validation logic done in
https://github.com/astral-sh/ruff/pull/19782
### ℹ️ Why I did NOT synthesize an `__init__` for `TypedDict`:
`TypedDict` inherits `dict.__init__(self, *args, **kwargs)` that accepts
all arguments.
The type resolution system finds this inherited signature **before**
looking for synthesized members.
So `own_synthesized_member()` is never called because a signature
already exists.
To force synthesis, you'd have to override Python’s inheritance
mechanism, which would break compatibility with the existing ecosystem.
This is why I went with ad-hoc validation. IMO it's the only viable
approach that respects Python’s
inheritance semantics while providing the required validation.
### Refacto of `Field`
**Before:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
default_ty: Option<Type<'db>>, // NamedTuple and dataclass only
init_only: bool, // dataclass only
init: bool, // dataclass only
is_required: Option<bool>, // TypedDict only
}
```
**After:**
```rust
struct Field<'db> {
declared_ty: Type<'db>,
kind: FieldKind<'db>,
}
enum FieldKind<'db> {
NamedTuple { default_ty: Option<Type<'db>> },
Dataclass { default_ty: Option<Type<'db>>, init_only: bool, init: bool },
TypedDict { is_required: bool },
}
```
## Test Plan
Updated Markdown tests
---------
Co-authored-by: David Peter <mail@david-peter.de>
## Summary
This PR adds a new lint, `invalid-await`, for all sorts of reasons why
an object may not be `await`able, as discussed in astral-sh/ty#919.
Precisely, `__await__` is guarded against being missing, possibly
unbound, or improperly defined (expects additional arguments or doesn't
return an iterator).
Of course, diagnostics need to be fine-tuned. If `__await__` cannot be
called with no extra arguments, it indicates an error (or a quirk?) in
the method signature, not at the call site. Without any doubt, such an
object is not `Awaitable`, but I feel like talking about arguments for
an *implicit* call is a bit leaky.
I didn't reference any actual diagnostic messages in the lint
definition, because I want to hear feedback first.
Also, there's no mention of the actual required method signature for
`__await__` anywhere in the docs. The only reference I had is the
`typing` stub. I basically ended up linking `[Awaitable]` to ["must
implement
`__await__`"](https://docs.python.org/3/library/collections.abc.html#collections.abc.Awaitable),
which is insufficient on its own.
## Test Plan
The following code was tested:
```python
import asyncio
import typing
class Awaitable:
def __await__(self) -> typing.Generator[typing.Any, None, int]:
yield None
return 5
class NoDunderMethod:
pass
class InvalidAwaitArgs:
def __await__(self, value: int) -> int:
return value
class InvalidAwaitReturn:
def __await__(self) -> int:
return 5
class InvalidAwaitReturnImplicit:
def __await__(self):
pass
async def main() -> None:
result = await Awaitable() # valid
result = await NoDunderMethod() # `__await__` is missing
result = await InvalidAwaitReturn() # `__await__` returns `int`, which is not a valid iterator
result = await InvalidAwaitArgs() # `__await__` expects additional arguments and cannot be called implicitly
result = await InvalidAwaitReturnImplicit() # `__await__` returns `Unknown`, which is not a valid iterator
asyncio.run(main())
```
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
This PR adds type inference for key-based access on `TypedDict`s and a
new diagnostic for invalid subscript accesses:
```py
class Person(TypedDict):
name: str
age: int | None
alice = Person(name="Alice", age=25)
reveal_type(alice["name"]) # revealed: str
reveal_type(alice["age"]) # revealed: int | None
alice["naem"] # Unknown key "naem" - did you mean "name"?
```
## Test Plan
Updated Markdown tests
* [x] basic handling
* [x] parse and discover `@warnings.deprecated` attributes
* [x] associate them with function definitions
* [x] associate them with class definitions
* [x] add a new "deprecated" diagnostic
* [x] ensure diagnostic is styled appropriately for LSPs
(DiagnosticTag::Deprecated)
* [x] functions
* [x] fire on calls
* [x] fire on arbitrary references
* [x] classes
* [x] fire on initializers
* [x] fire on arbitrary references
* [x] methods
* [x] fire on calls
* [x] fire on arbitrary references
* [ ] overloads
* [ ] fire on calls
* [ ] fire on arbitrary references(??? maybe not ???)
