This PR replaces a few uses of hash maps/sets with btree maps/sets and
index maps/sets. This has the benefit of guaranteeing a deterministic
order of iteration.
I made these changes as part of looking into a flaky test.
Unfortunately, I'm not optimistic that anything here will actually fix
the flaky test, since I don't believe anything was actually dependent
on the order of iteration.
## Summary
This PR adds a release workflow powered by `cargo-dist`. It's similar to
the version that's PR'd in Ruff
(https://github.com/astral-sh/ruff/pull/9559), with the exception that
it doesn't include the Docker build or the "update dependents" step for
pre-commit.
## Summary
I'm running into some annoyances converting `&Version` to
`&PubGrubVersion` (which is just a wrapper type around `Version`), and I
realized... We don't even need `PubGrubVersion`?
The reason we "need" it today is due to the orphan trait rule: `Version`
is defined in `pep440_rs`, but we want to `impl
pubgrub::version::Version for Version` in the resolver crate.
Instead of introducing a new type here, which leads to a lot of
awkwardness around conversion and API isolation, what if we instead just
implement `pubgrub::version::Version` in `pep440_rs` via a feature? That
way, we can just use `Version` everywhere without any confusion and
conversion for the wrapper type.
In the past, I moved us to `owo-colors`
(https://github.com/astral-sh/puffin/pull/121); then, we moved back,
because we ran into issues with overriding the settings to force-disable
colors. But `anstream` solved those problems, so I'm moving us _back_ to
`owo-colors`, since it's what `anstream` recommends, and it's already
used by many of our dependencies (`miette`, `configparser`).
---------
Co-authored-by: konstin <konstin@mailbox.org>
This crate started off as generic caching utilities, but we started
adding a lot of Puffin-specific stuff (like the cache buckets
abstraction that knows about Git vs. direct URL vs. indexes and so on).
This PR moves the generic stuff into a new `cache-key` crate.
## Summary
Now, `puffin_warnings::warn_once` and `puffin_warnings::warn` will go to
`stderr`, as long as the user isn't running under `--quiet`. Previously,
these went through `tracing`, and so were only visible when running
under `--verbose`.
## Summary and motivation
For a given source dist, we store the metadata of each wheel built
through it in `built-wheel-metadata-v0/pypi/<source dist
filename>/metadata.json`. During resolution, we check the cache status
of the source dist. If it is fresh, we check `metadata.json` for a
matching wheel. If there is one we use that metadata, if there isn't, we
build one. If the source is stale, we build a wheel and override
`metadata.json` with that single wheel. This PR thereby ties the local
built wheel metadata cache to the freshness of the remote source dist.
This functionality is available through `SourceDistCachedBuilder`.
`puffin_installer::Builder`, `puffin_installer::Downloader` and
`Fetcher` are removed, instead there are now `FetchAndBuild` which calls
into the also new `SourceDistCachedBuilder`. `FetchAndBuild` is the new
main high-level abstraction: It spawns parallel fetching/building, for
wheel metadata it calls into the registry client, for wheel files it
fetches them, for source dists it calls `SourceDistCachedBuilder`. It
handles locks around builds, and newly added also inter-process file
locking for git operations.
Fetching and building source distributions now happens in parallel in
`pip-sync`, i.e. we don't have to wait for the largest wheel to be
downloaded to start building source distributions.
In a follow-up PR, I'll also clear built wheels when they've become
stale.
Another effect is that in a fully cached resolution, we need neither zip
reading nor email parsing.
Closes#473
## Source dist cache structure
Entries by supported sources:
* `<build wheel metadata cache>/pypi/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/<sha256(index-url)>/foo-1.0.0.zip/metadata.json`
* `<build wheel metadata
cache>/url/<sha256(url)>/foo-1.0.0.zip/metadata.json`
But the url filename does not need to be a valid source dist filename
(<https://github.com/search?q=path%3A**%2Frequirements.txt+master.zip&type=code>),
so it could also be the following and we have to take any string as
filename:
* `<build wheel metadata
cache>/url/<sha256(url)>/master.zip/metadata.json`
Example:
```text
# git source dist
pydantic-extra-types @ git+https://github.com/pydantic/pydantic-extra-types.git
# pypi source dist
django_allauth==0.51.0
# url source dist
werkzeug @ ff1904eb5e2853bf83db817a7dd53d/werkzeug-3.0.1.tar.gz
```
will be stored as
```text
built-wheel-metadata-v0
├── git
│ └── 5c56bc1c58c34c11
│ └── 843b753e9e8cb74e83cac55598719b39a4d5ef1f
│ └── metadata.json
├── pypi
│ └── django-allauth-0.51.0.tar.gz
│ └── metadata.json
└── url
└── 6781bd6440ae72c2
└── werkzeug-3.0.1.tar.gz
└── metadata.json
```
The inside of a `metadata.json`:
```json
{
"data": {
"django_allauth-0.51.0-py3-none-any.whl": {
"metadata-version": "2.1",
"name": "django-allauth",
"version": "0.51.0",
...
