## Summary and motivation
For a given source dist, we store the metadata of each wheel built
through it in `built-wheel-metadata-v0/pypi/<source dist
filename>/metadata.json`. During resolution, we check the cache status
of the source dist. If it is fresh, we check `metadata.json` for a
matching wheel. If there is one we use that metadata, if there isn't, we
build one. If the source is stale, we build a wheel and override
`metadata.json` with that single wheel. This PR thereby ties the local
built wheel metadata cache to the freshness of the remote source dist.
This functionality is available through `SourceDistCachedBuilder`.
`puffin_installer::Builder`, `puffin_installer::Downloader` and
`Fetcher` are removed, instead there are now `FetchAndBuild` which calls
into the also new `SourceDistCachedBuilder`. `FetchAndBuild` is the new
main high-level abstraction: It spawns parallel fetching/building, for
wheel metadata it calls into the registry client, for wheel files it
fetches them, for source dists it calls `SourceDistCachedBuilder`. It
handles locks around builds, and newly added also inter-process file
locking for git operations.
Fetching and building source distributions now happens in parallel in
`pip-sync`, i.e. we don't have to wait for the largest wheel to be
downloaded to start building source distributions.
In a follow-up PR, I'll also clear built wheels when they've become
stale.
Another effect is that in a fully cached resolution, we need neither zip
reading nor email parsing.
Closes#473
## Source dist cache structure
Entries by supported sources:
* `<build wheel metadata cache>/pypi/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/<sha256(index-url)>/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/url/<sha256(url)>/foo-1.0.0.zip/metadata.json`
But the url filename does not need to be a valid source dist filename
(<https://github.com/search?q=path%3A**%2Frequirements.txt+master.zip&type=code>),
so it could also be the following and we have to take any string as
filename:
* `<build wheel metadata
cache>/url/<sha256(url)>/master.zip/metadata.json`
Example:
```text
# git source dist
pydantic-extra-types @ git+https://github.com/pydantic/pydantic-extra-types.git
# pypi source dist
django_allauth==0.51.0
# url source dist
werkzeug @ ff1904eb5e2853bf83db817a7dd53d/werkzeug-3.0.1.tar.gz
```
will be stored as
```text
built-wheel-metadata-v0
├── git
│ └── 5c56bc1c58c34c11
│ └── 843b753e9e8cb74e83cac55598719b39a4d5ef1f
│ └── metadata.json
├── pypi
│ └── django-allauth-0.51.0.tar.gz
│ └── metadata.json
└── url
└── 6781bd6440ae72c2
└── werkzeug-3.0.1.tar.gz
└── metadata.json
```
The inside of a `metadata.json`:
```json
{
"data": {
"django_allauth-0.51.0-py3-none-any.whl": {
"metadata-version": "2.1",
"name": "django-allauth",
"version": "0.51.0",
...
}
}
}
```
## Summary
This PR adds support for local path dependencies. The approach mostly
just falls out of our existing approach and infrastructure for Git and
URL dependencies.
Closes https://github.com/astral-sh/puffin/issues/436. (We'll open a
separate issue for editable installs.)
## Test Plan
Added `pip-compile` tests that pre-download a wheel or source
distribution, then install it via local path.
## Summary
A variety of small refactors to the distribution types crate to (1)
return `Result` if we find an invalid wheel, rather than treating it as
a source distribution with a `.whl` suffix, and (2) DRY up some repeated
code around URLs.
A consistent cache structure for remote wheel metadata:
* `<wheel metadata cache>/pypi/foo-1.0.0-py3-none-any.json`
* `<wheel metadata
cache>/<digest(index-url)>/foo-1.0.0-py3-none-any.json`
* `<wheel metadata cache>/url/<digest(url)>/foo-1.0.0-py3-none-any.json`
The source dist caching will use a similar structure (#468).
Deduplicate lenient parsing code between version specifiers and
Requirement. Use `warn_once!` since the warnings did show up multiple
times in my code. Fix the macro hygiene in `warn_once!`.
## Summary
This PR unifies the behavior that lived in the resolver's `distribution`
crates with the behaviors that were spread between the various structs
in the installer crate into a single `Fetcher` struct that is intended
to manage all interactions with distributions. Specifically, the
interface of this struct is such that it can access distribution
metadata, download distributions, return those downloads, etc., all with
a common cache.
Overall, this is mostly just DRYing up code that was repeated between
the two crates, and putting it behind a reasonable shared interface.
## Summary
This crate only contains types, and I want to introduce a new crate for
all _operations_ on distributions, so this feels like a more natural
name given we also have `pypi-types`.
