ruff/crates/ruff/src/ast/operations.rs

423 lines
14 KiB
Rust

use bitflags::bitflags;
use rustc_hash::FxHashMap;
use rustpython_parser::ast::{Cmpop, Constant, Expr, ExprKind, Located, Stmt, StmtKind};
use rustpython_parser::lexer;
use rustpython_parser::lexer::Tok;
use rustpython_parser::mode::Mode;
use crate::ast::helpers::any_over_expr;
use crate::ast::types::{BindingKind, Scope};
use crate::ast::visitor;
use crate::ast::visitor::Visitor;
use crate::checkers::ast::Checker;
bitflags! {
#[derive(Default)]
pub struct AllNamesFlags: u32 {
const INVALID_FORMAT = 0b0000_0001;
const INVALID_OBJECT = 0b0000_0010;
}
}
/// Extract the names bound to a given __all__ assignment.
pub fn extract_all_names(
checker: &Checker,
stmt: &Stmt,
scope: &Scope,
) -> (Vec<String>, AllNamesFlags) {
fn add_to_names(names: &mut Vec<String>, elts: &[Expr], flags: &mut AllNamesFlags) {
for elt in elts {
if let ExprKind::Constant {
value: Constant::Str(value),
..
} = &elt.node
{
names.push(value.to_string());
} else {
*flags |= AllNamesFlags::INVALID_OBJECT;
}
}
}
fn extract_elts<'a>(
checker: &'a Checker,
expr: &'a Expr,
) -> (Option<&'a Vec<Expr>>, AllNamesFlags) {
match &expr.node {
ExprKind::List { elts, .. } => {
return (Some(elts), AllNamesFlags::empty());
}
ExprKind::Tuple { elts, .. } => {
return (Some(elts), AllNamesFlags::empty());
}
ExprKind::ListComp { .. } => {
// Allow comprehensions, even though we can't statically analyze them.
return (None, AllNamesFlags::empty());
}
ExprKind::Call {
func,
args,
keywords,
..
} => {
// Allow `tuple()` and `list()` calls.
if keywords.is_empty() && args.len() <= 1 {
if checker.resolve_call_path(func).map_or(false, |call_path| {
call_path.as_slice() == ["", "tuple"]
|| call_path.as_slice() == ["", "list"]
}) {
if args.is_empty() {
return (None, AllNamesFlags::empty());
}
match &args[0].node {
ExprKind::List { elts, .. }
| ExprKind::Set { elts, .. }
| ExprKind::Tuple { elts, .. } => {
return (Some(elts), AllNamesFlags::empty());
}
ExprKind::ListComp { .. }
| ExprKind::SetComp { .. }
| ExprKind::GeneratorExp { .. } => {
// Allow comprehensions, even though we can't statically analyze
// them.
return (None, AllNamesFlags::empty());
}
_ => {}
}
}
}
}
_ => {}
}
(None, AllNamesFlags::INVALID_FORMAT)
}
let mut names: Vec<String> = vec![];
let mut flags = AllNamesFlags::empty();
// Grab the existing bound __all__ values.
if let StmtKind::AugAssign { .. } = &stmt.node {
if let Some(index) = scope.bindings.get("__all__") {
if let BindingKind::Export(existing) = &checker.bindings[*index].kind {
names.extend_from_slice(existing);
}
}
}
if let Some(value) = match &stmt.node {
StmtKind::Assign { value, .. } => Some(value),
StmtKind::AnnAssign { value, .. } => value.as_ref(),
StmtKind::AugAssign { value, .. } => Some(value),
_ => None,
} {
if let ExprKind::BinOp { left, right, .. } = &value.node {
let mut current_left = left;
let mut current_right = right;
loop {
// Process the right side, which should be a "real" value.
let (elts, new_flags) = extract_elts(checker, current_right);
flags |= new_flags;
if let Some(elts) = elts {
add_to_names(&mut names, elts, &mut flags);
}
// Process the left side, which can be a "real" value or the "rest" of the
// binary operation.
