/* fifo.c
Copyright (c) 2003-2025 HandBrake Team
Copyright 2022 NVIDIA Corporation
This file is part of the HandBrake source code
Homepage: .
It may be used under the terms of the GNU General Public License v2.
For full terms see the file COPYING file or visit http://www.gnu.org/licenses/gpl-2.0.html
*/
#include "libavcodec/avcodec.h"
#include "handbrake/handbrake.h"
#ifdef __APPLE__
#include
#include "platform/macosx/vt_common.h"
#include "platform/macosx/cv_utils.h"
#endif
#ifndef SYS_DARWIN
#if defined( SYS_FREEBSD ) || defined( SYS_NETBSD ) || defined( SYS_OPENBSD )
#include
#else
#include
#endif
#endif
#define FIFO_TIMEOUT 200
//#define HB_FIFO_DEBUG 1
// defining HB_BUFFER_DEBUG and HB_NO_BUFFER_POOL allows tracking
// buffer memory leaks using valgrind. The source of the leak
// can be determined with "valgrind --leak-check=full"
//#define HB_BUFFER_DEBUG 1
//#define HB_NO_BUFFER_POOL 1
#if defined(HB_BUFFER_DEBUG)
#include
#endif
/* Fifo */
struct hb_fifo_s
{
hb_lock_t * lock;
hb_cond_t * cond_full;
int wait_full;
hb_cond_t * cond_empty;
int wait_empty;
hb_cond_t * cond_alert_full;
uint32_t capacity;
uint32_t thresh;
uint32_t size;
uint32_t buffer_size;
hb_buffer_t * first;
hb_buffer_t * last;
#if defined(HB_FIFO_DEBUG)
// Fifo list for debugging
hb_fifo_t * next;
#endif
};
#if defined(HB_FIFO_DEBUG)
static hb_fifo_t fifo_list =
{
.next = NULL
};
#endif
/* we round the requested buffer size up to the next power of 2 so there can
* be at most 32 possible pools when the size is a 32 bit int. To avoid a lot
* of slow & error-prone run-time checking we allow for all 32. */
#define MAX_BUFFER_POOLS 32
#define BUFFER_POOL_FIRST 10
#define BUFFER_POOL_LAST 25
/* the buffer pool only exists to avoid the two malloc and two free calls that
* it would otherwise take to allocate & free a buffer. but we don't want to
* tie up a lot of memory in the pool because this allocator isn't as general
* as malloc so memory tied up here puts more pressure on the malloc pool.
* A pool of 16 elements will avoid 94% of the malloc/free calls without wasting
* too much memory. */
#define BUFFER_POOL_MAX_ELEMENTS 32
struct hb_buffer_pools_s
{
int64_t allocated;
hb_lock_t *lock;
#if !defined(HB_NO_BUFFER_POOL)
hb_fifo_t *pool[MAX_BUFFER_POOLS];
#endif
#if defined(HB_BUFFER_DEBUG)
hb_list_t *alloc_list;
#endif
} buffers;
#if defined(HB_BUFFER_DEBUG)
static int hb_fifo_contains( hb_fifo_t *f, hb_buffer_t *b );
#endif
void hb_buffer_pool_init( void )
{
buffers.lock = hb_lock_init();
buffers.allocated = 0;
#if defined(HB_BUFFER_DEBUG)
buffers.alloc_list = hb_list_init();
#endif
#if !defined(HB_NO_BUFFER_POOL)
/* we allocate pools for sizes 2^10 through 2^25. requests larger than
* 2^25 will get passed through to malloc. */
int i;
// Create a queue with empty buffers for non native storage types
buffers.pool[0] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS*10, 1);
buffers.pool[0]->buffer_size = 0;
// Create larger queue for 2^10 bucket since all allocations smaller than
// 2^10 come from here.
