use std::borrow::Cow; use std::iter::FusedIterator; use bitflags::bitflags; use memchr::memchr2; use ruff_formatter::{format_args, write}; use ruff_python_ast::{ self as ast, Expr, ExprBytesLiteral, ExprFString, ExprStringLiteral, ExpressionRef, }; use ruff_python_ast::{AnyNodeRef, StringLiteral}; use ruff_source_file::Locator; use ruff_text_size::{Ranged, TextLen, TextRange, TextSize}; use crate::comments::{leading_comments, trailing_comments}; use crate::expression::expr_f_string::f_string_quoting; use crate::expression::parentheses::in_parentheses_only_soft_line_break_or_space; use crate::other::f_string::FormatFString; use crate::other::string_literal::{FormatStringLiteral, StringLiteralKind}; use crate::prelude::*; use crate::preview::is_hex_codes_in_unicode_sequences_enabled; use crate::QuoteStyle; pub(crate) mod docstring; #[derive(Copy, Clone, Debug, Default)] pub(crate) enum Quoting { #[default] CanChange, Preserve, } /// Represents any kind of string expression. This could be either a string, /// bytes or f-string. #[derive(Copy, Clone, Debug)] pub(crate) enum AnyString<'a> { String(&'a ExprStringLiteral), Bytes(&'a ExprBytesLiteral), FString(&'a ExprFString), } impl<'a> AnyString<'a> { /// Creates a new [`AnyString`] from the given [`Expr`]. /// /// Returns `None` if the expression is not either a string, bytes or f-string. pub(crate) fn from_expression(expression: &'a Expr) -> Option> { match expression { Expr::StringLiteral(string) => Some(AnyString::String(string)), Expr::BytesLiteral(bytes) => Some(AnyString::Bytes(bytes)), Expr::FString(fstring) => Some(AnyString::FString(fstring)), _ => None, } } /// Returns `true` if the string is implicitly concatenated. pub(crate) fn is_implicit_concatenated(self) -> bool { match self { Self::String(ExprStringLiteral { value, .. }) => value.is_implicit_concatenated(), Self::Bytes(ExprBytesLiteral { value, .. }) => value.is_implicit_concatenated(), Self::FString(ExprFString { value, .. }) => value.is_implicit_concatenated(), } } /// Returns the quoting to be used for this string. fn quoting(self, locator: &Locator<'_>) -> Quoting { match self { Self::String(_) | Self::Bytes(_) => Quoting::CanChange, Self::FString(f_string) => f_string_quoting(f_string, locator), } } /// Returns a vector of all the [`AnyStringPart`] of this string. fn parts(self, quoting: Quoting) -> AnyStringPartsIter<'a> { match self { Self::String(ExprStringLiteral { value, .. }) => { AnyStringPartsIter::String(value.iter()) } Self::Bytes(ExprBytesLiteral { value, .. }) => AnyStringPartsIter::Bytes(value.iter()), Self::FString(ExprFString { value, .. }) => { AnyStringPartsIter::FString(value.iter(), quoting) } } } pub(crate) fn is_multiline(self, source: &str) -> bool { match self { AnyString::String(_) | AnyString::Bytes(_) => { let contents = &source[self.range()]; let prefix = StringPrefix::parse(contents); let quotes = StringQuotes::parse( &contents[TextRange::new(prefix.text_len(), contents.text_len())], ); quotes.is_some_and(StringQuotes::is_triple) && memchr2(b'\n', b'\r', contents.as_bytes()).is_some() } AnyString::FString(fstring) => { memchr2(b'\n', b'\r', source[fstring.range].as_bytes()).is_some() } } } } impl Ranged for AnyString<'_> { fn range(&self) -> TextRange { match self { Self::String(expr) => expr.range(), Self::Bytes(expr) => expr.range(), Self::FString(expr) => expr.range(), } } } impl<'a> From<&AnyString<'a>> for AnyNodeRef<'a> { fn from(value: &AnyString<'a>) -> Self { match value { AnyString::String(expr) => AnyNodeRef::ExprStringLiteral(expr), AnyString::Bytes(expr) => AnyNodeRef::ExprBytesLiteral(expr), AnyString::FString(expr) => AnyNodeRef::ExprFString(expr), } } } impl<'a> From> for AnyNodeRef<'a> { fn from(value: AnyString<'a>) -> Self { AnyNodeRef::from(&value) } } impl<'a> From<&AnyString<'a>> for ExpressionRef<'a> { fn from(value: &AnyString<'a>) -> Self { match value { AnyString::String(expr) => ExpressionRef::StringLiteral(expr), AnyString::Bytes(expr) => ExpressionRef::BytesLiteral(expr), AnyString::FString(expr) => ExpressionRef::FString(expr), } } } enum AnyStringPartsIter<'a> { String(std::slice::Iter<'a, StringLiteral>), Bytes(std::slice::Iter<'a, ast::BytesLiteral>), FString(std::slice::Iter<'a, ast::FStringPart>, Quoting), } impl<'a> Iterator for AnyStringPartsIter<'a> { type Item = AnyStringPart<'a>; fn next(&mut self) -> Option { let part = match self { Self::String(inner) => { let part = inner.next()?; AnyStringPart::String { part, layout: StringLiteralKind::String, } } Self::Bytes(inner) => AnyStringPart::Bytes(inner.next()?), Self::FString(inner, quoting) => { let part = inner.next()?; match part { ast::FStringPart::Literal(string_literal) => AnyStringPart::String { part: string_literal, layout: StringLiteralKind::InImplicitlyConcatenatedFString(*quoting), }, ast::FStringPart::FString(f_string) => AnyStringPart::FString { part: f_string, quoting: *quoting, }, } } }; Some(part) } } impl FusedIterator for AnyStringPartsIter<'_> {} /// Represents any kind of string which is part of an implicitly concatenated /// string. This could be either a string, bytes or f-string. /// /// This is constructed from the [`AnyString::parts`] method on [`AnyString`]. #[derive(Clone, Debug)] enum AnyStringPart<'a> { String { part: &'a ast::StringLiteral, layout: StringLiteralKind, }, Bytes(&'a ast::BytesLiteral), FString { part: &'a ast::FString, quoting: Quoting, }, } impl<'a> From<&AnyStringPart<'a>> for AnyNodeRef<'a> { fn from(value: &AnyStringPart<'a>) -> Self { match value { AnyStringPart::String { part, .. } => AnyNodeRef::StringLiteral(part), AnyStringPart::Bytes(part) => AnyNodeRef::BytesLiteral(part), AnyStringPart::FString { part, .. } => AnyNodeRef::FString(part), } } } impl Ranged for AnyStringPart<'_> { fn range(&self) -> TextRange { match self { Self::String { part, .. } => part.range(), Self::Bytes(part) => part.range(), Self::FString { part, .. } => part.range(), } } } impl Format> for AnyStringPart<'_> { fn fmt(&self, f: &mut PyFormatter) -> FormatResult<()> { match self { AnyStringPart::String { part, layout } => { FormatStringLiteral::new(part, *layout).fmt(f) } AnyStringPart::Bytes(bytes_literal) => bytes_literal.format().fmt(f), AnyStringPart::FString { part, quoting } => FormatFString::new(part, *quoting).fmt(f), } } } /// Formats any implicitly concatenated string. This could be any valid combination /// of string, bytes or f-string literals. pub(crate) struct FormatStringContinuation<'a> { string: &'a AnyString<'a>, } impl<'a> FormatStringContinuation<'a> { pub(crate) fn new(string: &'a AnyString<'a>) -> Self { Self { string } } } impl Format> for FormatStringContinuation<'_> { fn fmt(&self, f: &mut PyFormatter) -> FormatResult<()> { let comments = f.context().comments().clone(); let quoting = self.string.quoting(&f.context().locator()); let mut joiner = f.join_with(in_parentheses_only_soft_line_break_or_space()); for part in self.string.parts(quoting) { joiner.entry(&format_args![ line_suffix_boundary(), leading_comments(comments.leading(&part)), part, trailing_comments(comments.trailing(&part)) ]); } joiner.finish() } } #[derive(Debug)] pub(crate) struct StringPart { /// The prefix. prefix: StringPrefix, /// The actual quotes of the string in the source quotes: StringQuotes, /// The range of the string's content (full range minus quotes and prefix) content_range: TextRange, } impl StringPart { pub(crate) fn from_source(range: TextRange, locator: &Locator) -> Self { let string_content = locator.slice(range); let prefix = StringPrefix::parse(string_content); let