Previously, git requirements would fail when setting `--cache-dir`:
```console
$ cargo run --bin puffin -- pip-compile --cache-dir cache-all-kinds scripts/benchmarks/requirements/all-kinds.in
error: Failed to build distribution from URL: git+https://github.com/pydantic/pydantic-extra-types.git
Caused by: Invalid path URL: cache-all-kinds/git-v0/db/b49ffcfeb6c2e9d8
```
The cause is using a relative and not an absolute path, which `Url` needs, the solution is to turn the cache dir into an absolute path.
This never showed up in the tests since the tests use absolute temp dirs for everything.
Extends #424 with support for URL dependency incompatibilities.
Requires changes to `miette` to prevent URLs from being word wrapped;
accepted upstream in https://github.com/zkat/miette/pull/321
Always¹ clear the temporary directories we create.
* Clear source dist downloads: Previously, the temporary directories
would remain in the cache dir, now they are cleared properly
* Clear wheel file downloads: Delete the `.whl` file, we only need to
cache the unpacked wheel
* Consistent handling of cache arguments: Abstract the handling for CLI
cache args away, again making sure we remove the `--no-cache` temp dir.
There are no more `into_path()` calls that persist `TempDir`s that i
could find.
¹Assuming drop is run, and deleting the directory doesn't silently
error.
Addresses
https://github.com/astral-sh/puffin/issues/309#issuecomment-1792648969
Similar to #338 this throws an error when merging versions results in an
empty set. Instead of propagating that error, we capture it and return a
new dependency type of `Unusable`. Unusable dependencies are a new
incompatibility kind which includes an arbitrary "reason" string that we
present to the user. Adding a new incompatibility kind requires changes
to the vendored pubgrub crate.
We could use this same incompatibility kind for conflicting urls as in
#284 which should allow the solver to backtrack to another valid version
instead of failing (see #425).
Unlike #383 this does not require changes to PubGrub's package mapping
model. I think in the long run we'll want PubGrub to accept multiple
versions per package to solve this specific issue, but we're interested
in it being merged upstream first. This pull request is just using the
issue as a simple case to explore adding a new incompatibility type.
We may or may not be able convince them to add this new incompatibility
type upstream. As discussed in
https://github.com/pubgrub-rs/pubgrub/issues/152, we may want a more
general incompatibility kind instead which can be used for arbitrary
problems. An upstream pull request has been opened for discussion at
https://github.com/pubgrub-rs/pubgrub/pull/153.
Related to:
- https://github.com/pubgrub-rs/pubgrub/issues/152
- #338
- #383
---------
Co-authored-by: konsti <konstin@mailbox.org>
A fork will let us stay up to date with the upstream while replaying our
work on top of it.
I expect a similar workflow to the RustPython-Parser fork we maintained,
except that I wrote an automation to create tags for each commit on the
fork (https://github.com/zanieb/pubgrub/pull/2) so we do not need to
manually tag and document each commit.
To update with the upstream:
- Rebase our fork's `main` branch on top of the latest changes in
upstream's `dev` branch
- Force push, overwriting our `main` branch history
- Change the commit hash here to the last commit on `main` in our fork
Since we automatically tag each commit on the fork, we should never lose
the commits that are dropped from `main` during rebase.
This works by filtering out files with a more recent upload time, so if
the index you use does not provide upload times, the results might be
inaccurate. pypi provides upload times for all files. This is, the field
is non-nullable in the warehouse schema, but the simple API PEP does not
know this field.
If you have only pypi dependencies, this means deterministic,
reproducible(!) resolution. We could try doing the same for git repos
but it doesn't seem worth the effort, i'd recommend pinning commits
since git histories are arbitrarily malleable and also if you care about
reproducibility and such you such not use git dependencies but a custom
index.
Timestamps are given either as RFC 3339 timestamps such as
`2006-12-02T02:07:43Z` or as UTC dates in the same format such as
`2006-12-02`. Dates are interpreted as including this day, i.e. until
midnight UTC that day. Date only is required to make this ergonomic and
midnight seems like an ergonomic choice.
In action for `pandas`:
```console
$ target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
Resolved 6 packages in 679ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
numpy==1.26.2
# via pandas
pandas==2.1.3
python-dateutil==2.8.2
# via pandas
pytz==2023.3.post1
# via pandas
six==1.16.0
# via python-dateutil
tzdata==2023.3
# via pandas
$ target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
Resolved 5 packages in 655ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
numpy==1.23.4
# via pandas
pandas==1.5.1
python-dateutil==2.8.2
# via pandas
pytz==2022.6
# via pandas
six==1.16.0
# via python-dateutil
$ target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
Resolved 5 packages in 594ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
numpy==1.21.4
# via pandas
pandas==1.3.4
python-dateutil==2.8.2
# via pandas
pytz==2021.3
# via pandas
six==1.16.0
# via python-dateutil
```
[PEP 691](https://peps.python.org/pep-0691/#project-detail) has slightly
different, more relaxed rules around file metadata. These changes are
now reflected in the `File` struct. This will make it easier to support
alternative indices.
