ruff/crates/red_knot_python_semantic/src/symbol.rs

890 lines
35 KiB
Rust

use ruff_db::files::File;
use ruff_python_ast as ast;
use crate::module_resolver::file_to_module;
use crate::semantic_index::definition::Definition;
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId};
use crate::semantic_index::{self, global_scope, use_def_map, DeclarationWithConstraint};
use crate::semantic_index::{
symbol_table, BindingWithConstraints, BindingWithConstraintsIterator, DeclarationsIterator,
};
use crate::types::{
binding_type, declaration_type, narrowing_constraint, todo_type, IntersectionBuilder,
KnownClass, Truthiness, Type, TypeAndQualifiers, TypeQualifiers, UnionBuilder, UnionType,
};
use crate::{resolve_module, Db, KnownModule, Module, Program};
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum Boundness {
Bound,
PossiblyUnbound,
}
/// The result of a symbol lookup, which can either be a (possibly unbound) type
/// or a completely unbound symbol.
///
/// Consider this example:
/// ```py
/// bound = 1
///
/// if flag:
/// possibly_unbound = 2
/// ```
///
/// If we look up symbols in this scope, we would get the following results:
/// ```rs
/// bound: Symbol::Type(Type::IntLiteral(1), Boundness::Bound),
/// possibly_unbound: Symbol::Type(Type::IntLiteral(2), Boundness::PossiblyUnbound),
/// non_existent: Symbol::Unbound,
/// ```
#[derive(Debug, Clone, PartialEq, Eq, salsa::Update)]
pub(crate) enum Symbol<'db> {
Type(Type<'db>, Boundness),
Unbound,
}
impl<'db> Symbol<'db> {
/// Constructor that creates a `Symbol` with boundness [`Boundness::Bound`].
pub(crate) fn bound(ty: impl Into<Type<'db>>) -> Self {
Symbol::Type(ty.into(), Boundness::Bound)
}
/// Constructor that creates a [`Symbol`] with a [`crate::types::TodoType`] type
/// and boundness [`Boundness::Bound`].
#[allow(unused_variables)] // Only unused in release builds
pub(crate) fn todo(message: &'static str) -> Self {
Symbol::Type(todo_type!(message), Boundness::Bound)
}
pub(crate) fn is_unbound(&self) -> bool {
matches!(self, Symbol::Unbound)
}
/// Returns the type of the symbol, ignoring possible unboundness.
///
/// If the symbol is *definitely* unbound, this function will return `None`. Otherwise,
/// if there is at least one control-flow path where the symbol is bound, return the type.
pub(crate) fn ignore_possibly_unbound(&self) -> Option<Type<'db>> {
match self {
Symbol::Type(ty, _) => Some(*ty),
Symbol::Unbound => None,
}
}
#[cfg(test)]
#[track_caller]
pub(crate) fn expect_type(self) -> Type<'db> {
self.ignore_possibly_unbound()
.expect("Expected a (possibly unbound) type, not an unbound symbol")
}
/// Transform the symbol into a [`LookupResult`],
/// a [`Result`] type in which the `Ok` variant represents a definitely bound symbol
/// and the `Err` variant represents a symbol that is either definitely or possibly unbound.
pub(crate) fn into_lookup_result(self) -> LookupResult<'db> {
match self {
Symbol::Type(ty, Boundness::Bound) => Ok(ty),
Symbol::Type(ty, Boundness::PossiblyUnbound) => Err(LookupError::PossiblyUnbound(ty)),
Symbol::Unbound => Err(LookupError::Unbound),
}
}
/// Safely unwrap the symbol into a [`Type`].
///
/// If the symbol is definitely unbound or possibly unbound, it will be transformed into a
/// [`LookupError`] and `diagnostic_fn` will be applied to the error value before returning
/// the result of `diagnostic_fn` (which will be a [`Type`]). This allows the caller to ensure
/// that a diagnostic is emitted if the symbol is possibly or definitely unbound.
pub(crate) fn unwrap_with_diagnostic(
self,
diagnostic_fn: impl FnOnce(LookupError<'db>) -> Type<'db>,
) -> Type<'db> {
self.into_lookup_result().unwrap_or_else(diagnostic_fn)
}
/// Fallback (partially or fully) to another symbol if `self` is partially or fully unbound.