buffers.pool[BUFFER_POOL_FIRST] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS*10, 1);
buffers.pool[BUFFER_POOL_FIRST]->buffer_size = 1 << 10;
/* requests smaller than 2^10 are satisfied from the 2^10 pool. */
for ( i = 1; i < BUFFER_POOL_FIRST; ++i )
{
buffers.pool[i] = buffers.pool[BUFFER_POOL_FIRST];
}
for ( i = BUFFER_POOL_FIRST + 1; i <= BUFFER_POOL_LAST; ++i )
{
buffers.pool[i] = hb_fifo_init(BUFFER_POOL_MAX_ELEMENTS, 1);
buffers.pool[i]->buffer_size = 1 << i;
}
#endif
}
#if defined(HB_FIFO_DEBUG)
static void dump_fifo(hb_fifo_t * f)
{
hb_buffer_t * b = f->first;
if (b)
{
while (b)
{
fprintf(stderr, "%p:%d:%d\n", b, b->size, b->alloc);
b = b->next;
}
fprintf(stderr, "\n");
}
}
static void fifo_list_add( hb_fifo_t * f )
{
hb_fifo_t *next = fifo_list.next;
fifo_list.next = f;
f->next = next;
}
static void fifo_list_rem( hb_fifo_t * f )
{
hb_fifo_t *next, *prev;
prev = &fifo_list;
next = fifo_list.next;
while ( next && next != f )
{
prev = next;
next = next->next;
}
if ( next == f )
{
prev->next = f->next;
}
}
#if !defined(HB_NO_BUFFER_POOL)
// These routines are useful for finding and debugging problems
// with the fifos and buffer pools
static void buffer_pool_validate( hb_fifo_t * f )
{
hb_buffer_t *b;
hb_lock( f->lock );
b = f->first;
while (b)
{
if (b->alloc != f->buffer_size)
{
fprintf(stderr, "Invalid buffer pool size! buf %p size %d pool size %d\n", b, b->alloc, f->buffer_size);
dump_fifo( f );
*(char*)0 = 1;
}
b = b->next;
}
hb_unlock( f->lock );
}
static void buffer_pools_validate( void )
{
int ii;
for ( ii = BUFFER_POOL_FIRST; ii <= BUFFER_POOL_LAST; ++ii )
{
buffer_pool_validate( buffers.pool[ii] );
}
}
void fifo_list_validate( void )
{
hb_fifo_t *next = fifo_list.next;
hb_fifo_t *m;
hb_buffer_t *b, *c;
int count;
buffer_pools_validate();
while ( next )
{
count = 0;
hb_lock( next->lock );
b = next->first;
// Count the number of entries in this fifo
while (b)
{
c = b->next;
// check that the current buffer is not duplicated in this fifo
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
// check that the current buffer is not duplicated in another fifo
m = next->next;
while (m)
{
hb_lock( m->lock );
c = m->first;
while (c)
{
if (c == b)
{
fprintf(stderr, "Duplicate buffer in another fifo!\n");
dump_fifo(next);
*(char*)0 = 1;
}
c = c->next;
}
hb_unlock( m->lock );
m = m->next;
}
count++;
b = b->next;
}
if ( count != next->size )
{
fprintf(stderr, "Invalid fifo size! count %d size %d\n", count, next->size);
dump_fifo(next);
*(char*)0 = 1;
}
hb_unlock( next->lock );
next = next->next;
}
}
#endif
#endif
void hb_buffer_pool_free( void )
{
int i;
int64_t freed = 0;
hb_lock(buffers.lock);
#if defined(HB_BUFFER_DEBUG)
hb_deep_log(2, "leaked %d buffers", hb_list_count(buffers.alloc_list));
for (i = 0; i < hb_list_count(buffers.alloc_list); i++)
{
hb_buffer_t *b = hb_list_item(buffers.alloc_list, i);
hb_deep_log(2, "leaked buffer %p type %d size %d alloc %d",
b, b->s.type, b->size, b->alloc);
}
#endif
#if !defined(HB_NO_BUFFER_POOL)
hb_buffer_t * b;
int count;
for( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i)
{
count = 0;
while( ( b = hb_fifo_get(buffers.pool[i]) ) )
{
if( b->data )
{
freed += b->alloc;
av_free(b->data);
}
free( b );
count++;
}
if ( count )
{
hb_deep_log( 2, "Freed %d buffers of size %d", count,
buffers.pool[i]->buffer_size);
}
}
#endif
#if defined(HB_BUFFER_DEBUG) && defined(HB_NO_BUFFER_POOL)
// defining HB_BUFFER_DEBUG and HB_NO_BUFFER_POOL allows tracking
// buffer memory leaks using valgrind. The source of the leak
// can be determined with "valgrind --leak-check=full"
for (i = 0; i < hb_list_count(buffers.alloc_list); i++)
{
hb_buffer_t *b = hb_list_item(buffers.alloc_list, i);
hb_list_rem(buffers.alloc_list, b);
}
#endif
hb_deep_log( 2, "Allocated %"PRId64" bytes of buffers on this pass and Freed %"PRId64" bytes, "
"%"PRId64" bytes leaked", buffers.allocated, freed, buffers.allocated - freed);
buffers.allocated = 0;
hb_unlock(buffers.lock);
}
static hb_fifo_t *size_to_pool( int size )
{
#if !defined(HB_NO_BUFFER_POOL)
if (size == 0)
{
return buffers.pool[0];
}
int i;
for ( i = BUFFER_POOL_FIRST; i <= BUFFER_POOL_LAST; ++i )
{
if ( size <= (1 << i) )
{
return buffers.pool[i];
}
}
#endif
return NULL;
}
hb_buffer_t * hb_buffer_init_internal( int size )
{
hb_buffer_t * b;
// Certain libraries (hrm ffmpeg) expect buffers passed to them to
// end on certain alignments. So allocate some extra bytes.