I had expected that i need to introduce a separate type for that, so i'm
happy it's two `Option`s more and an alias.
Part of #412
## Summary
This PR implements logic to sort wheels by priority, where priority is
defined as preferring more "specific" wheels over less "specific"
wheels. For example, in the case of Black, my machine now selects
`black-23.11.0-cp311-cp311-macosx_11_0_arm64.whl`, whereas sorting by
lowest priority instead gives me `black-23.11.0-py3-none-any.whl`.
As part of this change, I've also modified the resolver to fallback to
using incompatible wheels when determining package metadata, if no
compatible wheels are available.
The `VersionMap` was also moved out of `resolver.rs` and into its own
file with a wrapper type, for clarity.
Closes https://github.com/astral-sh/puffin/issues/380.
Closes https://github.com/astral-sh/puffin/issues/421.
This copies the allocator configuration used in the Ruff project. In
particular, this gives us an instant 10% win when resolving the top 1K
PyPI packages:
$ hyperfine \
"./target/profiling/puffin-dev-main resolve-many --cache-dir
cache-docker-no-build --no-build pypi_top_8k_flat.txt --limit 1000 2>
/dev/null" \
"./target/profiling/puffin-dev resolve-many --cache-dir
cache-docker-no-build --no-build pypi_top_8k_flat.txt --limit 1000 2>
/dev/null"
Benchmark 1: ./target/profiling/puffin-dev-main resolve-many --cache-dir
cache-docker-no-build --no-build pypi_top_8k_flat.txt --limit 1000 2>
/dev/null
Time (mean ± σ): 974.2 ms ± 26.4 ms [User: 17503.3 ms, System: 2205.3
ms]
Range (min … max): 943.5 ms … 1015.9 ms 10 runs
Benchmark 2: ./target/profiling/puffin-dev resolve-many --cache-dir
cache-docker-no-build --no-build pypi_top_8k_flat.txt --limit 1000 2>
/dev/null
Time (mean ± σ): 883.1 ms ± 23.3 ms [User: 14626.1 ms, System: 2542.2
ms]
Range (min … max): 849.5 ms … 916.9 ms 10 runs
Summary
'./target/profiling/puffin-dev resolve-many --cache-dir
cache-docker-no-build --no-build pypi_top_8k_flat.txt --limit 1000 2>
/dev/null' ran
1.10 ± 0.04 times faster than './target/profiling/puffin-dev-main
resolve-many --cache-dir cache-docker-no-build --no-build
pypi_top_8k_flat.txt --limit 1000 2> /dev/null'
I was moved to do this because I noticed `malloc`/`free` taking up a
fairly sizeable percentage of time during light profiling.
As is becoming a pattern, it will be easier to review this
commit-by-commit.
Ref #396 (wouldn't call this issue fixed)
-----
I did also try adding a `smallvec` optimization to the
`Version::release` field, but it didn't bare any fruit. I still think
there is more to explore since the results I observed don't quite line
up with what I expect. (So probably either my mental model is off or my
measurement process is flawed.) You can see that attempt with a little
more explanation here:
f9528b4ecd
In the course of adding the `smallvec` optimization, I also shrunk the
`Version` fields from a `usize` to a `u32`. They should at least be a
fixed size integer since version numbers aren't used to index memory,
and I shrunk it to `u32` since it seems reasonable to assume that all
version numbers will be smaller than `2^32`.
I intend this to become the main form of caching for puffin: You can
make http requests, you tranform the data to what you really need, you
have control over the cache key, and the cache is always json (or
anything else much faster we want to replace it with as long as it's
serde!)
This PR tweaks the representation of `Tags` in order to offer a
faster implementation of `WheelFilename::is_compatible`. We now use a
nested map of tags that lets us avoid looping over every supported
platform tag. As the code comments suggest, that is the essential gain.
We still do not mind looping over the tags in each wheel name since they
tend to be quite small. And pushing our thumb on that side of things can
make things worse overall since it would likely slow down WheelFilename
construction itself.