///
/// 1. If `self` is definitely bound, return `self` without evaluating `fallback_fn()`.
/// 2. Else, evaluate `fallback_fn()`:
/// a. If `self` is definitely unbound, return the result of `fallback_fn()`.
/// b. Else, if `fallback` is definitely unbound, return `self`.
/// c. Else, if `self` is possibly unbound and `fallback` is definitely bound,
/// return `Symbol(<union of self-type and fallback-type>, Boundness::Bound)`
/// d. Else, if `self` is possibly unbound and `fallback` is possibly unbound,
/// return `Symbol(<union of self-type and fallback-type>, Boundness::PossiblyUnbound)`
#[must_use]
pub(crate) fn or_fall_back_to(
self,
db: &'db dyn Db,
fallback_fn: impl FnOnce() -> Self,
) -> Self {
self.into_lookup_result()
.or_else(|lookup_error| lookup_error.or_fall_back_to(db, fallback_fn()))
.into()
}
#[must_use]
pub(crate) fn map_type(self, f: impl FnOnce(Type<'db>) -> Type<'db>) -> Symbol<'db> {
match self {
Symbol::Type(ty, boundness) => Symbol::Type(f(ty), boundness),
Symbol::Unbound => Symbol::Unbound,
}
}
}
impl<'db> From<LookupResult<'db>> for Symbol<'db> {
fn from(value: LookupResult<'db>) -> Self {
match value {
Ok(ty) => Symbol::Type(ty, Boundness::Bound),
Err(LookupError::Unbound) => Symbol::Unbound,
Err(LookupError::PossiblyUnbound(ty)) => Symbol::Type(ty, Boundness::PossiblyUnbound),
}
}
}
/// Possible ways in which a symbol lookup can (possibly or definitely) fail.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum LookupError<'db> {
Unbound,
PossiblyUnbound(Type<'db>),
}
impl<'db> LookupError<'db> {
/// Fallback (wholly or partially) to `fallback` to create a new [`LookupResult`].
pub(crate) fn or_fall_back_to(
self,
db: &'db dyn Db,
fallback: Symbol<'db>,
) -> LookupResult<'db> {
let fallback = fallback.into_lookup_result();
match (&self, &fallback) {
(LookupError::Unbound, _) => fallback,
(LookupError::PossiblyUnbound { .. }, Err(LookupError::Unbound)) => Err(self),
(LookupError::PossiblyUnbound(ty), Ok(ty2)) => {
Ok(UnionType::from_elements(db, [ty, ty2]))
}
(LookupError::PossiblyUnbound(ty), Err(LookupError::PossiblyUnbound(ty2))) => Err(
LookupError::PossiblyUnbound(UnionType::from_elements(db, [ty, ty2])),
),
}
}
}
/// A [`Result`] type in which the `Ok` variant represents a definitely bound symbol
/// and the `Err` variant represents a symbol that is either definitely or possibly unbound.
///
/// Note that this type is exactly isomorphic to [`Symbol`].
/// In the future, we could possibly consider removing `Symbol` and using this type everywhere instead.
pub(crate) type LookupResult<'db> = Result<Type<'db>, LookupError<'db>>;
/// Infer the public type of a symbol (its type as seen from outside its scope) in the given
/// `scope`.
pub(crate) fn symbol<'db>(db: &'db dyn Db, scope: ScopeId<'db>, name: &str) -> Symbol<'db> {
symbol_impl(db, scope, name, RequiresExplicitReExport::No)
}
/// Infers the public type of an explicit module-global symbol as seen from within the same file.
///
/// Note that all global scopes also include various "implicit globals" such as `__name__`,
/// `__doc__` and `__file__`. This function **does not** consider those symbols; it will return
/// `Symbol::Unbound` for them. Use the (currently test-only) `global_symbol` query to also include
/// those additional symbols.
///
/// Use [`imported_symbol`] to perform the lookup as seen from outside the file (e.g. via imports).
pub(crate) fn explicit_global_symbol<'db>(db: &'db dyn Db, file: File, name: &str) -> Symbol<'db> {
symbol_impl(
db,
global_scope(db, file),
name,
RequiresExplicitReExport::No,
)
}
/// Infers the public type of an explicit module-global symbol as seen from within the same file.