* [ ] only fire if the actual selected overload is deprecated
* [ ] dunder desugarring (warn on deprecated `__add__` if `+` is
invoked)
* [ ] alias supression? (don't warn on uses of variables that deprecated
items were assigned to)
* [ ] import logic
* [x] fire on imports of deprecated items
* [ ] suppress subsequent diagnostics if the import diagnostic fired (is
this handled by alias supression?)
* [x] fire on all qualified references (`module.mydeprecated`)
* [x] fire on all references that depend on a `*` import
Fixes https://github.com/astral-sh/ty/issues/153
## Summary
This was originally stacked on #19129, but some of the changes I made
for JSON also impacted the Azure format, so I went ahead and combined
them. The main changes here are:
- Implementing `FileResolver` for Ruff's `EmitterContext`
- Adding `FileResolver::notebook_index` and `FileResolver::is_notebook`
methods
- Adding a `DisplayDiagnostics` (with an "s") type for rendering a group
of diagnostics at once
- Adding `Azure`, `Json`, and `JsonLines` as new `DiagnosticFormat`s
I tried a couple of alternatives to the `FileResolver::notebook` methods
like passing down the `NotebookIndex` separately and trying to reparse a
`Notebook` from Ruff's `SourceFile`. The latter seemed promising, but
the `SourceFile` only stores the concatenated plain text of the
notebook, not the re-parsable JSON. I guess the current version is just
a variation on passing the `NotebookIndex`, but at least we can reuse
the existing `resolver` argument. I think a lot of this can be cleaned
up once Ruff has its own actual file resolver.
As suggested, I also tried deleting the corresponding `Emitter` files in
`ruff_linter`, but it doesn't look like git was able to follow this as a
rename. It did, however, track that the tests were moved, so the
snapshots should be easy to review.
## Test Plan
Existing Ruff tests ported to tests in `ruff_db`. I think some other
existing ruff tests also cover parts of this refactor.
---------
Co-authored-by: Micha Reiser <micha@reiser.io>
## Summary
Having a recursive type method to check whether a type is fully static
is inefficient, unnecessary, and makes us overly strict about subtyping
relations.
It's inefficient because we end up re-walking the same types many times
to check for fully-static-ness.
It's unnecessary because we can check relations involving the dynamic
type appropriately, depending whether the relation is subtyping or
assignability.
We use the subtyping relation to simplify unions and intersections. We
can usefully consider that `S <: T` for gradual types also, as long as
it remains true that `S | T` is equivalent to `T` and `S & T` is
equivalent to `S`.
One conservative definition (implemented here) that satisfies this
requirement is that we consider `S <: T` if, for every possible pair of
materializations `S'` and `T'`, `S' <: T'`. Or put differently the top
materialization of `S` (`S+` -- the union of all possible
materializations of `S`) is a subtype of the bottom materialization of
`T` (`T-` -- the intersection of all possible materializations of `T`).
In the most basic cases we can usefully say that `Any <: object` and
that `Never <: Any`, and we can handle more complex cases inductively
from there.
This definition of subtyping for gradual subtypes is not reflexive
(`Any` is not a subtype of `Any`).
As a corollary, we also remove `is_gradual_equivalent_to` --
`is_equivalent_to` now has the meaning that `is_gradual_equivalent_to`
used to have. If necessary, we could restore an
`is_fully_static_equivalent_to` or similar (which would not do an
`is_fully_static` pre-check of the types, but would instead pass a
relation-kind enum down through a recursive equivalence check, similar
to `has_relation_to`), but so far this doesn't appear to be necessary.
Credit to @JelleZijlstra for the observation that `is_fully_static` is
unnecessary and overly restrictive on subtyping.