For micro-benchmarks, we improve considerably for compatibility
checking:
$ critcmp base test3
group base test3
----- ---- -----
build_platform_tags/burntsushi-archlinux 1.00 46.2±0.28µs ? ?/sec 2.48
114.8±0.45µs ? ?/sec
wheelname_parsing/flyte-long-compatible 1.00 624.8±3.31ns 174.0 MB/sec
1.01 629.4±4.30ns 172.7 MB/sec
wheelname_parsing/flyte-long-incompatible 1.00 743.6±4.23ns 165.4 MB/sec
1.00 746.9±4.62ns 164.7 MB/sec
wheelname_parsing/flyte-short-compatible 1.00 526.7±4.76ns 54.3 MB/sec
1.01 530.2±5.81ns 54.0 MB/sec
wheelname_parsing/flyte-short-incompatible 1.00 540.4±4.93ns 60.0 MB/sec
1.01 545.7±5.31ns 59.4 MB/sec
wheelname_parsing_failure/flyte-long-extension 1.00 13.6±0.13ns 3.2
GB/sec 1.01 13.7±0.14ns 3.2 GB/sec
wheelname_parsing_failure/flyte-short-extension 1.00 14.0±0.20ns 1160.4
MB/sec 1.01 14.1±0.14ns 1146.5 MB/sec
wheelname_tag_compatibility/flyte-long-compatible 11.33 159.8±2.79ns
680.5 MB/sec 1.00 14.1±0.23ns 7.5 GB/sec
wheelname_tag_compatibility/flyte-long-incompatible 237.60
1671.8±37.99ns 73.6 MB/sec 1.00 7.0±0.08ns 17.1 GB/sec
wheelname_tag_compatibility/flyte-short-compatible 16.07 223.5±8.60ns
128.0 MB/sec 1.00 13.9±0.30ns 2.0 GB/sec
wheelname_tag_compatibility/flyte-short-incompatible 149.83 628.3±2.13ns
51.6 MB/sec 1.00 4.2±0.10ns 7.6 GB/sec
We do regress slightly on the time it takes for `Tags::new` to run, but
this is somewhat expected. And in absolute terms, 114us is perfectly
acceptable given that it's only executed ~once for each `puffin`
invocation.
Ad hoc benchmarks indicate an overall 25% perf improvement in `puffin
pip-compile` times. This roughly corresponds with how much time
`is_compatible` was taking. Indeed, profiling confirms that it has
virtually disappeared from the profile.
Fixes#157
One of the most common errors i observed are build failures due to
missing header files. On ubuntu, this generally means that you need to
install some `<...>-dev` package that the documentation tells you about,
e.g. [mysqlclient](https://github.com/PyMySQL/mysqlclient#linux) needs
`default-libmysqlclient-dev`, [some psycopg
versions](https://www.psycopg.org/psycopg3/docs/basic/install.html#local-installation)
(i remember that this was always required at some earlier point) require
`libpq-dev` and pygraphviz wants `graphviz-dev`. This is quite common
for many scientific packages (where conda has an advantage because they
can provide those package as a dependency).
The error message can be completely inscrutable if you're just a python
programmer (or user) and not a c programmer (example: pygraphviz):
```
warning: no files found matching '*.png' under directory 'doc'
warning: no files found matching '*.txt' under directory 'doc'
warning: no files found matching '*.css' under directory 'doc'
warning: no previously-included files matching '*~' found anywhere in distribution
warning: no previously-included files matching '*.pyc' found anywhere in distribution
warning: no previously-included files matching '.svn' found anywhere in distribution
no previously-included directories found matching 'doc/build'
pygraphviz/graphviz_wrap.c:3020:10: fatal error: graphviz/cgraph.h: No such file or directory
3020 | #include "graphviz/cgraph.h"
| ^~~~~~~~~~~~~~~~~~~
compilation terminated.
error: command '/usr/bin/gcc' failed with exit code 1
```
The only relevant part is `Fatal error: graphviz/cgraph.h: No such file
or directory`. Why is this file not there and how do i get it to be
there?
This is even harder to spot in pip's output, where it's 11 lines above
the last line:

I've special cased missing headers and made sure that the last line
tells you the important information: We're missing some header, please
check the documentation of {package} {version} for what to install:

Scrolling up:

The difference gets even clearer with a default ubuntu terminal with its
80 columns:

---
Note that the situation is better for a missing compiler, there i get:
```
[...]
warning: no previously-included files matching '*~' found anywhere in distribution
warning: no previously-included files matching '*.pyc' found anywhere in distribution
warning: no previously-included files matching '.svn' found anywhere in distribution
no previously-included directories found matching 'doc/build'
error: command 'gcc' failed: No such file or directory
---
```
Putting the last line into google, the first two results tell me to
`sudo apt-get install gcc`, the third even tells me about `sudo apt
install build-essential`
Rejigger Linux platform detection
This change makes some very small improvements to the Linux platform
detection logic. In particular, the existing logic did not work on my
Archlinux machine since /lib64/ld-linux-x86-64.so.2 isn't a symlink. In
that case, the detection logic should have fallen back to the slower
`ldd --version` technique, but `read_link` fails outright when its
argument isn't a symbolic link. So we tweak the logic to allow it to
fail, and if it does, we still try the `ldd --version` approach instead
of giving up completely.