// Note that we can't simply align the end of our buffer because
// sometimes we feed data to these libraries starting from arbitrary
// points within the buffer.
int alloc = size ? size + AV_INPUT_BUFFER_PADDING_SIZE : 0;
hb_fifo_t *buffer_pool = size_to_pool( alloc );
if( buffer_pool )
{
b = hb_fifo_get( buffer_pool );
if( b )
{
/*
* Zero the contents of the buffer, would be nice if we
* didn't have to do this.
*/
uint8_t *data = b->data;
memset( b, 0, sizeof(hb_buffer_t) );
b->alloc = buffer_pool->buffer_size;
b->size = size;
if (size)
{
b->data = data;
}
b->storage = NULL;
b->s.start = AV_NOPTS_VALUE;
b->s.stop = AV_NOPTS_VALUE;
b->s.renderOffset = AV_NOPTS_VALUE;
b->s.scr_sequence = -1;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_add(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
return( b );
}
}
/*
* No existing buffers, create a new one
*/
if( !( b = calloc( sizeof( hb_buffer_t ), 1 ) ) )
{
hb_error( "out of memory" );
return NULL;
}
b->size = size;
b->alloc = buffer_pool ? buffer_pool->buffer_size : alloc;
if (size)
{
b->data = av_malloc(b->alloc);
if( !b->data )
{
hb_error( "out of memory" );
free( b );
return NULL;
}
#if defined(HB_BUFFER_DEBUG)
memset(b->data, 0, b->size);
#endif
hb_lock(buffers.lock);
buffers.allocated += b->alloc;
hb_unlock(buffers.lock);
}
b->s.start = AV_NOPTS_VALUE;
b->s.stop = AV_NOPTS_VALUE;
b->s.renderOffset = AV_NOPTS_VALUE;
b->s.scr_sequence = -1;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_add(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
return b;
}
hb_buffer_t * hb_buffer_wrapper_init()
{
return hb_buffer_init_internal(0);
}
hb_buffer_t * hb_buffer_init( int size )
{
return hb_buffer_init_internal(size);
}
hb_buffer_t * hb_buffer_eof_init(void)
{
hb_buffer_t * buf = hb_buffer_init(0);
buf->s.flags = HB_BUF_FLAG_EOF;
return buf;
}
void hb_buffer_realloc( hb_buffer_t * b, int size )
{
if ( size > b->alloc || b->data == NULL )
{
uint8_t * tmp;
uint32_t orig = b->data != NULL ? b->alloc : 0;
hb_fifo_t * buffer_pool = size_to_pool(size);
if (buffer_pool != NULL)
{
size = buffer_pool->buffer_size;
}
tmp = av_malloc(size);
if (tmp == NULL)
{
return;
}
if (b->data != NULL)
{
memcpy(tmp, b->data, b->alloc);
av_free(b->data);
}
b->data = tmp;
b->alloc = size;
hb_lock(buffers.lock);
buffers.allocated += size - orig;
hb_unlock(buffers.lock);
}
}
void hb_buffer_reduce( hb_buffer_t * b, int size )
{
if (b->storage_type == STANDARD && (size < b->alloc / 8 || b->data == NULL))
{
hb_buffer_t *tmp = hb_buffer_init(size);
if (tmp)
{
hb_buffer_swap_copy(b, tmp);
if (tmp->data)
{
memcpy(b->data, tmp->data, size);
}
tmp->next = NULL;
}
hb_buffer_close(&tmp);
}
}
AVFrameSideData *hb_buffer_new_side_data_from_buf(hb_buffer_t *buf,
enum AVFrameSideDataType type,
AVBufferRef *side_data_buf)
{
AVFrameSideData *ret;
if (buf->storage_type == AVFRAME)
{
AVFrame *frame = (AVFrame *)buf->storage;
ret = av_frame_new_side_data_from_buf(frame, type, side_data_buf);
buf->side_data = (void **)frame->side_data;
buf->nb_side_data = frame->nb_side_data;
return ret;
}
else
{
AVFrameSideData **tmp;
if (!buf)
{
return NULL;
}
if (buf->nb_side_data > INT_MAX / sizeof(*buf->side_data) - 1)
{
return NULL;
}
tmp = av_realloc(buf->side_data, (buf->nb_side_data + 1) * sizeof(*buf->side_data));
if (!tmp)
{
return NULL;
}
buf->side_data = (void **)tmp;
ret = av_mallocz(sizeof(*ret));
if (!ret)
{
return NULL;
}
ret->buf = side_data_buf;
ret->data = ret->buf->data;
ret->size = side_data_buf->size;
ret->type = type;
buf->side_data[buf->nb_side_data++] = ret;
return ret;
}
}
static void free_side_data(AVFrameSideData **ptr_sd)
{
AVFrameSideData *sd = *ptr_sd;