///
/// Unlike [`explicit_global_symbol`], this function also considers various "implicit globals"
/// such as `__name__`, `__doc__` and `__file__`. These are looked up as attributes on `types.ModuleType`
/// rather than being looked up as symbols explicitly defined/declared in the global scope.
///
/// Use [`imported_symbol`] to perform the lookup as seen from outside the file (e.g. via imports).
#[cfg(test)]
pub(crate) fn global_symbol<'db>(db: &'db dyn Db, file: File, name: &str) -> Symbol<'db> {
explicit_global_symbol(db, file, name)
.or_fall_back_to(db, || module_type_implicit_global_symbol(db, name))
}
/// Infers the public type of an imported symbol.
pub(crate) fn imported_symbol<'db>(db: &'db dyn Db, module: &Module, name: &str) -> Symbol<'db> {
// If it's not found in the global scope, check if it's present as an instance on
// `types.ModuleType` or `builtins.object`.
//
// We do a more limited version of this in `module_type_implicit_global_symbol`,
// but there are two crucial differences here:
// - If a member is looked up as an attribute, `__init__` is also available on the module, but
// it isn't available as a global from inside the module
// - If a member is looked up as an attribute, members on `builtins.object` are also available
// (because `types.ModuleType` inherits from `object`); these attributes are also not
// available as globals from inside the module.
//
// The same way as in `module_type_implicit_global_symbol`, however, we need to be careful to
// ignore `__getattr__`. Typeshed has a fake `__getattr__` on `types.ModuleType` to help out with
// dynamic imports; we shouldn't use it for `ModuleLiteral` types where we know exactly which
// module we're dealing with.
external_symbol_impl(db, module.file(), name).or_fall_back_to(db, || {
if name == "__getattr__" {
Symbol::Unbound
} else {
KnownClass::ModuleType.to_instance(db).member(db, name)
}
})
}
/// Lookup the type of `symbol` in the builtins namespace.
///
/// Returns `Symbol::Unbound` if the `builtins` module isn't available for some reason.
///
/// Note that this function is only intended for use in the context of the builtins *namespace*
/// and should not be used when a symbol is being explicitly imported from the `builtins` module
/// (e.g. `from builtins import int`).
pub(crate) fn builtins_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
resolve_module(db, &KnownModule::Builtins.name())
.map(|module| {
external_symbol_impl(db, module.file(), symbol).or_fall_back_to(db, || {
// We're looking up in the builtins namespace and not the module, so we should
// do the normal lookup in `types.ModuleType` and not the special one as in
// `imported_symbol`.
module_type_implicit_global_symbol(db, symbol)
})
})
.unwrap_or(Symbol::Unbound)
}
/// Lookup the type of `symbol` in a given known module.
///
/// Returns `Symbol::Unbound` if the given known module cannot be resolved for some reason.
pub(crate) fn known_module_symbol<'db>(
db: &'db dyn Db,
known_module: KnownModule,
symbol: &str,
) -> Symbol<'db> {
resolve_module(db, &known_module.name())
.map(|module| imported_symbol(db, &module, symbol))
.unwrap_or(Symbol::Unbound)
}
/// Lookup the type of `symbol` in the `typing` module namespace.
///
/// Returns `Symbol::Unbound` if the `typing` module isn't available for some reason.
#[inline]
#[cfg(test)]
pub(crate) fn typing_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
known_module_symbol(db, KnownModule::Typing, symbol)
}
/// Lookup the type of `symbol` in the `typing_extensions` module namespace.
///
/// Returns `Symbol::Unbound` if the `typing_extensions` module isn't available for some reason.
#[inline]
pub(crate) fn typing_extensions_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
known_module_symbol(db, KnownModule::TypingExtensions, symbol)
}
/// Get the `builtins` module scope.
///
/// Can return `None` if a custom typeshed is used that is missing `builtins.pyi`.
pub(crate) fn builtins_module_scope(db: &dyn Db) -> Option<ScopeId<'_>> {
core_module_scope(db, KnownModule::Builtins)
}
/// Get the scope of a core stdlib module.