I also made some cosmetic improvements to the regex matching, as well as
ensuring that the regexes are only compiled exactly once.
We now write the `direct_url.json` when installing, and _skip_
installing if we find a package installed via the direct URL that the
user is requesting.
A lot of TODOs, especially around cleaning up the `Source` abstraction
and its relationship to `DirectUrl`. I'm gonna keep working on these
today, but this works and makes the requirements clear.
Closes#332.
## Summary
This PR just adds the logic in `install-wheel-rs` to write
`direct_url.json`. We're not actually taking advantage of it yet (or
wiring it through) in Puffin.
Part of https://github.com/astral-sh/puffin/issues/332.
Ran `cargo upgrade --incompatible`, seems there are no changes required.
From cacache 0.12.0:
> BREAKING CHANGE: some signatures for copy have changed, and copy no
longer automatically reflinks
`which` 5.0.0 seems to have only error message changes.
## Summary
This is a first-pass at adding source distribution support to the
installer.
The previous installation flow was:
1. Come up with a plan.
1. Find a distribution (specific file) for every package that we'll need
to download.
1. Download those distributions.
1. Unzip them (since we assumed they were all wheels).
1. Install them into the virtual environment.
Now, Step (3) downloads both wheels and source distributions, and we
insert a step between Steps (3) and (4) to build any source
distributions into zipped wheels.
There are a bunch of TODOs, the most important (IMO) is that we
basically have two implementations of downloading and building, between
the stuff in `puffin_installer` and `puffin_resolver` (namely in
`crates/puffin-resolver/src/distribution`). I didn't attempt to clean
that up here -- it's already a problem, and it's related to the overall
problem we need to solve around unified caching and resource management.
Closes#243.
This PR adds a mechanism by which we can ensure that we _always_ try to
refresh Git dependencies when resolving; further, we now write the fully
resolved SHA to the "lockfile". However, nothing in the code _assumes_
we do this, so the installer will remain agnostic to this behavior.
The specific approach taken here is minimally invasive. Specifically,
when we try to fetch a source distribution, we check if it's a Git
dependency; if it is, we fetch, and return the exact SHA, which we then
map back to a new URL. In the resolver, we keep track of URL
"redirects", and then we use the redirect (1) for the actual source
distribution building, and (2) when writing back out to the lockfile. As
such, none of the types outside of the resolver change at all, since
we're just mapping `RemoteDistribution` to `RemoteDistribution`, but
swapping out the internal URLs.
There are some inefficiencies here since, e.g., we do the Git fetch,
send back the "precise" URL, then a moment later, do a Git checkout of
that URL (which will be _mostly_ a no-op -- since we have a full SHA, we
don't have to fetch anything, but we _do_ check back on disk to see if
the SHA is still checked out). A more efficient approach would be to
return the path to the checked-out revision when we do this conversion
to a "precise" URL, since we'd then only interact with the Git repo
exactly once. But this runs the risk that the checked-out SHA changes
between the time we make the "precise" URL and the time we build the
source distribution.
Closes#286.
## Summary
This PR adds support for Git dependencies, like:
```
flask @ git+https://github.com/pallets/flask.git
```
Right now, they're only supported in the resolver (and not the
installer), since the installer doesn't yet support source distributions
at all.
The general approach here is based on Cargo's Git implementation.
Specifically, I adapted Cargo's
[`git`](23eb492cf9/src/cargo/sources/git/mod.rs)
module to perform the cloning, which is based on `libgit2`.
As compared to Cargo's implementation, I made the following changes:
- Removed any unnecessary code.
- Fixed any Clippy errors for our stricter ruleset.
- Removed the dependency on `curl`, in favor of `reqwest` which we use
elsewhere.
- Removed the ability to use `gix`. Cargo allows the use of `gix` as an
experimental flag, but it only supports a small subset of the
operations. When Cargo fully adopts `gix`, we should plan to do the
same.
- Removed Cargo's host key checking. We need to re-add this! I'll do it
shortly.
- Removed Cargo's progress bars. We should re-add this too, but we use
`indicatif` and Cargo had their own thing.
There are a few follow-ups to consider:
- Adding support in the installer.