There is another possible definition of gradual subtyping: instead of
requiring that `S+ <: T-`, we could instead require that `S+ <: T+` and
`S- <: T-`. In other words, instead of requiring all materializations of
`S` to be a subtype of every materialization of `T`, we just require
that every materialization of `S` be a subtype of _some_ materialization
of `T`, and that every materialization of `T` be a supertype of some
materialization of `S`. This definition also preserves the core
invariant that `S <: T` implies that `S | T = T` and `S & T = S`, and it
restores reflexivity: under this definition, `Any` is a subtype of
`Any`, and for any equivalent types `S` and `T`, `S <: T` and `T <: S`.
But unfortunately, this definition breaks transitivity of subtyping,
because nominal subclasses in Python use assignability ("consistent
subtyping") to define acceptable overrides. This means that we may have
a class `A` with `def method(self) -> Any` and a subtype `B(A)` with
`def method(self) -> int`, since `int` is assignable to `Any`. This
means that if we have a protocol `P` with `def method(self) -> Any`, we
would have `B <: A` (from nominal subtyping) and `A <: P` (`Any` is a
subtype of `Any`), but not `B <: P` (`int` is not a subtype of `Any`).
Breaking transitivity of subtyping is not tenable, so we don't use this
definition of subtyping.
## Test Plan
Existing tests (modified in some cases to account for updated
semantics.)
Stable property tests pass at a million iterations:
`QUICKCHECK_TESTS=1000000 cargo test -p ty_python_semantic -- --ignored
types::property_tests::stable`
### Changes to property test type generation
Since we no longer have a method of categorizing built types as
fully-static or not-fully-static, I had to add a previously-discussed
feature to the property tests so that some tests can build types that
are known by construction to be fully static, because there are still
properties that only apply to fully-static types (for example,
reflexiveness of subtyping.)
## Changes to handling of `*args, **kwargs` signatures
This PR "discovered" that, once we allow non-fully-static types to
participate in subtyping under the above definitions, `(*args: Any,
**kwargs: Any) -> Any` is now a subtype of `() -> object`. This is true,
if we take a literal interpretation of the former signature: all
materializations of the parameters `*args: Any, **kwargs: Any` can
accept zero arguments, making the former signature a subtype of the
latter. But the spec actually says that `*args: Any, **kwargs: Any`
should be interpreted as equivalent to `...`, and that makes a
difference here: `(...) -> Any` is not a subtype of `() -> object`,
because (unlike a literal reading of `(*args: Any, **kwargs: Any)`),
`...` can materialize to _any_ signature, including a signature with
required positional arguments.
This matters for this PR because it makes the "any two types are both
assignable to their union" property test fail if we don't implement the
equivalence to `...`. Because `FunctionType.__call__` has the signature
`(*args: Any, **kwargs: Any) -> Any`, and if we take that at face value
it's a subtype of `() -> object`, making `FunctionType` a subtype of `()
-> object)` -- but then a function with a required argument is also a
subtype of `FunctionType`, but not a subtype of `() -> object`. So I
went ahead and implemented the equivalence to `...` in this PR.
## Ecosystem analysis
* Most of the ecosystem report are cases of improved union/intersection
simplification. For example, we can now simplify a union like `bool |
(bool & Unknown) | Unknown` to simply `bool | Unknown`, because we can
now observe that every possible materialization of `bool & Unknown` is
still a subtype of `bool` (whereas before we would set aside `bool &
Unknown` as a not-fully-static type.) This is clearly an improvement.
* The `possibly-unresolved-reference` errors in sockeye, pymongo,
ignite, scrapy and others are true positives for conditional imports
that were formerly silenced by bogus conflicting-declarations (which we
currently don't issue a diagnostic for), because we considered two
different declarations of `Unknown` to be conflicting (we used
`is_equivalent_to` not `is_gradual_equivalent_to`). In this PR that
distinction disappears and all equivalence is gradual, so a declaration
of `Unknown` no longer conflicts with a declaration of `Unknown`, which
then results in us surfacing the possibly-unbound error.
* We will now issue "redundant cast" for casting from a typevar with a
gradual bound to the same typevar (the hydra-zen diagnostic). This seems
like an improvement.