av_buffer_unref(&sd->buf);
av_dict_free(&sd->metadata);
av_freep(ptr_sd);
}
void hb_buffer_remove_side_data(hb_buffer_t *buf, enum AVFrameSideDataType type)
{
if (buf->storage_type == AVFRAME)
{
AVFrame *frame = (AVFrame *)buf->storage;
av_frame_remove_side_data(frame, type);
buf->nb_side_data = frame->nb_side_data;
}
else
{
for (int i = buf->nb_side_data - 1; i >= 0; i--)
{
AVFrameSideData *sd = buf->side_data[i];
if (sd->type == type)
{
free_side_data((AVFrameSideData **)&buf->side_data[i]);
buf->side_data[i] = buf->side_data[buf->nb_side_data - 1];
buf->nb_side_data--;
}
}
}
}
void hb_buffer_wipe_side_data(hb_buffer_t *buf)
{
for (int i = 0; i < buf->nb_side_data; i++)
{
free_side_data((AVFrameSideData **)&buf->side_data[i]);
}
buf->nb_side_data = 0;
av_freep(&buf->side_data);
}
void hb_buffer_copy_side_data(hb_buffer_t *dst, const hb_buffer_t *src)
{
for (int i = 0; i < src->nb_side_data; i++)
{
const AVFrameSideData *sd_src = src->side_data[i];
AVBufferRef *ref = av_buffer_ref(sd_src->buf);
AVFrameSideData *sd_dst = hb_buffer_new_side_data_from_buf(dst, sd_src->type, ref);
if (!sd_dst)
{
av_buffer_unref(&ref);
hb_buffer_wipe_side_data(dst);
}
}
}
void hb_buffer_copy_props(hb_buffer_t *dst, const hb_buffer_t *src)
{
dst->s = src->s;
hb_buffer_copy_side_data(dst, src);
}
int hb_buffer_is_writable(const hb_buffer_t *buf)
{
switch (buf->storage_type)
{
case AVFRAME:
return av_frame_is_writable((AVFrame *)buf->storage);
case STANDARD:
return 1;
#ifdef __APPLE__
case COREMEDIA:
return hb_cv_get_io_surface_usage_count(buf) == 1;
#endif
default:
return 0;
}
}
static int copy_hwframe_to_video_buffer(const AVFrame *frame, hb_buffer_t *buf)
{
int ret;
AVFrame *hw_frame = av_frame_alloc();
ret = av_frame_copy_props(hw_frame, frame);
if (ret < 0)
{
hb_log("fifo: av_frame_copy_props");
}
ret = av_hwframe_get_buffer(frame->hw_frames_ctx, hw_frame, 0);
if (ret < 0)
{
hb_log("fifo: av_hwframe_get_buffer failed");
}
ret = av_hwframe_transfer_data(hw_frame, frame, 0);
if (ret < 0)
{
hb_log("fifo: av_hwframe_transfer_data failed");
}
buf->storage = hw_frame;
buf->storage_type = AVFRAME;
return ret;
}
hb_buffer_t * hb_buffer_shallow_dup(const hb_buffer_t *src)
{
hb_buffer_t *buf = NULL;
if (src == NULL)
{
return NULL;
}
if (src->storage_type == AVFRAME &&
((AVFrame *)src->storage)->buf[0] != NULL)
{
buf = hb_buffer_wrapper_init();
if (buf)
{
buf->f = src->f;
buf->s = src->s;
AVFrame *frame_copy = av_frame_alloc();
if (frame_copy == NULL)
{
hb_buffer_close(&buf);
return NULL;
}
int ret = av_frame_ref(frame_copy, src->storage);
if (ret < 0)
{
hb_buffer_close(&buf);
av_frame_free(&frame_copy);
return NULL;
}
buf->storage_type = AVFRAME;
buf->storage = frame_copy;
buf->side_data = (void **)frame_copy->side_data;
buf->nb_side_data = frame_copy->nb_side_data;
for (int pp = 0; pp <= buf->f.max_plane; pp++)
{
buf->plane[pp].data = frame_copy->data[pp];
buf->plane[pp].width = src->plane[pp].width;
buf->plane[pp].height = src->plane[pp].height;
buf->plane[pp].stride = frame_copy->linesize[pp];
buf->plane[pp].size = src->plane[pp].size;
}
}
}
else
{
buf = hb_buffer_dup(src);
}
return buf;
}
hb_buffer_t * hb_buffer_dup(const hb_buffer_t *src)
{
hb_buffer_t *buf = NULL;
if (src == NULL)
{
return NULL;
}
if (src->storage_type == STANDARD)
{
buf = hb_buffer_init(src->size);
if (buf)
{
buf->f = src->f;
hb_buffer_copy_props(buf, src);
if (buf->s.type == FRAME_BUF)
{
hb_buffer_init_planes(buf);
}
memcpy(buf->data, src->data, src->size);
}
}
else if (src->storage_type == AVFRAME)
{
const AVFrame *frame = (AVFrame *)src->storage;
// If it's an hardware frame, make a copy
// into another hardware AVFrame.