- When we lock, we should write out the Git URL that includes the exact
SHA. This lets us cache in perpetuity and avoids dependencies changing
without re-locking.
- When we resolve, we should _always_ try to refresh Git dependencies.
(Right now, we skip if the wheel was already built.)
I'll work on the latter two in follow-up PRs.
Closes#202.
The normalized name abstractions were not consistently, this PR uses
them where they were previously missing:
* `WheelFilename::distribution`
* `Requirement::name`
* `Requirement::extras`
* `Metadata21::name`
* `Metadata21::provides_dist`
With `puffin-package` depending on `pep508_rs` this would be cyclical
crate dependency, so `puffin-normalize` gets split out from
`puffin-package`.
`DistInfoName` has the same task and semantics as `PackageName`, so it's
merged into the latter.
`PackageName` and `ExtraName` documentation is moved onto the type and
their constructors are called `new` instead of `normalize`. We now use
these constructors rarely enough the implicit allocation by
`to_string()` shouldn't matter anymore, while more actual cloning
becomes visible.
## Summary
This PR adds support for resolving and installing dependencies via
direct URLs, like:
```
werkzeug @ 960bb4017c4aed12b5ed8b78e0153e/Werkzeug-2.0.0-py3-none-any.whl
```
These are fairly common (e.g., with `torch`), but you most often see
them as Git dependencies.
Broadly, structs like `RemoteDistribution` and friends are now enums
that can represent either registry-based dependencies or URL-based
dependencies:
```rust
/// A built distribution (wheel) that exists as a remote file (e.g., on `PyPI`).
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
pub enum RemoteDistribution {
/// The distribution exists in a registry, like `PyPI`.
Registry(PackageName, Version, File),
/// The distribution exists at an arbitrary URL.
Url(PackageName, Url),
}
```
In the resolver, we now allow packages to take on an extra, optional
`Url` field:
```rust
#[derive(Debug, Clone, Eq, Derivative)]
#[derivative(PartialEq, Hash)]
pub enum PubGrubPackage {
Root,
Package(
PackageName,
Option<DistInfoName>,
#[derivative(PartialEq = "ignore")]
#[derivative(PartialOrd = "ignore")]
#[derivative(Hash = "ignore")]
Option<Url>,
),
}
```
However, for the purpose of version satisfaction, we ignore the URL.
This allows for the URL dependency to satisfy the transitive request in
cases like:
```
flask==3.0.0
werkzeug @ 254c3e9b5f5941e900b71206e6313b/werkzeug-3.0.1-py3-none-any.whl
```
There are a couple limitations in the current approach:
- The caching for remote URLs is done separately in the resolver vs. the
installer. I decided not to sweat this too much... We need to figure out
caching holistically.
- We don't support any sort of time-based cache for remote URLs -- they
just exist forever. This will be a problem for URL dependencies, where
we need some way to evict and refresh them. But I've deferred it for
now.
- I think I need to redo how this is modeled in the resolver, because
right now, we don't detect a variety of invalid cases, e.g., providing
two different URLs for a dependency, asking for a URL dependency and a
_different version_ of the same dependency in the list of first-party
dependencies, etc.
- (We don't yet support VCS dependencies.)
This also allows us to get rid of `PinnedPackage` _and_ to remove some
`Result<...>` types due to needless conversions between
otherwise-identical types.
musl (which we already use in ruff) allows statically linked binaries on
linux. This PR switches to rustls and vendors and fixes the glibc
detection. Using static musl builds makes it easier to avoid glibc
errors in docker and we'll need it later for alpine users anyway.
An alternative is using vendored openssl.
To check to top 1k (current state):
```bash
scripts/resolve/get_pypi_top_8k.sh
cargo run --bin puffin-dev -- resolve-many scripts/resolve/pypi_top_8k_flat.txt --limit 1000
```
Results:
```
Errors: pywin32, geoip2, maxminddb, pypika, dirac
Success: 995, Error: 5
```
pywin32 has no solution for the build environment, 3 have no
`[build-system]` entry in pyproject.toml, `dirac` is missing cmake
Currently, this is only the source distribution building feature moved.
It's intended that we can add development and test commands there
without affecting the main cli surface
Previously, we had two python interpreter metadata structs, one in
gourgeist and one in puffin. Both would spawn a subprocess to query
overlapping metadata and both would appear in the cli crate, if you
weren't careful you could even have to different base interpreters at
once. This change unifies this to one set of metadata, queried and
cached once.