after_prefix = &string_content[usize::from(prefix.text_len())..]; let quotes = StringQuotes::parse(after_prefix).expect("Didn't find string quotes after prefix"); let relative_raw_content_range = TextRange::new( prefix.text_len() + quotes.text_len(), string_content.text_len() - quotes.text_len(), ); let raw_content_range = relative_raw_content_range + range.start(); Self { prefix, content_range: raw_content_range, quotes, } } /// Returns the prefix of the string part. pub(crate) const fn prefix(&self) -> StringPrefix { self.prefix } /// Returns the surrounding quotes of the string part. pub(crate) const fn quotes(&self) -> StringQuotes { self.quotes } /// Returns the range of the string's content in the source (minus prefix and quotes). pub(crate) const fn content_range(&self) -> TextRange { self.content_range } } pub(crate) struct StringNormalizer { quoting: Quoting, preferred_quote_style: QuoteStyle, parent_docstring_quote_char: Option, normalize_hex: bool, } impl StringNormalizer { pub(crate) fn from_context(context: &PyFormatContext<'_>) -> Self { Self { quoting: Quoting::default(), preferred_quote_style: QuoteStyle::default(), parent_docstring_quote_char: context.docstring(), normalize_hex: is_hex_codes_in_unicode_sequences_enabled(context), } } pub(crate) fn with_preferred_quote_style(mut self, quote_style: QuoteStyle) -> Self { self.preferred_quote_style = quote_style; self } pub(crate) fn with_quoting(mut self, quoting: Quoting) -> Self { self.quoting = quoting; self } /// Computes the strings preferred quotes. pub(crate) fn choose_quotes(&self, string: &StringPart, locator: &Locator) -> StringQuotes { // Per PEP 8, always prefer double quotes for triple-quoted strings. // Except when using quote-style-preserve. let preferred_style = if string.quotes().triple { // ... unless we're formatting a code snippet inside a docstring, // then we specifically want to invert our quote style to avoid // writing out invalid Python. // // It's worth pointing out that we can actually wind up being // somewhat out of sync with PEP8 in this case. Consider this // example: // // def foo(): // ''' // Something. // // >>> """tricksy""" // ''' // pass // // Ideally, this would be reformatted as: // // def foo(): // """ // Something. // // >>> '''tricksy''' // """ // pass // // But the logic here results in the original quoting being // preserved. This is because the quoting style of the outer // docstring is determined, in part, by looking at its contents. In // this case, it notices that it contains a `"""` and thus infers // that using `'''` would overall read better because it avoids // the need to escape the interior `"""`. Except... in this case, // the `"""` is actually part of a code snippet that could get // reformatted to using a different quoting style itself. // // Fixing this would, I believe, require some fairly seismic // changes to how formatting strings works. Namely, we would need // to look for code snippets before normalizing the docstring, and // then figure out the quoting style more holistically by looking // at the various kinds of quotes used in the code snippets and // what reformatting them might look like. // // Overall this is a bit of a corner case and just inverting the // style from what the parent ultimately decided upon works, even // if it doesn't have perfect alignment with PEP8. if let Some(quote) = self.parent_docstring_quote_char { QuoteStyle::from(quote.invert()) } else if self.preferred_quote_style.is_preserve() { QuoteStyle::Preserve } else { QuoteStyle::Double } } else { self.preferred_quote_style }; match self.quoting { Quoting::Preserve => string.quotes(), Quoting::CanChange => { if let Some(preferred_quote) = QuoteChar::from_style(preferred_style) { let raw_content = locator.slice(string.content_range()); if string.prefix().is_raw_string() { choose_quotes_for_raw_string(raw_content, string.quotes(), preferred_quote) } else { choose_quotes_impl(raw_content, string.quotes(), preferred_quote) } } else { string.quotes() } } } } /// Computes the strings preferred quotes and normalizes its content. pub(crate) fn normalize<'a>( &self, string: &StringPart, locator: &'a Locator, ) -> NormalizedString<'a> { let raw_content = locator.slice(string.content_range()); let quotes = self.choose_quotes(string, locator); let normalized = normalize_string(raw_content, quotes, string.prefix(), self.normalize_hex); NormalizedString { prefix: string.prefix(), content_range: string.content_range(), text: normalized, quotes, } } } #[derive(Debug)] pub(crate) struct NormalizedString<'a> { prefix: StringPrefix, /// The quotes of the normalized string (preferred quotes) quotes: StringQuotes, /// The range of the string's content in the source (minus prefix and quotes). content_range: TextRange, /// The normalized text text: Cow<'a, str>, } impl Ranged for NormalizedString<'_> { fn range(&self) -> TextRange { self.content_range } } impl Format> for NormalizedString<'_> { fn fmt(&self, f: &mut Formatter>) -> FormatResult<()> { write!(f, [self.prefix, self.quotes])?; match &self.text { Cow::Borrowed(_) => { source_text_slice(self.range()).fmt(f)?; } Cow::Owned(normalized) => { text(normalized).fmt(f)?; } } self.quotes.fmt(f) } } bitflags! { #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) struct StringPrefix: u8 { const UNICODE = 0b0000_0001; /// `r"test"` const RAW = 0b0000_0010; /// `R"test" const RAW_UPPER = 0b0000_0100; const BYTE = 0b0000_1000; const F_STRING = 0b0001_0000; } } impl StringPrefix { pub(crate) fn parse(input: &str) -> StringPrefix { let chars = input.chars(); let mut prefix = StringPrefix::empty(); for c in chars { let flag = match c { 'u' | 'U' => StringPrefix::UNICODE, 'f' | 'F' => StringPrefix::F_STRING, 'b' | 'B' => StringPrefix::BYTE, 'r' => StringPrefix::RAW, 'R' => StringPrefix::RAW_UPPER, '\'' | '"' => break, c => { unreachable!( "Unexpected character '{c}' terminating the prefix of a string literal" ); } }; prefix |= flag; } prefix } pub(crate) const fn text_len(self) -> TextSize { TextSize::new(self.bits().count_ones()) } pub(super) const fn is_raw_string(self) -> bool { self.contains(StringPrefix::RAW) || self.contains(StringPrefix::RAW_UPPER) } pub(super) const fn is_fstring(self) -> bool { self.contains(StringPrefix::F_STRING) } pub(super) const fn is_byte(self) -> bool { self.contains(StringPrefix::BYTE) } } impl Format> for StringPrefix { fn fmt(&self, f: &mut PyFormatter) -> FormatResult<()> { // Retain the casing for the raw prefix: // https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#r-strings-and-r-strings if self.contains(StringPrefix::RAW) { token("r").fmt(f)?; } else if self.contains(StringPrefix::RAW_UPPER) { token("R").fmt(f)?; } if self.contains(StringPrefix::BYTE) { token("b").fmt(f)?; } if self.contains(StringPrefix::F_STRING) { token("f").fmt(f)?; } // Remove the unicode prefix `u` if any because it is meaningless in Python 3+. Ok(()) } } /// Choose the appropriate quote style for a raw string. /// /// The preferred quote style is chosen unless the string contains unescaped quotes of the /// preferred style. For example, `r"foo"` is chosen over `r'foo'` if the preferred quote /// style is double quotes. fn choose_quotes_for_raw_string( input: &str, quotes: StringQuotes, preferred_quote: QuoteChar, ) -> StringQuotes { let preferred_quote_char = preferred_quote.as_char(); let mut chars = input.chars().peekable(); let contains_unescaped_configured_quotes = loop { match chars.next() { Some('\\') => { // Ignore escaped characters chars.next(); } // `"` or `'` Some(c) if