if (frame->hw_frames_ctx)
{
#ifdef __APPLE__
if (frame->format == AV_PIX_FMT_VIDEOTOOLBOX)
{
buf = hb_vt_buffer_dup(src);
}
else
#endif
{
buf = hb_buffer_wrapper_init();
if (buf)
{
buf->f = src->f;
hb_buffer_copy_props(buf, src);
copy_hwframe_to_video_buffer(frame, buf);
}
}
}
// If not, copy the content to a standard hb_buffer
else
{
buf = hb_frame_buffer_init(src->f.fmt, src->f.width, src->f.height);
if (buf)
{
buf->f = src->f;
hb_buffer_copy_props(buf, src);
for (int pp = 0; pp <= buf->f.max_plane; pp++)
{
hb_image_copy_plane(buf->plane[pp].data, frame->data[pp],
buf->plane[pp].stride, frame->linesize[pp],
buf->plane[pp].height);
}
}
}
}
#ifdef __APPLE__
else if (src->storage_type == COREMEDIA)
{
buf = hb_vt_buffer_dup(src);
}
#endif
return buf;
}
int hb_buffer_copy(hb_buffer_t * dst, const hb_buffer_t * src)
{
if (src == NULL || dst == NULL)
return -1;
if ( dst->size < src->size )
return -1;
memcpy( dst->data, src->data, src->size );
dst->f = src->f;
hb_buffer_copy_props(dst, src);
if (dst->s.type == FRAME_BUF)
hb_buffer_init_planes(dst);
return 0;
}
void hb_buffer_init_planes(hb_buffer_t * b)
{
uint8_t * data = b->data;
int pp;
for( pp = 0; pp <= b->f.max_plane; pp++ )
{
b->plane[pp].data = data;
b->plane[pp].stride = hb_image_stride(b->f.fmt, b->f.width, pp);
b->plane[pp].width = hb_image_width(b->f.fmt, b->f.width, pp);
b->plane[pp].height = hb_image_height(b->f.fmt, b->f.height, pp);
b->plane[pp].size = b->plane[pp].stride *
b->plane[pp].height;
data += b->plane[pp].size;
}
}
// this routine gets a buffer for an uncompressed picture
// with pixel format pix_fmt and dimensions width x height.
hb_buffer_t * hb_frame_buffer_init( int pix_fmt, int width, int height )
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(pix_fmt);
hb_buffer_t * buf;
uint8_t has_plane[4] = {0,};
int ii, pp, max_plane = 0;
if (desc == NULL)
{
return NULL;
}
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
pp = desc->comp[ii].plane;
if (pp > max_plane)
{
max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride( pix_fmt, width, pp ) *
hb_image_height( pix_fmt, height, pp );
}
}
buf = hb_buffer_init_internal(size);
if( buf == NULL )
return NULL;
buf->f.max_plane = max_plane;
buf->s.type = FRAME_BUF;
buf->f.width = width;
buf->f.height = height;
buf->f.fmt = pix_fmt;
hb_buffer_init_planes(buf);
return buf;
}
void hb_frame_buffer_blank_stride(hb_buffer_t * buf)
{
uint8_t * data;
int pp, yy, width, height, stride;
for (pp = 0; pp <= buf->f.max_plane; pp++)
{
data = buf->plane[pp].data;
width = buf->plane[pp].width;
height = buf->plane[pp].height;
stride = buf->plane[pp].stride;
if (data != NULL)
{
// Blank right margin
for (yy = 0; yy < height; yy++)
{
memset(data + yy * stride + width, 0x80, stride - width);
}
}
}
}
#define DEF_MIRROR_STRIDE_FUNC(name, nbits) \
static void name##_##nbits(uint8_t *data, int width, int height, int stride) \
{ \
int pos, margin, margin_front, margin_back, bps; \
uint##nbits##_t *data_in = (uint##nbits##_t *)data; \
\
bps = nbits > 8 ? 2 : 1; \
stride /= bps; \
margin = stride - width; \
margin_front = margin / 2; \
margin_back = margin - margin_front; \
for (int yy = 0; yy < height; yy++) \
{ \
/* Mirror final row pixels into front of stride region */ \
pos = yy * stride + width; \
for (int ii = 0; ii < margin_back; ii++) \
{ \
*(data_in + pos + ii) = *(data_in + pos - ii - 1); \
} \
/* Mirror start of next row into end of stride region */ \
pos = (yy + 1) * stride - 1; \
for (int ii = 0; ii < margin_front; ii++) \
{ \
*(data_in + pos - ii) = *(data_in + pos + ii + 1); \
} \
} \
} \
DEF_MIRROR_STRIDE_FUNC(mirror_stride, 16)
DEF_MIRROR_STRIDE_FUNC(mirror_stride, 8)
void hb_frame_buffer_mirror_stride(hb_buffer_t * buf)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(buf->f.fmt);
int depth = desc->comp[0].depth > 8 ? 2 : 1;
for (int pp = 0; pp <= buf->f.max_plane; pp++)
{
if (buf->plane[pp].data != NULL)
{
switch (depth)
{
case 8:
mirror_stride_8(buf->plane[pp].data, buf->plane[pp].width,
buf->plane[pp].height, buf->plane[pp].stride);
break;
default:
mirror_stride_16(buf->plane[pp].data, buf->plane[pp].width,
buf->plane[pp].height, buf->plane[pp].stride);
break;
}
}
}
}
// this routine reallocs a buffer for an uncompressed video frame
// with dimensions width x height.