Another effect of this crate is proper separation of python interpreter
and venv. A base interpreter (such as `/usr/bin/python/`, but also pyenv
and conda installed python) has a set of metadata. A venv has a root and
inherits the base python metadata except for `sys.prefix`, which unlike
`sys.base_prefix`, gets set to the venv root. From the root and the
interpreter info we can compute the paths inside the venv. We can reuse
the interpreter info of the base interpreter when creating a venv
without having to query the newly created `python`.
This is isn't ready, but it can resolve
`meine_stadt_transparent==0.2.14`.
The source distributions are currently being built serially one after
the other, i don't know if that is incidentally due to the resolution
order, because sdist building is blocking or because of something in the
resolver that could be improved.
It's a bit annoying that the thing that was supposed to do http requests
now suddenly also has to a whole download/unpack/resolve/install/build
routine, it messes up the type hierarchy. The much bigger problem though
is avoid recursive crate dependencies, it's the reason for the callback
and for splitting the builder into two crates (badly named atm)
Allows the user to select between clone, hardlink, and copy semantics
for installs. (The pnpm documentation has a decent description of what
these mean: https://pnpm.io/npmrc#package-import-method.)
Closes#159.
Borrows terminology from pnpm by introducing three resolution modes:
- "Highest": always choose the highest compliant version (default).
- "Lowest": always choose the lowest compliant version.
- "LowestDirect": choose the lowest compliant version of direct
dependencies, and the highest compliant version of any transitive
dependencies. (This makes a bit more sense than "lowest".)
Closes https://github.com/astral-sh/puffin/issues/142.
The need for this became clear when working on the source distribution
integration into the resolver.
While at it i also switch the `WheelFilename` version to the parsed
`pep440_rs` version now that we have this crate.
Builds up a complete resolved graph from PubGrub, and shows the sources
that led to each package being included in the resolution, like
`pip-compile`.
Closes https://github.com/astral-sh/puffin/issues/60.
Updates to `29c48fb9f3daa11bd02794edd55060d0b01ee705` from the
`pubgrub-rs` dev branch. This lets us reduce the number of changes we've
made to PubGrub itself (now, only changing visibility to export a few
things from the `solver.rs` module).
Gets rid of the custom `DistInfo` struct in the site-packages
abstraction in favor of a new kind of distribution
(`InstalledDistribution`). No change in behavior.
This is also a lot faster. Unfortunately it copies a lot of code from
the sync cli since the `Printer` is private.
The first commit are some refactorings i made when i thought about how i
could reuse the existing code.
This needs far better error handling and user-facing feedback, but it
does the basic operation (and includes discovery of the `pyproject.toml`
file, etc.).
This adds a basic sdist builder that has been tested with two source
distributions, one with a PEP 517 backend and one with setup.py.
It uses pip for requirements installation atm, lacks testing in all
directions, lacks checks for recursive requirements, can't pass in
already resolved versions, doesn't support prepare metadata for build to
allow resolution to continue without doing the actual (native) build,
error messages are mediocre, etc.
```console
$ RUST_LOG=puffin_build=debug puffin-build --wheels wheels downloads/tqdm-4.66.1.tar.gz
2023-10-16T12:28:35.503182Z DEBUG build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: Building downloads/tqdm-4.66.1.tar.gz
2023-10-16T12:28:35.521780Z INFO build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}:extract_archive: puffin_build: close time.busy=18.4ms time.idle=16.7µs
2023-10-16T12:28:35.845096Z DEBUG build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}:resolve_and_install: puffin_build: Calling pip to install build dependencies
2023-10-16T12:28:37.668660Z INFO build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}:resolve_and_install: puffin_build: close time.busy=1.82s time.idle=13.2µs
2023-10-16T12:28:37.668744Z DEBUG build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: Calling `setuptools.build_meta.get_requires_for_build_wheel()`
2023-10-16T12:28:38.159205Z INFO build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}:run_python_script{python_interpreter="/tmp/.tmpm4cTra/venv/bin/python"}: puffin_build: close time.busy=490ms time.idle=13.0µs
2023-10-16T12:28:38.159304Z DEBUG build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: Calling `setuptools.build_meta.build_wheel()`
2023-10-16T12:28:38.501732Z INFO build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}:run_python_script{python_interpreter="/tmp/.tmpm4cTra/venv/bin/python"}: puffin_build: close time.busy=342ms time.idle=15.2µs
2023-10-16T12:28:38.522700Z INFO build_sdist{path="downloads/tqdm-4.66.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: close time.busy=3.02s time.idle=16.2µs
Wheel built to /home/konsti/projects/puffin/crates/puffin-build/wheels/tqdm-4.66.1-py3-none-any.whl
2023-10-16T12:28:38.522772Z DEBUG puffin_build: Took 3020ms
$ puffin-build --wheels wheels downloads/geoextract-0.3.1.tar.gz
2023-10-16T12:28:40.884622Z DEBUG build_sdist{path="downloads/geoextract-0.3.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: Building downloads/geoextract-0.3.1.tar.gz
2023-10-16T12:28:40.887743Z INFO build_sdist{path="downloads/geoextract-0.3.1.tar.gz" base_python="/usr/bin/python3"}:extract_archive: puffin_build: close time.busy=2.97ms time.idle=12.6µs
2023-10-16T12:28:41.469738Z INFO build_sdist{path="downloads/geoextract-0.3.1.tar.gz" base_python="/usr/bin/python3"}: puffin_build: close time.busy=585ms time.idle=15.3µs
Wheel built to /home/konsti/projects/puffin/crates/puffin-build/wheels/geoextract-0.3.1-py3-none-any.whl
2023-10-16T12:28:41.469814Z DEBUG puffin_build: Took 585ms
```
## Summary
This PR enables the proof-of-concept resolver to backtrack by way of
using the `pubgrub-rs` crate.