* The new diagnostics in bandersnatch are interesting. For some reason
primer in CI seems to be checking bandersnatch on Python 3.10 (not yet
sure why; this doesn't happen when I run it locally). But bandersnatch
uses `enum.StrEnum`, which doesn't exist on 3.10. That makes the `class
SimpleDigest(StrEnum)` a class that inherits from `Unknown` (and
bypasses our current TODO handling for accessing attributes on enum
classes, since we don't recognize it as an enum class at all). This PR
improves our understanding of assignability to classes that inherit from
`Any` / `Unknown`, and we now recognize that a string literal is not
assignable to a class inheriting `Any` or `Unknown`.
## Summary
Part of [#111](https://github.com/astral-sh/ty/issues/111).
After this change, dataclasses with two or more `KW_ONLY` field will be
reported as invalid. The duplicate fields will simply be ignored when
computing `__init__`'s signature.
## Test Plan
Markdown tests.
## Summary
Part of [#117](https://github.com/astral-sh/ty/issues/117).
`TypeIs[]` is a special form that allows users to define their own
narrowing functions. Despite the syntax, `TypeIs` is not a generic and,
on its own, it is meaningless as a type.
[Officially](https://typing.python.org/en/latest/spec/narrowing.html#typeis),
a function annotated as returning a `TypeIs[T]` is a <i>type narrowing
function</i>, where `T` is called the <i>`TypeIs` return type</i>.
A `TypeIs[T]` may or may not be bound to a symbol. Only bound types have
narrowing effect:
```python
def f(v: object = object()) -> TypeIs[int]: ...
a: str = returns_str()
if reveal_type(f()): # Unbound: TypeIs[int]
reveal_type(a) # str
if reveal_type(f(a)): # Bound: TypeIs[a, int]
reveal_type(a) # str & int
```
Delayed usages of a bound type has no effect, however:
```python
b = f(a)
if b:
reveal_type(a) # str
```
A `TypeIs[T]` type:
* Is fully static when `T` is fully static.
* Is a singleton/single-valued when it is bound.
* Has exactly two runtime inhabitants when it is unbound: `True` and
`False`.
In other words, an unbound type have ambiguous truthiness.
It is possible to infer more precise truthiness for bound types;
however, that is not part of this change.
`TypeIs[T]` is a subtype of or otherwise assignable to `bool`. `TypeIs`
is invariant with respect to the `TypeIs` return type: `TypeIs[int]` is
neither a subtype nor a supertype of `TypeIs[bool]`. When ty sees a
function marked as returning `TypeIs[T]`, its `return`s will be checked
against `bool` instead. ty will also report such functions if they don't
accept a positional argument. Addtionally, a type narrowing function
call with no positional arguments (e.g., `f()` in the example above)
will be considered invalid.
## Test Plan
Markdown tests.
---------
Co-authored-by: Carl Meyer <carl@astral.sh>
## Summary
I think `division-by-zero` is a low-value diagnostic in general; most
real division-by-zero errors (especially those that are less obvious to
the human eye) will occur on values typed as `int`, in which case we
don't issue the diagnostic anyway. Mypy and pyright do not emit this
diagnostic.
Currently the diagnostic is prone to false positives because a) we do
not silence it in unreachable code, and b) we do not implement narrowing
of literals from inequality checks. We will probably fix (a) regardless,
but (b) is low priority apart from division-by-zero.
I think we have many more important things to do and should not allow
false positives on a low-value diagnostic to be a distraction. Not
opposed to re-enabling this diagnostic in future when we can prioritize
reducing its false positives.
References https://github.com/astral-sh/ty/issues/443
## Test Plan
Existing tests.
## Summary
Support direct uses of `typing.TypeAliasType`, as in:
```py
from typing import TypeAliasType
IntOrStr = TypeAliasType("IntOrStr", int | str)
def f(x: IntOrStr) -> None:
reveal_type(x) # revealed: int | str
```
closes https://github.com/astral-sh/ty/issues/392
## Ecosystem
The new false positive here:
```diff
+ error[invalid-type-form] altair/utils/core.py:49:53: The first argument to `Callable` must be either a list of types, ParamSpec, Concatenate, or `...`
```
comes from the fact that we infer the second argument as a type
expression now. We silence false positives for PEP695 `ParamSpec`s, but
not for `P = ParamSpec("P")` inside `Callable[P, ...]`.
## Test Plan
New Markdown tests