void hb_video_buffer_realloc( hb_buffer_t * buf, int width, int height )
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(buf->f.fmt);
uint8_t has_plane[4] = {0,};
int ii, pp;
if (desc == NULL)
{
return;
}
buf->f.max_plane = 0;
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
pp = desc->comp[ii].plane;
if (pp > buf->f.max_plane)
{
buf->f.max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride(buf->f.fmt, width, pp) *
hb_image_height(buf->f.fmt, height, pp );
}
}
hb_buffer_realloc(buf, size );
buf->f.width = width;
buf->f.height = height;
buf->size = size;
hb_buffer_init_planes(buf);
}
// this routine 'moves' data from src to dst by interchanging 'data',
// 'size' & 'alloc' between them and copying the rest of the fields
// from src to dst.
void hb_buffer_swap_copy( hb_buffer_t *src, hb_buffer_t *dst )
{
uint8_t *data = dst->data;
int size = dst->size;
int alloc = dst->alloc;
*dst = *src;
src->data = data;
src->size = size;
src->alloc = alloc;
}
static void free_buffer_resources(hb_buffer_t *b)
{
if (b->storage_type == AVFRAME)
{
av_frame_unref((AVFrame *)b->storage);
av_frame_free((AVFrame **)&b->storage);
}
#ifdef __APPLE__
else if (b->storage_type == COREMEDIA && b->storage != NULL)
{
CFRelease((CMSampleBufferRef)b->storage);
}
#endif
if (b->storage_type != AVFRAME)
{
hb_buffer_wipe_side_data(b);
av_freep(&b->side_data);
}
}
// Frees the specified buffer list.
void hb_buffer_close( hb_buffer_t ** _b )
{
hb_buffer_t * b = *_b;
while( b )
{
hb_buffer_t * next = b->next;
hb_fifo_t *buffer_pool = size_to_pool( b->alloc );
b->next = NULL;
#if defined(HB_BUFFER_DEBUG)
hb_lock(buffers.lock);
hb_list_rem(buffers.alloc_list, b);
hb_unlock(buffers.lock);
#endif
free_buffer_resources(b);
if (buffer_pool && !hb_fifo_is_full(buffer_pool))
{
#if defined(HB_BUFFER_DEBUG)
if (hb_fifo_contains(buffer_pool, b))
{
hb_error("hb_buffer_close: buffer %p already freed", b);
assert(0);
}
#endif
hb_fifo_push_head( buffer_pool, b );
b = next;
continue;
}
// either the pool is full or this size doesn't use a pool
// free the buf
if (b->data && b->storage_type == STANDARD)
{
av_free(b->data);
hb_lock(buffers.lock);
buffers.allocated -= b->alloc;
hb_unlock(buffers.lock);
}
free( b );
b = next;
}
*_b = NULL;
}
hb_image_t * hb_image_init(int pix_fmt, int width, int height)
{
const AVPixFmtDescriptor * desc = av_pix_fmt_desc_get(pix_fmt);
uint8_t has_plane[4] = {0,};
int ii, pp;
if (desc == NULL)
{
return NULL;
}
hb_image_t *image = calloc(1, sizeof(hb_image_t));
if (image == NULL)
{
return NULL;
}
int size = 0;
for (ii = 0; ii < desc->nb_components; ii++)
{
// For non-planar formats, comp[ii].plane can contain the
// same value for multiple comp.