Rather than using PubGrub as a _framework_ (implementing the
`DependencyProvider` trait, letting PubGrub call us), I've instead
copied over PubGrub's primary solver hook (which is only ~100 lines or
so) and modified it for our purposes (e.g., made it async).
There's a lot to improve here, but it's a start that will let us
understand PubGrub's appropriateness for this problem space. A few
observations:
- In simple cases, the resolver is slower than our current (naive)
resolver. I think it's just that the pipelining isn't as efficient as in
the naive case, where we can just stream package and version fetches
concurrently without any bottlenecks.
- A lot of the code here relates to bridging PubGrub with our own
abstractions -- so we need a `PubGrubPackage`, a `PubGrubVersion`, etc.
We can always restore these from history, but right now, it feels a lot
more productive to just hit PyPI directly for our integration tests,
since we don't have to spend time figuring out mocks.
Remove the parser I wrote in favor of Konsti's which is much more
complete. The only change vs. the version in `poc-monotrail` is that I
changed the tests to use insta rather than manually storing and
comparing against JSON snapshots.
Closes https://github.com/astral-sh/puffin/issues/89.
Mocks out the PyPI client using some checked-in fixtures. The test is
very basic, and I'm not very happy with all the ceremony around the
mocks and such, but it's an interesting experiment at least.
When we go to install a locked `requirements.txt`, if a wheel is already
available in the local cache, and matches the version specifiers, we can
just use it directly without fetching the package metadata. This speeds
up the no-op case by about 33%.
Closes https://github.com/astral-sh/puffin/issues/48.
This PR gets `gourgeist` passing our local CI and integrated into the
broader workspace.
There's some duplicate between concepts in `gourgeist` (like the
`InterpreterInfo`) and structs we have elsewhere, but we can tackle
those later.
This PR massively speeds up the case in which you need to install wheels
that already exist in the global cache.
The new strategy is as follows:
- Download the wheel into the content-addressed cache.
- Unzip the wheel into the cache, but ignore content-addressing. It
turns out that writing to `cacache` for every file in the zip added a
ton of overhead, and I don't see any actual advantages to doing so.
Instead, we just unzip the contents into a directory at, e.g.,
`~/.cache/puffin/django-4.1.5`.
- (The unzip itself is now parallelized with Rayon.)
- When installing the wheel, we now support unzipping from a directory
instead of a zip archive. This required duplicating and tweaking a few
functions.
- When installing the wheel, we now use reflinks (or copy-on-write
links). These have a few fantastic properties: (1) they're extremely
cheap to create (on macOS, they are allegedly faster than hard links);
(2) they minimize disk space, since we avoid copying files entirely in
the vast majority of cases; and (3) if the user then edits a file
locally, the cache doesn't get polluted. Orogene, Bun, and soon pnpm all
use reflinks.
Puffin is now ~15x faster than `pip` for the common case of installing
cached data into a fresh environment.
Closes https://github.com/astral-sh/puffin/issues/21.
Closes https://github.com/astral-sh/puffin/issues/39.
This PR modifies the `install-wheel-rs` (and a few other crates) to get
everything playing nicely. Specifically, CI should pass, and all these
crates now use workspace dependencies between one another.
As part of this change, I split out the wheel name parsing into its own
`wheel-filename` crate, and the compatibility tag parsing into its own
`platform-tags` crate.
This PR modifies the PEP 440 and PEP 508 crates to pass CI, primarily by
fixing all lint violations.
We're also now using these crates in the workspace via `path`.
(Previously, we were still fetching them from Cargo.)