if let ExprKind::BinOp { left, right, .. } = &current_left.node {
current_left = left;
current_right = right;
} else {
let (elts, new_flags) = extract_elts(checker, current_left);
flags |= new_flags;
if let Some(elts) = elts {
add_to_names(&mut names, elts, &mut flags);
}
break;
}
}
} else {
let (elts, new_flags) = extract_elts(checker, value);
flags |= new_flags;
if let Some(elts) = elts {
add_to_names(&mut names, elts, &mut flags);
}
}
}
(names, flags)
}
#[derive(Default)]
struct GlobalVisitor<'a> {
globals: FxHashMap<&'a str, &'a Stmt>,
}
impl<'a> Visitor<'a> for GlobalVisitor<'a> {
fn visit_stmt(&mut self, stmt: &'a Stmt) {
match &stmt.node {
StmtKind::Global { names } => {
for name in names {
self.globals.insert(name, stmt);
}
}
StmtKind::FunctionDef { .. }
| StmtKind::AsyncFunctionDef { .. }
| StmtKind::ClassDef { .. } => {
// Don't recurse.
}
_ => visitor::walk_stmt(self, stmt),
}
}
}
/// Extract a map from global name to its last-defining [`Stmt`].
pub fn extract_globals(body: &[Stmt]) -> FxHashMap<&str, &Stmt> {
let mut visitor = GlobalVisitor::default();
for stmt in body {
visitor.visit_stmt(stmt);
}
visitor.globals
}
/// Check if a node is parent of a conditional branch.
pub fn on_conditional_branch<'a>(parents: &mut impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
if matches!(
parent.node,
StmtKind::If { .. } | StmtKind::While { .. } | StmtKind::Match { .. }
) {
return true;
}
if let StmtKind::Expr { value } = &parent.node {
if matches!(value.node, ExprKind::IfExp { .. }) {
return true;
}
}
false
})
}
/// Check if a node is in a nested block.
pub fn in_nested_block<'a>(mut parents: impl Iterator<Item = &'a Stmt>) -> bool {
parents.any(|parent| {
matches!(
parent.node,
StmtKind::Try { .. }
| StmtKind::TryStar { .. }
| StmtKind::If { .. }
| StmtKind::With { .. }
| StmtKind::Match { .. }
)
})
}
/// Check if a node represents an unpacking assignment.
pub fn is_unpacking_assignment(parent: &Stmt, child: &Expr) -> bool {
match &parent.node {
StmtKind::With { items, .. } => items.iter().any(|item| {
if let Some(optional_vars) = &item.optional_vars {
if matches!(optional_vars.node, ExprKind::Tuple { .. }) {
if any_over_expr(optional_vars, &|expr| expr == child) {
return true;
}
}
}
false
}),
StmtKind::Assign { targets, value, .. } => {
// In `(a, b) = (1, 2)`, `(1, 2)` is the target, and it is a tuple.
let value_is_tuple = matches!(
&value.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
);
// In `(a, b) = coords = (1, 2)`, `(a, b)` and `coords` are the targets, and
// `(a, b)` is a tuple. (We use "tuple" as a placeholder for any
// unpackable expression.)
let targets_are_tuples = targets.iter().all(|item| {
matches!(
item.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
)
});
// If we're looking at `a` in `(a, b) = coords = (1, 2)`, then we should
// identify that the current expression is in a tuple.
let child_in_tuple = targets_are_tuples
|| targets.iter().any(|item| {
matches!(
item.node,
ExprKind::Set { .. } | ExprKind::List { .. } | ExprKind::Tuple { .. }
) && any_over_expr(item, &|expr| expr == child)
});
// If our child is a tuple, and value is not, it's always an unpacking
// expression. Ex) `x, y = tup`
if child_in_tuple && !value_is_tuple {
return true;
}
// If our child isn't a tuple, but value is, it's never an unpacking expression.