}
}
}
```
## Summary
This PR unifies the behavior that lived in the resolver's `distribution`
crates with the behaviors that were spread between the various structs
in the installer crate into a single `Fetcher` struct that is intended
to manage all interactions with distributions. Specifically, the
interface of this struct is such that it can access distribution
metadata, download distributions, return those downloads, etc., all with
a common cache.
Overall, this is mostly just DRYing up code that was repeated between
the two crates, and putting it behind a reasonable shared interface.
## Summary
This crate only contains types, and I want to introduce a new crate for
all _operations_ on distributions, so this feels like a more natural
name given we also have `pypi-types`.
A fork will let us stay up to date with the upstream while replaying our
work on top of it.
I expect a similar workflow to the RustPython-Parser fork we maintained,
except that I wrote an automation to create tags for each commit on the
fork (https://github.com/zanieb/pubgrub/pull/2) so we do not need to
manually tag and document each commit.
To update with the upstream:
- Rebase our fork's `main` branch on top of the latest changes in
upstream's `dev` branch
- Force push, overwriting our `main` branch history
- Change the commit hash here to the last commit on `main` in our fork
Since we automatically tag each commit on the fork, we should never lose
the commits that are dropped from `main` during rebase.
This works by filtering out files with a more recent upload time, so if
the index you use does not provide upload times, the results might be
inaccurate. pypi provides upload times for all files. This is, the field
is non-nullable in the warehouse schema, but the simple API PEP does not
know this field.
If you have only pypi dependencies, this means deterministic,
reproducible(!) resolution. We could try doing the same for git repos
but it doesn't seem worth the effort, i'd recommend pinning commits
since git histories are arbitrarily malleable and also if you care about
reproducibility and such you such not use git dependencies but a custom
index.
Timestamps are given either as RFC 3339 timestamps such as
`2006-12-02T02:07:43Z` or as UTC dates in the same format such as
`2006-12-02`. Dates are interpreted as including this day, i.e. until
midnight UTC that day. Date only is required to make this ergonomic and
midnight seems like an ergonomic choice.
In action for `pandas`:
```console
$ target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
Resolved 6 packages in 679ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2023-11-16 target/pandas.in
numpy==1.26.2
# via pandas
pandas==2.1.3
python-dateutil==2.8.2
# via pandas
pytz==2023.3.post1
# via pandas
six==1.16.0
# via python-dateutil
tzdata==2023.3
# via pandas
$ target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
Resolved 5 packages in 655ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2022-11-16 target/pandas.in
numpy==1.23.4
# via pandas
pandas==1.5.1
python-dateutil==2.8.2
# via pandas
pytz==2022.6
# via pandas
six==1.16.0
# via python-dateutil
$ target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
Resolved 5 packages in 594ms
# This file was autogenerated by Puffin v0.0.1 via the following command:
# target/debug/puffin pip-compile --exclude-newer 2021-11-16 target/pandas.in
numpy==1.21.4
# via pandas
pandas==1.3.4
python-dateutil==2.8.2
# via pandas
pytz==2021.3
# via pandas
six==1.16.0
# via python-dateutil
```
Filter out source dists and wheels whose `requires-python` from the
simple api is incompatible with the current python version.
This change showed an important problem: When we use a fake python
version for resolving, building source distributions breaks down because
we can only build with versions we actually have.
This change became surprisingly big. The tests now require python 3.7 to
be installed, but changing that would mean an even bigger change.
Fixes#388
This PR adds a mechanism by which we can ensure that we _always_ try to
refresh Git dependencies when resolving; further, we now write the fully
resolved SHA to the "lockfile". However, nothing in the code _assumes_
we do this, so the installer will remain agnostic to this behavior.
The specific approach taken here is minimally invasive. Specifically,
when we try to fetch a source distribution, we check if it's a Git
dependency; if it is, we fetch, and return the exact SHA, which we then
map back to a new URL. In the resolver, we keep track of URL
"redirects", and then we use the redirect (1) for the actual source
distribution building, and (2) when writing back out to the lockfile. As
such, none of the types outside of the resolver change at all, since
we're just mapping `RemoteDistribution` to `RemoteDistribution`, but
swapping out the internal URLs.