pp = desc->comp[ii].plane;
if (pp > image->max_plane)
{
image->max_plane = pp;
}
if (!has_plane[pp])
{
has_plane[pp] = 1;
size += hb_image_stride( pix_fmt, width, pp ) *
hb_image_height( pix_fmt, height, pp );
}
}
image->data = av_malloc(size);
if (image->data == NULL)
{
free(image);
return NULL;
}
image->format = pix_fmt;
image->width = width;
image->height = height;
memset(image->data, 0, size);
uint8_t * data = image->data;
for (pp = 0; pp <= image->max_plane; pp++)
{
image->plane[pp].data = data;
image->plane[pp].stride = hb_image_stride(pix_fmt, width, pp);
image->plane[pp].width = hb_image_width(pix_fmt, width, pp);
image->plane[pp].height = hb_image_height(pix_fmt, height, pp);
image->plane[pp].size = image->plane[pp].stride *
image->plane[pp].height;
data += image->plane[pp].size;
}
return image;
}
hb_image_t * hb_buffer_to_image(hb_buffer_t *buf)
{
hb_image_t *image = calloc(1, sizeof(hb_image_t));
image->data = av_malloc( buf->size );
if (image->data == NULL)
{
free(image);
return NULL;
}
image->format = buf->f.fmt;
image->width = buf->f.width;
image->height = buf->f.height;
image->color_prim = buf->f.color_prim;
image->color_transfer = buf->f.color_transfer;
image->color_matrix = buf->f.color_matrix;
int p;
uint8_t *data = image->data;
for (p = 0; p <= buf->f.max_plane; p++)
{
image->plane[p].data = data;
image->plane[p].width = buf->plane[p].width;
image->plane[p].height = buf->plane[p].height;
image->plane[p].stride = buf->plane[p].stride;
image->plane[p].size = buf->plane[p].size;
memcpy(image->plane[p].data, buf->plane[p].data, buf->plane[p].size);
data += image->plane[p].size;
}
return image;
}
void hb_image_close(hb_image_t **_image)
{
if (_image == NULL)
return;
hb_image_t * image = *_image;
if (image != NULL)
{
av_free(image->data);
free(image);
*_image = NULL;
}
}
hb_fifo_t * hb_fifo_init( int capacity, int thresh )
{
hb_fifo_t * f;
f = calloc( sizeof( hb_fifo_t ), 1 );
f->lock = hb_lock_init();
f->cond_full = hb_cond_init();
f->cond_empty = hb_cond_init();
f->capacity = capacity;
f->thresh = thresh;
f->buffer_size = 0;
#if defined(HB_FIFO_DEBUG)
// Add the fifo to the global fifo list
fifo_list_add( f );
#endif
return f;
}
void hb_fifo_register_full_cond( hb_fifo_t * f, hb_cond_t * c )
{
f->cond_alert_full = c;
}
int hb_fifo_size_bytes( hb_fifo_t * f )
{
int ret = 0;
hb_buffer_t * link;
hb_lock( f->lock );
link = f->first;
while ( link )
{
ret += link->size;
link = link->next;
}
hb_unlock( f->lock );
return ret;
}
int hb_fifo_size( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = f->size;
hb_unlock( f->lock );
return ret;
}
int hb_fifo_is_full( hb_fifo_t * f )
{
int ret;
hb_lock( f->lock );
ret = ( f->size >= f->capacity );
hb_unlock( f->lock );
return ret;
}
float hb_fifo_percent_full( hb_fifo_t * f )
{
float ret;
hb_lock( f->lock );
ret = f->size / f->capacity;
hb_unlock( f->lock );
return ret;
}
// Pulls the first packet out of this FIFO, blocking until such a packet is available.
// Returns NULL if this FIFO has been closed or flushed.
hb_buffer_t * hb_fifo_get_wait( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
f->wait_empty = 1;
hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
}
b = f->first;
f->first = b->next;
b->next = NULL;
f->size -= 1;
if( f->wait_full && f->size == f->capacity - f->thresh )
{
f->wait_full = 0;
hb_cond_signal( f->cond_full );
}
hb_unlock( f->lock );
return b;
}
// Pulls a packet out of this FIFO, or returns NULL if no packet is available.
hb_buffer_t * hb_fifo_get( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first;
f->first = b->next;
b->next = NULL;
f->size -= 1;
if( f->wait_full && f->size == f->capacity - f->thresh )
{
f->wait_full = 0;
hb_cond_signal( f->cond_full );
}
hb_unlock( f->lock );
return b;
}
hb_buffer_t * hb_fifo_see_wait( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
f->wait_empty = 1;
hb_cond_timedwait( f->cond_empty, f->lock, FIFO_TIMEOUT );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
}
b = f->first;
hb_unlock( f->lock );
return b;
}
// Returns the first packet in the specified FIFO.