///
/// Can return `None` if a custom typeshed is used that is missing the core module in question.
fn core_module_scope(db: &dyn Db, core_module: KnownModule) -> Option<ScopeId<'_>> {
resolve_module(db, &core_module.name()).map(|module| global_scope(db, module.file()))
}
/// Infer the combined type from an iterator of bindings, and return it
/// together with boundness information in a [`Symbol`].
///
/// The type will be a union if there are multiple bindings with different types.
pub(super) fn symbol_from_bindings<'db>(
db: &'db dyn Db,
bindings_with_constraints: BindingWithConstraintsIterator<'_, 'db>,
) -> Symbol<'db> {
symbol_from_bindings_impl(db, bindings_with_constraints, RequiresExplicitReExport::No)
}
/// Build a declared type from a [`DeclarationsIterator`].
///
/// If there is only one declaration, or all declarations declare the same type, returns
/// `Ok(..)`. If there are conflicting declarations, returns an `Err(..)` variant with
/// a union of the declared types as well as a list of all conflicting types.
///
/// This function also returns declaredness information (see [`Symbol`]) and a set of
/// [`TypeQualifiers`] that have been specified on the declaration(s).
pub(crate) fn symbol_from_declarations<'db>(
db: &'db dyn Db,
declarations: DeclarationsIterator<'_, 'db>,
) -> SymbolFromDeclarationsResult<'db> {
symbol_from_declarations_impl(db, declarations, RequiresExplicitReExport::No)
}
/// The result of looking up a declared type from declarations; see [`symbol_from_declarations`].
pub(crate) type SymbolFromDeclarationsResult<'db> =
Result<SymbolAndQualifiers<'db>, (TypeAndQualifiers<'db>, Box<[Type<'db>]>)>;
/// A type with declaredness information, and a set of type qualifiers.
///
/// This is used to represent the result of looking up the declared type. Consider this
/// example:
/// ```py
/// class C:
/// if flag:
/// variable: ClassVar[int]
/// ```
/// If we look up the declared type of `variable` in the scope of class `C`, we will get
/// the type `int`, a "declaredness" of [`Boundness::PossiblyUnbound`], and the information
/// that this comes with a [`CLASS_VAR`] type qualifier.
///
/// [`CLASS_VAR`]: crate::types::TypeQualifiers::CLASS_VAR
#[derive(Debug)]
pub(crate) struct SymbolAndQualifiers<'db>(pub(crate) Symbol<'db>, pub(crate) TypeQualifiers);
impl SymbolAndQualifiers<'_> {
/// Constructor that creates a [`SymbolAndQualifiers`] instance with a [`TodoType`] type
/// and no qualifiers.
///
/// [`TodoType`]: crate::types::TodoType
pub(crate) fn todo(message: &'static str) -> Self {
Self(Symbol::todo(message), TypeQualifiers::empty())
}
/// Returns `true` if the symbol has a `ClassVar` type qualifier.
pub(crate) fn is_class_var(&self) -> bool {
self.1.contains(TypeQualifiers::CLASS_VAR)
}
/// Returns `true` if the symbol has a `Final` type qualifier.
pub(crate) fn is_final(&self) -> bool {
self.1.contains(TypeQualifiers::FINAL)
}
}
impl<'db> From<Symbol<'db>> for SymbolAndQualifiers<'db> {
fn from(symbol: Symbol<'db>) -> Self {
SymbolAndQualifiers(symbol, TypeQualifiers::empty())
}
}
/// Implementation of [`symbol`].
fn symbol_impl<'db>(
db: &'db dyn Db,
scope: ScopeId<'db>,
name: &str,
requires_explicit_reexport: RequiresExplicitReExport,
) -> Symbol<'db> {
#[salsa::tracked]
fn symbol_by_id<'db>(
db: &'db dyn Db,
scope: ScopeId<'db>,
symbol_id: ScopedSymbolId,
requires_explicit_reexport: RequiresExplicitReExport,
) -> Symbol<'db> {
let use_def = use_def_map(db, scope);
// If the symbol is declared, the public type is based on declarations; otherwise, it's based
// on inference from bindings.