c == preferred_quote_char => { if !quotes.triple { break true; } match chars.peek() { // We can't turn `r'''\""'''` into `r"""\"""""`, this would confuse the parser // about where the closing triple quotes start None => break true, Some(next) if *next == preferred_quote_char => { // `""` or `''` chars.next(); // We can't turn `r'''""'''` into `r""""""""`, nor can we have // `"""` or `'''` respectively inside the string if chars.peek().is_none() || chars.peek() == Some(&preferred_quote_char) { break true; } } _ => {} } } Some(_) => continue, None => break false, } }; StringQuotes { triple: quotes.triple, quote_char: if contains_unescaped_configured_quotes { quotes.quote_char } else { preferred_quote }, } } /// Choose the appropriate quote style for a string. /// /// For single quoted strings, the preferred quote style is used, unless the alternative quote style /// would require fewer escapes. /// /// For triple quoted strings, the preferred quote style is always used, unless the string contains /// a triplet of the quote character (e.g., if double quotes are preferred, double quotes will be /// used unless the string contains `"""`). fn choose_quotes_impl( input: &str, quotes: StringQuotes, preferred_quote: QuoteChar, ) -> StringQuotes { let quote = if quotes.triple { // True if the string contains a triple quote sequence of the configured quote style. let mut uses_triple_quotes = false; let mut chars = input.chars().peekable(); while let Some(c) = chars.next() { let preferred_quote_char = preferred_quote.as_char(); match c { '\\' => { if matches!(chars.peek(), Some('"' | '\\')) { chars.next(); } } // `"` or `'` c if c == preferred_quote_char => { match chars.peek().copied() { Some(c) if c == preferred_quote_char => { // `""` or `''` chars.next(); match chars.peek().copied() { Some(c) if c == preferred_quote_char => { // `"""` or `'''` chars.next(); uses_triple_quotes = true; break; } Some(_) => {} None => { // Handle `''' ""'''`. At this point we have consumed both // double quotes, so on the next iteration the iterator is empty // and we'd miss the string ending with a preferred quote uses_triple_quotes = true; break; } } } Some(_) => { // A single quote char, this is ok } None => { // Trailing quote at the end of the comment uses_triple_quotes = true; break; } } } _ => continue, } } if uses_triple_quotes { // String contains a triple quote sequence of the configured quote style. // Keep the existing quote style. quotes.quote_char } else { preferred_quote } } else { let mut single_quotes = 0u32; let mut double_quotes = 0u32; for c in input.chars() { match c { '\'' => { single_quotes += 1; } '"' => { double_quotes += 1; } _ => continue, } } match preferred_quote { QuoteChar::Single => { if single_quotes > double_quotes { QuoteChar::Double } else { QuoteChar::Single } } QuoteChar::Double => { if double_quotes > single_quotes { QuoteChar::Single } else { QuoteChar::Double } } } }; StringQuotes { triple: quotes.triple, quote_char: quote, } } #[derive(Copy, Clone, Debug)] pub(crate) struct StringQuotes { triple: bool, quote_char: QuoteChar, } impl StringQuotes { pub(crate) fn parse(input: &str) -> Option { let mut chars = input.chars(); let quote_char = chars.next()?; let quote = QuoteChar::try_from(quote_char).ok()?; let triple = chars.next() == Some(quote_char) && chars.next() == Some(quote_char); Some(Self { triple, quote_char: quote, }) } pub(crate) const fn is_triple(self) -> bool { self.triple } const fn text_len(self) -> TextSize { if self.triple { TextSize::new(3) } else { TextSize::new(1) } } } impl Format> for StringQuotes { fn fmt(&self, f: &mut PyFormatter) -> FormatResult<()> { let quotes = match (self.quote_char, self.triple) { (QuoteChar::Single, false) => "'", (QuoteChar::Single, true) => "'''", (QuoteChar::Double, false) => "\"", (QuoteChar::Double, true) => "\"\"\"", }; token(quotes).fmt(f) } } /// The