// If the FIFO is empty, returns NULL.
hb_buffer_t * hb_fifo_see( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 1 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first;
hb_unlock( f->lock );
return b;
}
hb_buffer_t * hb_fifo_see2( hb_fifo_t * f )
{
hb_buffer_t * b;
hb_lock( f->lock );
if( f->size < 2 )
{
hb_unlock( f->lock );
return NULL;
}
b = f->first->next;
hb_unlock( f->lock );
return b;
}
// Waits until the specified FIFO is no longer full or until FIFO_TIMEOUT milliseconds have elapsed.
// Returns whether the FIFO is non-full upon return.
int hb_fifo_full_wait( hb_fifo_t * f )
{
int result;
hb_lock( f->lock );
if( f->size >= f->capacity )
{
f->wait_full = 1;
hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT );
}
result = ( f->size < f->capacity );
hb_unlock( f->lock );
return result;
}
// Pushes the specified buffer onto the specified FIFO,
// blocking until the FIFO has space available.
void hb_fifo_push_wait( hb_fifo_t * f, hb_buffer_t * b )
{
if( !b )
{
return;
}
hb_lock( f->lock );
if( f->size >= f->capacity )
{
f->wait_full = 1;
if (f->cond_alert_full != NULL)
hb_cond_broadcast( f->cond_alert_full );
hb_cond_timedwait( f->cond_full, f->lock, FIFO_TIMEOUT );
}
if( f->size > 0 )
{
f->last->next = b;
}
else
{
f->first = b;
}
f->last = b;
f->size += 1;
while( f->last->next )
{
f->size += 1;
f->last = f->last->next;
}
if( f->wait_empty && f->size >= 1 )
{
f->wait_empty = 0;
hb_cond_signal( f->cond_empty );
}
hb_unlock( f->lock );
}
// Appends the specified packet list to the end of the specified FIFO.
void hb_fifo_push( hb_fifo_t * f, hb_buffer_t * b )
{
if( !b )
{
return;
}
hb_lock( f->lock );
if (f->size >= f->capacity &&
f->cond_alert_full != NULL)
{
hb_cond_broadcast( f->cond_alert_full );
}
if( f->size > 0 )
{
f->last->next = b;
}
else
{
f->first = b;
}
f->last = b;
f->size += 1;
while( f->last->next )
{
f->size += 1;
f->last = f->last->next;
}
if( f->wait_empty && f->size >= 1 )
{
f->wait_empty = 0;
hb_cond_signal( f->cond_empty );
}
hb_unlock( f->lock );
}
// Prepends the specified packet list to the start of the specified FIFO.
void hb_fifo_push_head( hb_fifo_t * f, hb_buffer_t * b )
{
hb_buffer_t * tmp;
uint32_t size = 0;
if( !b )
{
return;
}
hb_lock( f->lock );
if (f->size >= f->capacity &&
f->cond_alert_full != NULL)
{
hb_cond_broadcast( f->cond_alert_full );
}
/*
* If there are a chain of buffers prepend the lot
*/
tmp = b;
while( tmp->next )
{
tmp = tmp->next;
size += 1;
}
if( f->size > 0 )
{
tmp->next = f->first;
}
else
{
f->last = tmp;
}
f->first = b;
f->size += ( size + 1 );
hb_unlock( f->lock );
}
void hb_fifo_close( hb_fifo_t ** _f )
{
hb_fifo_t * f = *_f;
hb_buffer_t * b;
if ( f == NULL )
return;
hb_deep_log( 2, "fifo_close: trashing %d buffer(s)", hb_fifo_size( f ) );
while( ( b = hb_fifo_get( f ) ) )
{
hb_buffer_close( &b );
}
hb_lock_close( &f->lock );
hb_cond_close( &f->cond_empty );
hb_cond_close( &f->cond_full );
#if defined(HB_FIFO_DEBUG)
// Remove the fifo from the global fifo list
fifo_list_rem( f );
#endif
free( f );
*_f = NULL;
}
void hb_fifo_flush( hb_fifo_t * f )
{
hb_buffer_t * b;
while( ( b = hb_fifo_get( f ) ) )
{
hb_buffer_close( &b );
}
hb_lock( f->lock );
hb_cond_signal( f->cond_empty );
hb_cond_signal( f->cond_full );
hb_unlock( f->lock );
}
#if defined(HB_BUFFER_DEBUG)
static int hb_fifo_contains( hb_fifo_t *f, hb_buffer_t *b )
{
hb_buffer_t * tmp = f->first;
while (tmp != NULL)
{
if (b == tmp)
{
return 1;
}
tmp = tmp->next;
}
return 0;
}
#endif