let declarations = use_def.public_declarations(symbol_id);
let declared = symbol_from_declarations_impl(db, declarations, requires_explicit_reexport);
let is_final = declared.as_ref().is_ok_and(SymbolAndQualifiers::is_final);
let declared = declared.map(|SymbolAndQualifiers(symbol, _)| symbol);
match declared {
// Symbol is declared, trust the declared type
Ok(symbol @ Symbol::Type(_, Boundness::Bound)) => symbol,
// Symbol is possibly declared
Ok(Symbol::Type(declared_ty, Boundness::PossiblyUnbound)) => {
let bindings = use_def.public_bindings(symbol_id);
let inferred = symbol_from_bindings_impl(db, bindings, requires_explicit_reexport);
match inferred {
// Symbol is possibly undeclared and definitely unbound
Symbol::Unbound => {
// TODO: We probably don't want to report `Bound` here. This requires a bit of
// design work though as we might want a different behavior for stubs and for
// normal modules.
Symbol::Type(declared_ty, Boundness::Bound)
}
// Symbol is possibly undeclared and (possibly) bound
Symbol::Type(inferred_ty, boundness) => Symbol::Type(
UnionType::from_elements(db, [inferred_ty, declared_ty]),
boundness,
),
}
}
// Symbol is undeclared, return the union of `Unknown` with the inferred type
Ok(Symbol::Unbound) => {
let bindings = use_def.public_bindings(symbol_id);
let inferred = symbol_from_bindings_impl(db, bindings, requires_explicit_reexport);
// `__slots__` is a symbol with special behavior in Python's runtime. It can be
// modified externally, but those changes do not take effect. We therefore issue
// a diagnostic if we see it being modified externally. In type inference, we
// can assign a "narrow" type to it even if it is not *declared*. This means, we
// do not have to call [`widen_type_for_undeclared_public_symbol`].
let is_considered_non_modifiable =
is_final || symbol_table(db, scope).symbol(symbol_id).name() == "__slots__";
widen_type_for_undeclared_public_symbol(db, inferred, is_considered_non_modifiable)
}
// Symbol has conflicting declared types
Err((declared_ty, _)) => {
// Intentionally ignore conflicting declared types; that's not our problem,
// it's the problem of the module we are importing from.
Symbol::bound(declared_ty.inner_type())
}
}
// TODO (ticket: https://github.com/astral-sh/ruff/issues/14297) Our handling of boundness
// currently only depends on bindings, and ignores declarations. This is inconsistent, since
// we only look at bindings if the symbol may be undeclared. Consider the following example:
// ```py
// x: int
//
// if flag:
// y: int
// else
// y = 3
// ```
// If we import from this module, we will currently report `x` as a definitely-bound symbol
// (even though it has no bindings at all!) but report `y` as possibly-unbound (even though
// every path has either a binding or a declaration for it.)
}
let _span = tracing::trace_span!("symbol", ?name).entered();
// We don't need to check for `typing_extensions` here, because `typing_extensions.TYPE_CHECKING`
// is just a re-export of `typing.TYPE_CHECKING`.
if name == "TYPE_CHECKING"
&& file_to_module(db, scope.file(db))
.is_some_and(|module| module.is_known(KnownModule::Typing))
{
return Symbol::bound(Type::BooleanLiteral(true));
}
if name == "platform"
&& file_to_module(db, scope.file(db))
.is_some_and(|module| module.is_known(KnownModule::Sys))
{
match Program::get(db).python_platform(db) {
crate::PythonPlatform::Identifier(platform) => {
return Symbol::bound(Type::string_literal(db, platform.as_str()));
}
crate::PythonPlatform::All => {
// Fall through to the looked up type
}
}
}
symbol_table(db, scope)
.symbol_id_by_name(name)
.map(|symbol| symbol_by_id(db, scope, symbol, requires_explicit_reexport))
.unwrap_or(Symbol::Unbound)
}
/// Implementation of [`symbol_from_bindings`].
