## Summary
This PR removes the static resolver map:
```rust
static RESOLVED_GIT_REFS: Lazy<Mutex<FxHashMap<RepositoryReference, GitSha>>> =
Lazy::new(Mutex::default);
```
With a `GitResolver` struct that we now pass around on the
`BuildContext`. There should be no behavior changes here; it's purely an
internal refactor with an eye towards making it cleaner for us to
"pre-populate" the list of resolved SHAs.
With the change, we remove the special casing of workspace dependencies
and resolve `tool.uv` for all git and directory distributions. This
gives us support for non-editable workspace dependencies and path
dependencies in other workspaces. It removes a lot of special casing
around workspaces. These changes are the groundwork for supporting
`tool.uv` with dynamic metadata.
The basis for this change is moving `Requirement` from
`distribution-types` to `pypi-types` and the lowering logic from
`uv-requirements` to `uv-distribution`. This changes should be split out
in separate PRs.
I've included an example workspace `albatross-root-workspace2` where
`bird-feeder` depends on `a` from another workspace `ab`. There's a
bunch of failing tests and regressed error messages that still need
fixing. It does fix the audited package count for the workspace tests.
## Summary
This seems to be one of the most consistent benchmark cases we have in
terms of standard deviation:
```
➜ hyperfine "target/profiling/main pip compile scripts/requirements/airflow.in" --runs 200
Benchmark 1: target/profiling/main pip compile scripts/requirements/airflow.in
Time (mean ± σ): 292.6 ms ± 6.6 ms [User: 414.1 ms, System: 194.2 ms]
Range (min … max): 282.7 ms … 320.1 ms 200 runs
```
For smaller benchmarks, scispacy and dtlssocket seem to be a bit more
consistent than our current jupyter benchmark, but it hasn't given us
any problems so I'll leave it for now.
## Summary
This PR consolidates the concurrency limits used throughout `uv` and
exposes two limits, `UV_CONCURRENT_DOWNLOADS` and
`UV_CONCURRENT_BUILDS`, as environment variables.
Currently, `uv` has a number of concurrent streams that it buffers using
relatively arbitrary limits for backpressure. However, many of these
limits are conflated. We run a relatively small number of tasks overall
and should start most things as soon as possible. What we really want to
limit are three separate operations:
- File I/O. This is managed by tokio's blocking pool and we should not
really have to worry about it.
- Network I/O.
- Python build processes.
Because the current limits span a broad range of tasks, it's possible
that a limit meant for network I/O is occupied by tasks performing
builds, reading from the file system, or even waiting on a `OnceMap`. We
also don't limit build processes that end up being required to perform a
download. While this may not pose a performance problem because our
limits are relatively high, it does mean that the limits do not do what
we want, making it tricky to expose them to users
(https://github.com/astral-sh/uv/issues/1205,
https://github.com/astral-sh/uv/issues/3311).
After this change, the limits on network I/O and build processes are
centralized and managed by semaphores. All other tasks are unbuffered
(note that these tasks are still bounded, so backpressure should not be
a problem).
Scott schafer got me the idea: We can avoid repeating the path for
workspaces dependencies everywhere if we declare them in the virtual
package once and treat them as workspace dependencies from there on.
First, replace all usages in files in-place. I used my editor for this.
If someone wants to add a one-liner that'd be fun.
Then, update directory and file names:
```
# Run twice for nested directories
find . -type d -print0 | xargs -0 rename s/puffin/uv/g
find . -type d -print0 | xargs -0 rename s/puffin/uv/g
# Update files
find . -type f -print0 | xargs -0 rename s/puffin/uv/g
```
Then add all the files again
```
# Add all the files again
git add crates
git add python/uv
# This one needs a force-add
git add -f crates/uv-trampoline
```
This PR tweaks the representation of `Tags` in order to offer a
faster implementation of `WheelFilename::is_compatible`. We now use a
nested map of tags that lets us avoid looping over every supported
platform tag. As the code comments suggest, that is the essential gain.
We still do not mind looping over the tags in each wheel name since they
tend to be quite small. And pushing our thumb on that side of things can
make things worse overall since it would likely slow down WheelFilename
construction itself.
For micro-benchmarks, we improve considerably for compatibility
checking:
$ critcmp base test3
group base test3
----- ---- -----
build_platform_tags/burntsushi-archlinux 1.00 46.2±0.28µs ? ?/sec 2.48
114.8±0.45µs ? ?/sec
wheelname_parsing/flyte-long-compatible 1.00 624.8±3.31ns 174.0 MB/sec
1.01 629.4±4.30ns 172.7 MB/sec
wheelname_parsing/flyte-long-incompatible 1.00 743.6±4.23ns 165.4 MB/sec
1.00 746.9±4.62ns 164.7 MB/sec
wheelname_parsing/flyte-short-compatible 1.00 526.7±4.76ns 54.3 MB/sec
1.01 530.2±5.81ns 54.0 MB/sec
wheelname_parsing/flyte-short-incompatible 1.00 540.4±4.93ns 60.0 MB/sec
1.01 545.7±5.31ns 59.4 MB/sec
wheelname_parsing_failure/flyte-long-extension 1.00 13.6±0.13ns 3.2
GB/sec 1.01 13.7±0.14ns 3.2 GB/sec
wheelname_parsing_failure/flyte-short-extension 1.00 14.0±0.20ns 1160.4
MB/sec 1.01 14.1±0.14ns 1146.5 MB/sec
wheelname_tag_compatibility/flyte-long-compatible 11.33 159.8±2.79ns
680.5 MB/sec 1.00 14.1±0.23ns 7.5 GB/sec
wheelname_tag_compatibility/flyte-long-incompatible 237.60
1671.8±37.99ns 73.6 MB/sec 1.00 7.0±0.08ns 17.1 GB/sec
wheelname_tag_compatibility/flyte-short-compatible 16.07 223.5±8.60ns
128.0 MB/sec 1.00 13.9±0.30ns 2.0 GB/sec
wheelname_tag_compatibility/flyte-short-incompatible 149.83 628.3±2.13ns
51.6 MB/sec 1.00 4.2±0.10ns 7.6 GB/sec
We do regress slightly on the time it takes for `Tags::new` to run, but
this is somewhat expected. And in absolute terms, 114us is perfectly
acceptable given that it's only executed ~once for each `puffin`
invocation.
Ad hoc benchmarks indicate an overall 25% perf improvement in `puffin
pip-compile` times. This roughly corresponds with how much time
`is_compatible` was taking. Indeed, profiling confirms that it has
virtually disappeared from the profile.
Fixes#157