There are some inefficiencies here since, e.g., we do the Git fetch,
send back the "precise" URL, then a moment later, do a Git checkout of
that URL (which will be _mostly_ a no-op -- since we have a full SHA, we
don't have to fetch anything, but we _do_ check back on disk to see if
the SHA is still checked out). A more efficient approach would be to
return the path to the checked-out revision when we do this conversion
to a "precise" URL, since we'd then only interact with the Git repo
exactly once. But this runs the risk that the checked-out SHA changes
between the time we make the "precise" URL and the time we build the
source distribution.
Closes#286.
## Summary
This PR adds support for Git dependencies, like:
```
flask @ git+https://github.com/pallets/flask.git
```
Right now, they're only supported in the resolver (and not the
installer), since the installer doesn't yet support source distributions
at all.
The general approach here is based on Cargo's Git implementation.
Specifically, I adapted Cargo's
[`git`](23eb492cf9/src/cargo/sources/git/mod.rs)
module to perform the cloning, which is based on `libgit2`.
As compared to Cargo's implementation, I made the following changes:
- Removed any unnecessary code.
- Fixed any Clippy errors for our stricter ruleset.
- Removed the dependency on `curl`, in favor of `reqwest` which we use
elsewhere.
- Removed the ability to use `gix`. Cargo allows the use of `gix` as an
experimental flag, but it only supports a small subset of the
operations. When Cargo fully adopts `gix`, we should plan to do the
same.
- Removed Cargo's host key checking. We need to re-add this! I'll do it
shortly.
- Removed Cargo's progress bars. We should re-add this too, but we use
`indicatif` and Cargo had their own thing.
There are a few follow-ups to consider:
- Adding support in the installer.
- When we lock, we should write out the Git URL that includes the exact
SHA. This lets us cache in perpetuity and avoids dependencies changing
without re-locking.
- When we resolve, we should _always_ try to refresh Git dependencies.
(Right now, we skip if the wheel was already built.)
I'll work on the latter two in follow-up PRs.
Closes#202.
The normalized name abstractions were not consistently, this PR uses
them where they were previously missing:
* `WheelFilename::distribution`
* `Requirement::name`
* `Requirement::extras`
* `Metadata21::name`
* `Metadata21::provides_dist`
With `puffin-package` depending on `pep508_rs` this would be cyclical
crate dependency, so `puffin-normalize` gets split out from
`puffin-package`.
`DistInfoName` has the same task and semantics as `PackageName`, so it's
merged into the latter.
`PackageName` and `ExtraName` documentation is moved onto the type and
their constructors are called `new` instead of `normalize`. We now use
these constructors rarely enough the implicit allocation by
`to_string()` shouldn't matter anymore, while more actual cloning
becomes visible.
## Summary
This PR adds support for resolving and installing dependencies via
direct URLs, like:
```
werkzeug @ 960bb4017c4aed12b5ed8b78e0153e/Werkzeug-2.0.0-py3-none-any.whl
```
These are fairly common (e.g., with `torch`), but you most often see
them as Git dependencies.
Broadly, structs like `RemoteDistribution` and friends are now enums
that can represent either registry-based dependencies or URL-based
dependencies:
```rust
/// A built distribution (wheel) that exists as a remote file (e.g., on `PyPI`).
#[derive(Debug, Clone)]
#[allow(clippy::large_enum_variant)]
pub enum RemoteDistribution {
/// The distribution exists in a registry, like `PyPI`.
Registry(PackageName, Version, File),
/// The distribution exists at an arbitrary URL.
Url(PackageName, Url),
}
```
In the resolver, we now allow packages to take on an extra, optional
`Url` field:
```rust
#[derive(Debug, Clone, Eq, Derivative)]
#[derivative(PartialEq, Hash)]
pub enum PubGrubPackage {
Root,
Package(
PackageName,
Option<DistInfoName>,
#[derivative(PartialEq = "ignore")]
#[derivative(PartialOrd = "ignore")]
#[derivative(Hash = "ignore")]
Option<Url>,
),
}
```
However, for the purpose of version satisfaction, we ignore the URL.