///
/// ## Implementation Note
/// This function gets called cross-module. It, therefore, shouldn't
/// access any AST nodes from the file containing the declarations.
fn symbol_from_bindings_impl<'db>(
db: &'db dyn Db,
bindings_with_constraints: BindingWithConstraintsIterator<'_, 'db>,
requires_explicit_reexport: RequiresExplicitReExport,
) -> Symbol<'db> {
let visibility_constraints = bindings_with_constraints.visibility_constraints;
let mut bindings_with_constraints = bindings_with_constraints.peekable();
let is_non_exported = |binding: Definition<'db>| {
requires_explicit_reexport.is_yes() && !binding.is_reexported(db)
};
let unbound_visibility = match bindings_with_constraints.peek() {
Some(BindingWithConstraints {
binding,
visibility_constraint,
constraints: _,
}) if binding.map_or(true, is_non_exported) => {
visibility_constraints.evaluate(db, *visibility_constraint)
}
_ => Truthiness::AlwaysFalse,
};
let mut types = bindings_with_constraints.filter_map(
|BindingWithConstraints {
binding,
constraints,
visibility_constraint,
}| {
let binding = binding?;
if is_non_exported(binding) {
return None;
}
let static_visibility = visibility_constraints.evaluate(db, visibility_constraint);
if static_visibility.is_always_false() {
return None;
}
let mut constraint_tys = constraints
.filter_map(|constraint| narrowing_constraint(db, constraint, binding))
.peekable();
let binding_ty = binding_type(db, binding);
if constraint_tys.peek().is_some() {
let intersection_ty = constraint_tys
.fold(
IntersectionBuilder::new(db).add_positive(binding_ty),
IntersectionBuilder::add_positive,
)
.build();
Some(intersection_ty)
} else {
Some(binding_ty)
}
},
);
if let Some(first) = types.next() {
let boundness = match unbound_visibility {
Truthiness::AlwaysTrue => {
unreachable!("If we have at least one binding, the scope-start should not be definitely visible")
}
Truthiness::AlwaysFalse => Boundness::Bound,
Truthiness::Ambiguous => Boundness::PossiblyUnbound,
};
if let Some(second) = types.next() {
Symbol::Type(
UnionType::from_elements(db, [first, second].into_iter().chain(types)),
boundness,
)
} else {
Symbol::Type(first, boundness)
}
} else {
Symbol::Unbound
}
}
/// Implementation of [`symbol_from_declarations`].
///
/// ## Implementation Note
/// This function gets called cross-module. It, therefore, shouldn't
/// access any AST nodes from the file containing the declarations.
fn symbol_from_declarations_impl<'db>(
db: &'db dyn Db,
declarations: DeclarationsIterator<'_, 'db>,
requires_explicit_reexport: RequiresExplicitReExport,
) -> SymbolFromDeclarationsResult<'db> {
let visibility_constraints = declarations.visibility_constraints;
let mut declarations = declarations.peekable();
let is_non_exported = |declaration: Definition<'db>| {
requires_explicit_reexport.is_yes() && !declaration.is_reexported(db)
};
let undeclared_visibility = match declarations.peek() {
Some(DeclarationWithConstraint {
declaration,
visibility_constraint,
}) if declaration.map_or(true, is_non_exported) => {
visibility_constraints.evaluate(db, *visibility_constraint)
}
_ => Truthiness::AlwaysFalse,
};
let mut types = declarations.filter_map(
|DeclarationWithConstraint {
declaration,
visibility_constraint,
}| {
let declaration = declaration?;
if is_non_exported(declaration) {
return None;
}
let static_visibility = visibility_constraints.evaluate(db, visibility_constraint);
if static_visibility.is_always_false() {
None
} else {
Some(declaration_type(db, declaration))
}
},
);
if let Some(first) = types.next() {
let mut conflicting: Vec<Type<'db>> = vec![];
let declared_ty = if let Some(second) = types.next() {
let ty_first = first.inner_type();
let mut qualifiers = first.qualifiers();
let mut builder = UnionBuilder::new(db).add(ty_first);
for other in std::iter::once(second).chain(types) {
let other_ty = other.inner_type();
if !ty_first.is_equivalent_to(db, other_ty) {
conflicting.push(other_ty);
}
builder = builder.add(other_ty);
qualifiers = qualifiers.union(other.qualifiers());
}
TypeAndQualifiers::new(builder.build(), qualifiers)
} else {
first
};
if conflicting.is_empty() {
let boundness = match undeclared_visibility {
Truthiness::AlwaysTrue => {
unreachable!("If we have at least one declaration, the scope-start should not be definitely visible")
}
Truthiness::AlwaysFalse => Boundness::Bound,
Truthiness::Ambiguous => Boundness::PossiblyUnbound,
};
Ok(SymbolAndQualifiers(
Symbol::Type(declared_ty.inner_type(), boundness),
declared_ty.qualifiers(),
))
} else {
Err((
declared_ty,
std::iter::once(first.inner_type())
.chain(conflicting)
.collect(),
))
}
} else {
Ok(Symbol::Unbound.into())
}
}
/// Return a list of the symbols that typeshed declares in the body scope of
/// the stub for the class `types.ModuleType`.