quotation character used to quote a string, byte, or fstring literal. #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum QuoteChar { /// A single quote: `'` Single, /// A double quote: '"' Double, } impl QuoteChar { pub const fn as_char(self) -> char { match self { QuoteChar::Single => '\'', QuoteChar::Double => '"', } } #[must_use] pub const fn invert(self) -> QuoteChar { match self { QuoteChar::Single => QuoteChar::Double, QuoteChar::Double => QuoteChar::Single, } } #[must_use] pub const fn from_style(style: QuoteStyle) -> Option { match style { QuoteStyle::Single => Some(QuoteChar::Single), QuoteStyle::Double => Some(QuoteChar::Double), QuoteStyle::Preserve => None, } } } impl From for QuoteStyle { fn from(value: QuoteChar) -> Self { match value { QuoteChar::Single => QuoteStyle::Single, QuoteChar::Double => QuoteStyle::Double, } } } impl TryFrom for QuoteChar { type Error = (); fn try_from(value: char) -> Result { match value { '\'' => Ok(QuoteChar::Single), '"' => Ok(QuoteChar::Double), _ => Err(()), } } } /// Adds the necessary quote escapes and removes unnecessary escape sequences when quoting `input` /// with the provided [`StringQuotes`] style. /// /// Returns the normalized string and whether it contains new lines. pub(crate) fn normalize_string( input: &str, quotes: StringQuotes, prefix: StringPrefix, normalize_hex: bool, ) -> Cow { // The normalized string if `input` is not yet normalized. // `output` must remain empty if `input` is already normalized. let mut output = String::new(); // Tracks the last index of `input` that has been written to `output`. // If `last_index` is `0` at the end, then the input is already normalized and can be returned as is. let mut last_index = 0; let quote = quotes.quote_char; let preferred_quote = quote.as_char(); let opposite_quote = quote.invert().as_char(); let mut chars = input.char_indices().peekable(); let is_raw = prefix.is_raw_string(); let is_fstring = prefix.is_fstring(); let mut formatted_value_nesting = 0u32; while let Some((index, c)) = chars.next() { if is_fstring && matches!(c, '{' | '}') { if chars.peek().copied().is_some_and(|(_, next)| next == c) { // Skip over the second character of the double braces chars.next(); } else if c == '{' { formatted_value_nesting += 1; } else { // Safe to assume that `c == '}'` here because of the matched pattern above formatted_value_nesting = formatted_value_nesting.saturating_sub(1); } continue; } if c == '\r' { output.push_str(&input[last_index..index]); // Skip over the '\r' character, keep the `\n` if chars.peek().copied().is_some_and(|(_, next)| next == '\n') { chars.next(); } // Replace the `\r` with a `\n` else { output.push('\n'); } last_index = index + '\r'.len_utf8(); } else if !is_raw { if c == '\\' { if let Some((_, next)) = chars.clone().next() { if next == '\\' { // Skip over escaped backslashes chars.next(); } else if normalize_hex { if let Some(normalised) = UnicodeEscape::new(next, !prefix.is_byte()) .and_then(|escape| { escape.normalize(&input[index + c.len_utf8() + next.len_utf8()..]) }) { // Length of the `\` plus the length of the escape sequence character (`u` | `U` | `x`) let escape_start_len = '\\'.len_utf8() + next.len_utf8(); let escape_start_offset = index + escape_start_len; if let Cow::Owned(normalised) = &normalised { output.push_str(&input[last_index..escape_start_offset]); output.push_str(normalised); last_index = escape_start_offset + normalised.len(); }; // Move the `chars` iterator passed the escape sequence. // Simply reassigning `chars` doesn't work because the indices` would // then be off. for _ in 0..next.len_utf8() + normalised.len() { chars.next(); } } } if !quotes.triple { #[allow(clippy::if_same_then_else)] if next == opposite_quote && formatted_value_nesting == 0 { // Remove the escape by ending before the backslash and starting again with the quote chars.next(); output.push_str(&input[last_index..index]); last_index = index + '\\'.len_utf8(); } else if next == preferred_quote { // Quote is already escaped, skip over it. chars.next(); } } } } else if !quotes.triple && c == preferred_quote && formatted_value_nesting == 0 { // Escape the quote output.push_str(&input[last_index..index]); output.push('\\'); output.push(c); last_index = index + preferred_quote.len_utf8(); } } } let normalized = if last_index == 0 { Cow::Borrowed(input) } else { output.push_str(&input[last_index..]); Cow::Owned(output) }; normalized } #[derive(Copy, Clone, Debug, PartialEq, Eq)] enum UnicodeEscape { /// A hex escape sequence of either 2 (`\x`), 4 (`\u`) or 8 (`\U`) hex characters. Hex(usize), /// An escaped unicode name (`\N{name}`) CharacterName, } impl UnicodeEscape { fn new(first: char, allow_unicode: bool) -> Option { Some(match first { 'x' => UnicodeEscape::Hex(2), 'u' if allow_unicode => UnicodeEscape::Hex(4), 'U' if allow_unicode => UnicodeEscape::Hex(8), 'N' if allow_unicode => UnicodeEscape::CharacterName, _ => return None, }) } /// Normalises `\u..`, `\U..`, `\x..` and `\N{..}` escape sequences to: /// /// * `\u`, `\U'` and `\x`: To use lower case for the characters `a-f`. /// * `\N`: To use uppercase letters fn normalize(self, input: &str) -> Option> { let mut normalised = String::new(); let len = match self { UnicodeEscape::Hex(len) => { // It's not a valid escape sequence if the input string has fewer characters // left than required by the escape sequence. if input.len() < len { return None; } for (index, c) in input.char_indices().take(len) { match c { '0'..='9' | 'a'..='f' => { if !normalised.is_empty() { normalised.push(c); } } 'A'..='F' => { if normalised.is_empty() { normalised.reserve(len); normalised.push_str(&input[..index]); normalised.push(c.to_ascii_lowercase()); } else { normalised.push(c.to_ascii_lowercase()); } } _ => { // not a valid escape sequence return None; } } } len } UnicodeEscape::CharacterName => { let mut char_indices = input.char_indices(); if !matches!(char_indices.next(), Some((_, '{'))) { return None; } loop { if let Some((index, c)) = char_indices.next() { match c { '}' => { if !normalised.is_empty() { normalised.push('}'); } // Name must be at least two characters long. if index < 3 { return None; } break index + '}'.len_utf8(); } '0'..='9' | 'A'..='Z' | ' ' | '-' => { if !normalised.is_empty() { normalised.push(c); } } 'a'..='z' => { if normalised.is_empty() { normalised.reserve(c.len_utf8() + '}'.len_utf8()); normalised.push_str(&input[..index]); normalised.push(c.to_ascii_uppercase()); } else { normalised.push(c.to_ascii_uppercase()); } } _ => { // Seems like an invalid escape sequence, don't normalise it. return None; } } } else { // Unterminated escape sequence, don't normalise it. return None; } } } }; Some(if normalised.is_empty() { Cow::Borrowed(&input[..len]) } else { Cow::Owned(normalised) }) } } #[cfg(test)] mod tests { use crate::string::{normalize_string, QuoteChar, StringPrefix, StringQuotes, UnicodeEscape}; use std::borrow::Cow; #[test] fn normalize_32_escape() { let escape_sequence = UnicodeEscape::new('U', true).unwrap(); assert_eq!( Some(Cow::Owned("0001f60e".to_string())), escape_sequence.normalize("0001F60E") ); } #[test] fn normalize_hex_in_byte_string() { let input = r"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A"; let normalized = normalize_string( input, StringQuotes { triple: false, quote_char: QuoteChar::Double, }, StringPrefix::BYTE, true, ); assert_eq!(r"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a", &normalized); } }