// Ex) `coords = (1, 2)`
if !child_in_tuple && value_is_tuple {
return false;
}
// If our target and the value are both tuples, then it's an unpacking
// expression assuming there's at least one non-tuple child.
// Ex) Given `(x, y) = coords = 1, 2`, `(x, y)` is considered an unpacking
// expression. Ex) Given `(x, y) = (a, b) = 1, 2`, `(x, y)` isn't
// considered an unpacking expression.
if child_in_tuple && value_is_tuple {
return !targets_are_tuples;
}
false
}
_ => false,
}
}
pub type LocatedCmpop<U = ()> = Located<Cmpop, U>;
/// Extract all [`Cmpop`] operators from a source code snippet, with appropriate
/// ranges.
///
/// `RustPython` doesn't include line and column information on [`Cmpop`] nodes.
/// `CPython` doesn't either. This method iterates over the token stream and
/// re-identifies [`Cmpop`] nodes, annotating them with valid ranges.
pub fn locate_cmpops(contents: &str) -> Vec<LocatedCmpop> {
let mut tok_iter = lexer::make_tokenizer(contents, Mode::Module)
.flatten()
.peekable();
let mut ops: Vec<LocatedCmpop> = vec![];
let mut count: usize = 0;
loop {
let Some((start, tok, end)) = tok_iter.next() else {
break;
};
if matches!(tok, Tok::Lpar) {
count += 1;
continue;
} else if matches!(tok, Tok::Rpar) {
count -= 1;
continue;
}
if count == 0 {
match tok {
Tok::Not => {
if let Some((_, _, end)) =
tok_iter.next_if(|(_, tok, _)| matches!(tok, Tok::In))
{
ops.push(LocatedCmpop::new(start, end, Cmpop::NotIn));
}
}
Tok::In => {
ops.push(LocatedCmpop::new(start, end, Cmpop::In));
}
Tok::Is => {
let op = if let Some((_, _, end)) =
tok_iter.next_if(|(_, tok, _)| matches!(tok, Tok::Not))
{
LocatedCmpop::new(start, end, Cmpop::IsNot)
} else {
LocatedCmpop::new(start, end, Cmpop::Is)
};
ops.push(op);
}
Tok::NotEqual => {
ops.push(LocatedCmpop::new(start, end, Cmpop::NotEq));
}
Tok::EqEqual => {
ops.push(LocatedCmpop::new(start, end, Cmpop::Eq));
}
Tok::GreaterEqual => {
ops.push(LocatedCmpop::new(start, end, Cmpop::GtE));
}
Tok::Greater => {
ops.push(LocatedCmpop::new(start, end, Cmpop::Gt));
}
Tok::LessEqual => {
ops.push(LocatedCmpop::new(start, end, Cmpop::LtE));
}
Tok::Less => {
ops.push(LocatedCmpop::new(start, end, Cmpop::Lt));
}
_ => {}
}
}
}
ops
}
#[cfg(test)]
mod tests {
use rustpython_parser::ast::{Cmpop, Location};
use crate::ast::operations::{locate_cmpops, LocatedCmpop};
#[test]
fn locates_cmpops() {
assert_eq!(
locate_cmpops("x == 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 4),
Cmpop::Eq
)]
);
assert_eq!(
locate_cmpops("x != 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 4),
Cmpop::NotEq
)]
);
assert_eq!(
locate_cmpops("x is 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 4),
Cmpop::Is
)]
);
assert_eq!(
locate_cmpops("x is not 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 8),
Cmpop::IsNot
)]
);
assert_eq!(
locate_cmpops("x in 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 4),
Cmpop::In
)]
);
assert_eq!(
locate_cmpops("x not in 1"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 8),
Cmpop::NotIn
)]
);
assert_eq!(
locate_cmpops("x != (1 is not 2)"),
vec![LocatedCmpop::new(
Location::new(1, 2),
Location::new(1, 4),
Cmpop::NotEq
)]
);
}
}