///
/// Conceptually this could be a `Set` rather than a list,
/// but the number of symbols declared in this scope is likely to be very small,
/// so the cost of hashing the names is likely to be more expensive than it's worth.
#[salsa::tracked(return_ref)]
fn module_type_symbols<'db>(db: &'db dyn Db) -> smallvec::SmallVec<[ast::name::Name; 8]> {
let Some(module_type) = KnownClass::ModuleType
.to_class_literal(db)
.into_class_literal()
else {
// The most likely way we get here is if a user specified a `--custom-typeshed-dir`
// without a `types.pyi` stub in the `stdlib/` directory
return smallvec::SmallVec::default();
};
let module_type_scope = module_type.body_scope(db);
let module_type_symbol_table = symbol_table(db, module_type_scope);
// `__dict__` and `__init__` are very special members that can be accessed as attributes
// on the module when imported, but cannot be accessed as globals *inside* the module.
//
// `__getattr__` is even more special: it doesn't exist at runtime, but typeshed includes it
// to reduce false positives associated with functions that dynamically import modules
// and return `Instance(types.ModuleType)`. We should ignore it for any known module-literal type.
module_type_symbol_table
.symbols()
.filter(|symbol| symbol.is_declared())
.map(semantic_index::symbol::Symbol::name)
.filter(|symbol_name| !matches!(&***symbol_name, "__dict__" | "__getattr__" | "__init__"))
.cloned()
.collect()
}
/// Return the symbol for a member of `types.ModuleType`.
///
/// ## Notes
///
/// In general we wouldn't check to see whether a symbol exists on a class before doing the
/// [`member`] call on the instance type -- we'd just do the [`member`] call on the instance
/// type, since it has the same end result. The reason to only call [`member`] on [`ModuleType`]
/// instance when absolutely necessary is that it was a fairly significant performance regression
/// to fallback to doing that for every name lookup that wasn't found in the module's globals.
/// So we use less idiomatic (and much more verbose) code here as a micro-optimisation because
/// it's used in a very hot path.
///
/// [`member`]: Type::member
/// [`ModuleType`]: KnownClass::ModuleType
pub(crate) fn module_type_implicit_global_symbol<'db>(db: &'db dyn Db, name: &str) -> Symbol<'db> {
if module_type_symbols(db)
.iter()
.any(|module_type_member| &**module_type_member == name)
{
KnownClass::ModuleType.to_instance(db).member(db, name)
} else {
Symbol::Unbound
}
}
/// Implementation of looking up a module-global symbol as seen from outside the file (e.g. via
/// imports).
///
/// This will take into account whether the definition of the symbol is being explicitly
/// re-exported from a stub file or not.
fn external_symbol_impl<'db>(db: &'db dyn Db, file: File, name: &str) -> Symbol<'db> {
symbol_impl(
db,
global_scope(db, file),
name,
if file.is_stub(db.upcast()) {
RequiresExplicitReExport::Yes
} else {
RequiresExplicitReExport::No
},
)
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum RequiresExplicitReExport {
Yes,
No,
}
impl RequiresExplicitReExport {
const fn is_yes(self) -> bool {
matches!(self, RequiresExplicitReExport::Yes)
}
}
/// Computes a possibly-widened type `Unknown | T_inferred` from the inferred type `T_inferred`
/// of a symbol, unless the type is a known-instance type (e.g. `typing.Any`) or the symbol is
/// considered non-modifiable (e.g. when the symbol is `@Final`). We need this for public uses
/// of symbols that have no declared type.