This allows for the URL dependency to satisfy the transitive request in
cases like:
```
flask==3.0.0
werkzeug @ 254c3e9b5f5941e900b71206e6313b/werkzeug-3.0.1-py3-none-any.whl
```
There are a couple limitations in the current approach:
- The caching for remote URLs is done separately in the resolver vs. the
installer. I decided not to sweat this too much... We need to figure out
caching holistically.
- We don't support any sort of time-based cache for remote URLs -- they
just exist forever. This will be a problem for URL dependencies, where
we need some way to evict and refresh them. But I've deferred it for
now.
- I think I need to redo how this is modeled in the resolver, because
right now, we don't detect a variety of invalid cases, e.g., providing
two different URLs for a dependency, asking for a URL dependency and a
_different version_ of the same dependency in the list of first-party
dependencies, etc.
- (We don't yet support VCS dependencies.)
This also allows us to get rid of `PinnedPackage` _and_ to remove some
`Result<...>` types due to needless conversions between
otherwise-identical types.
Previously, we had two python interpreter metadata structs, one in
gourgeist and one in puffin. Both would spawn a subprocess to query
overlapping metadata and both would appear in the cli crate, if you
weren't careful you could even have to different base interpreters at
once. This change unifies this to one set of metadata, queried and
cached once.
Another effect of this crate is proper separation of python interpreter
and venv. A base interpreter (such as `/usr/bin/python/`, but also pyenv
and conda installed python) has a set of metadata. A venv has a root and
inherits the base python metadata except for `sys.prefix`, which unlike
`sys.base_prefix`, gets set to the venv root. From the root and the
interpreter info we can compute the paths inside the venv. We can reuse
the interpreter info of the base interpreter when creating a venv
without having to query the newly created `python`.
This is isn't ready, but it can resolve
`meine_stadt_transparent==0.2.14`.
The source distributions are currently being built serially one after
the other, i don't know if that is incidentally due to the resolution
order, because sdist building is blocking or because of something in the
resolver that could be improved.
It's a bit annoying that the thing that was supposed to do http requests
now suddenly also has to a whole download/unpack/resolve/install/build
routine, it messes up the type hierarchy. The much bigger problem though
is avoid recursive crate dependencies, it's the reason for the callback
and for splitting the builder into two crates (badly named atm)
Borrows terminology from pnpm by introducing three resolution modes:
- "Highest": always choose the highest compliant version (default).
- "Lowest": always choose the lowest compliant version.
- "LowestDirect": choose the lowest compliant version of direct
dependencies, and the highest compliant version of any transitive
dependencies. (This makes a bit more sense than "lowest".)
Closes https://github.com/astral-sh/puffin/issues/142.
The need for this became clear when working on the source distribution
integration into the resolver.
While at it i also switch the `WheelFilename` version to the parsed
`pep440_rs` version now that we have this crate.
Builds up a complete resolved graph from PubGrub, and shows the sources
that led to each package being included in the resolution, like
`pip-compile`.
Closes https://github.com/astral-sh/puffin/issues/60.
## Summary
This PR enables the proof-of-concept resolver to backtrack by way of
using the `pubgrub-rs` crate.
Rather than using PubGrub as a _framework_ (implementing the
`DependencyProvider` trait, letting PubGrub call us), I've instead
copied over PubGrub's primary solver hook (which is only ~100 lines or
so) and modified it for our purposes (e.g., made it async).
There's a lot to improve here, but it's a start that will let us
understand PubGrub's appropriateness for this problem space. A few
observations:
- In simple cases, the resolver is slower than our current (naive)
resolver. I think it's just that the pipelining isn't as efficient as in
the naive case, where we can just stream package and version fetches
concurrently without any bottlenecks.
- A lot of the code here relates to bridging PubGrub with our own
abstractions -- so we need a `PubGrubPackage`, a `PubGrubVersion`, etc.
We can always restore these from history, but right now, it feels a lot
more productive to just hit PyPI directly for our integration tests,
since we don't have to spend time figuring out mocks.
Mocks out the PyPI client using some checked-in fixtures. The test is
very basic, and I'm not very happy with all the ceremony around the
mocks and such, but it's an interesting experiment at least.
This PR modifies the `install-wheel-rs` (and a few other crates) to get
everything playing nicely. Specifically, CI should pass, and all these
crates now use workspace dependencies between one another.
As part of this change, I split out the wheel name parsing into its own
`wheel-filename` crate, and the compatibility tag parsing into its own
`platform-tags` crate.
This PR modifies the PEP 440 and PEP 508 crates to pass CI, primarily by
fixing all lint violations.
We're also now using these crates in the workspace via `path`.
(Previously, we were still fetching them from Cargo.)