fn widen_type_for_undeclared_public_symbol<'db>(
db: &'db dyn Db,
inferred: Symbol<'db>,
is_considered_non_modifiable: bool,
) -> Symbol<'db> {
// We special-case known-instance types here since symbols like `typing.Any` are typically
// not declared in the stubs (e.g. `Any = object()`), but we still want to treat them as
// such.
let is_known_instance = inferred
.ignore_possibly_unbound()
.is_some_and(|ty| matches!(ty, Type::KnownInstance(_)));
if is_considered_non_modifiable || is_known_instance {
inferred
} else {
inferred.map_type(|ty| UnionType::from_elements(db, [Type::unknown(), ty]))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::db::tests::setup_db;
#[test]
fn test_symbol_or_fall_back_to() {
use Boundness::{Bound, PossiblyUnbound};
let db = setup_db();
let ty1 = Type::IntLiteral(1);
let ty2 = Type::IntLiteral(2);
// Start from an unbound symbol
assert_eq!(
Symbol::Unbound.or_fall_back_to(&db, || Symbol::Unbound),
Symbol::Unbound
);
assert_eq!(
Symbol::Unbound.or_fall_back_to(&db, || Symbol::Type(ty1, PossiblyUnbound)),
Symbol::Type(ty1, PossiblyUnbound)
);
assert_eq!(
Symbol::Unbound.or_fall_back_to(&db, || Symbol::Type(ty1, Bound)),
Symbol::Type(ty1, Bound)
);
// Start from a possibly unbound symbol
assert_eq!(
Symbol::Type(ty1, PossiblyUnbound).or_fall_back_to(&db, || Symbol::Unbound),
Symbol::Type(ty1, PossiblyUnbound)
);
assert_eq!(
Symbol::Type(ty1, PossiblyUnbound)
.or_fall_back_to(&db, || Symbol::Type(ty2, PossiblyUnbound)),
Symbol::Type(UnionType::from_elements(&db, [ty1, ty2]), PossiblyUnbound)
);
assert_eq!(
Symbol::Type(ty1, PossiblyUnbound).or_fall_back_to(&db, || Symbol::Type(ty2, Bound)),
Symbol::Type(UnionType::from_elements(&db, [ty1, ty2]), Bound)
);
// Start from a definitely bound symbol
assert_eq!(
Symbol::Type(ty1, Bound).or_fall_back_to(&db, || Symbol::Unbound),
Symbol::Type(ty1, Bound)
);
assert_eq!(
Symbol::Type(ty1, Bound).or_fall_back_to(&db, || Symbol::Type(ty2, PossiblyUnbound)),
Symbol::Type(ty1, Bound)
);
assert_eq!(
Symbol::Type(ty1, Bound).or_fall_back_to(&db, || Symbol::Type(ty2, Bound)),
Symbol::Type(ty1, Bound)
);
}
#[test]
fn module_type_symbols_includes_declared_types_but_not_referenced_types() {
let db = setup_db();
let symbol_names = module_type_symbols(&db);
let dunder_name_symbol_name = ast::name::Name::new_static("__name__");
assert!(symbol_names.contains(&dunder_name_symbol_name));
let property_symbol_name = ast::name::Name::new_static("property");
assert!(!symbol_names.contains(&property_symbol_name));
}
#[track_caller]
fn assert_bound_string_symbol<'db>(db: &'db dyn Db, symbol: Symbol<'db>) {
assert!(matches!(
symbol,
Symbol::Type(Type::Instance(_), Boundness::Bound)
));
assert_eq!(symbol.expect_type(), KnownClass::Str.to_instance(db));
}
#[test]
fn implicit_builtin_globals() {
let db = setup_db();
assert_bound_string_symbol(&db, builtins_symbol(&db, "__name__"));
}
#[test]
fn implicit_typing_globals() {
let db = setup_db();
assert_bound_string_symbol(&db, typing_symbol(&db, "__name__"));
}
#[test]
fn implicit_typing_extensions_globals() {
let db = setup_db();
assert_bound_string_symbol(&db, typing_extensions_symbol(&db, "__name__"));
}
#[test]
fn implicit_sys_globals() {
let db = setup_db();
assert_bound_string_symbol(&db, known_module_symbol(&db, KnownModule::Sys, "__name__"));
}
}