Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
Add a selftest that enables populating a VM with the maximum amount of
guest memory allowed by the underlying architecture. Abuse KVM's
memslots by mapping a single host memory region into multiple memslots so
that the selftest doesn't require a system with terabytes of RAM.
Default to 512gb of guest memory, which isn't all that interesting, but
should work on all MMUs and doesn't take an exorbitant amount of memory
or time. E.g. testing with ~64tb of guest memory takes the better part
of an hour, and requires 200gb of memory for KVM's page tables when using
4kb pages.
To inflicit maximum abuse on KVM' MMU, default to 4kb pages (or whatever
the not-hugepage size is) in the backing store (memfd). Use memfd for
the host backing store to ensure that hugepages are guaranteed when
requested, and to give the user explicit control of the size of hugepage
being tested.
By default, spin up as many vCPUs as there are available to the selftest,
and distribute the work of dirtying each 4kb chunk of memory across all
vCPUs. Dirtying guest memory forces KVM to populate its page tables, and
also forces KVM to write back accessed/dirty information to struct page
when the guest memory is freed.
On x86, perform two passes with a MMU context reset between each pass to
coerce KVM into dropping all references to the MMU root, e.g. to emulate
a vCPU dropping the last reference. Perform both passes and all
rendezvous on all architectures in the hope that arm64 and s390x can gain
similar shenanigans in the future.
Measure and report the duration of each operation, which is helpful not
only to verify the test is working as intended, but also to easily
evaluate the performance differences different page sizes.
Provide command line options to limit the amount of guest memory, set the
size of each slot (i.e. of the host memory region), set the number of
vCPUs, and to enable usage of hugepages.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-29-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The main thing that the selftest verifies is that KVM copies x2APIC's
ICR[63:32] to/from ICR2 when userspace accesses the vAPIC page via
KVM_{G,S}ET_LAPIC. KVM previously split x2APIC ICR to ICR+ICR2 at the
time of write (from the guest), and so KVM must preserve that behavior
for backwards compatibility between different versions of KVM.
It will also test other invariants, e.g. that KVM clears the BUSY
flag on ICR writes, that the reserved bits in ICR2 are dropped on writes
from the guest, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Out of tree build of this test fails if relative path of the output
directory is specified. Add KHDR_INCLUDES to correctly reach the
headers.
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
There is no vmx_pi_mmio_test file. Remove it to get rid of error while
creation of selftest archive:
rsync: [sender] link_stat "/kselftest/kvm/x86_64/vmx_pi_mmio_test" failed: No such file or directory (2)
rsync error: some files/attrs were not transferred (see previous errors) (code 23) at main.c(1333) [sender=3.2.3]
Fixes: 6a58150859 ("selftest: KVM: Add intra host migration tests")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Message-Id: <20220210172352.1317554-1-usama.anjum@collabora.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a new test for Hyper-V nSVM extensions (Hyper-V on KVM) and add
a test for enlightened MSR-Bitmap feature:
- Intercept access to MSR_FS_BASE in L1 and check that this works
with enlightened MSR-Bitmap disabled.
- Enabled enlightened MSR-Bitmap and check that the intercept still works
as expected.
- Intercept access to MSR_GS_BASE but don't clear the corresponding bit
from clean fields mask, KVM is supposed to skip updating MSR-Bitmap02 and
thus the consequent access to the MSR from L2 will not get intercepted.
- Finally, clear the corresponding bit from clean fields mask and check
that access to MSR_GS_BASE is now intercepted.
The test works with the assumption, that access to MSR_FS_BASE/MSR_GS_BASE
is not intercepted for L1. If this ever becomes not true the test will
fail as nested_svm_exit_handled_msr() always checks L1's MSR-Bitmap for
L2 irrespective of clean fields. The behavior is correct as enlightened
MSR-Bitmap feature is just an optimization, KVM is not obliged to ignore
updates when the corresponding bit in clean fields stays clear.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220203104620.277031-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a VMX specific test to verify that KVM doesn't explode if userspace
attempts KVM_RUN when emulation is required with a pending exception.
KVM VMX's emulation support for !unrestricted_guest punts exceptions to
userspace instead of attempting to synthesize the exception with all the
correct state (and stack switching, etc...).
Punting is acceptable as there's never been a request to support
injecting exceptions when emulating due to invalid state, but KVM has
historically assumed that userspace will do the right thing and either
clear the exception or kill the guest. Deliberately do the opposite and
attempt to re-enter the guest with a pending exception and emulation
required to verify KVM continues to punt the combination to userspace,
e.g. doesn't explode, WARN, etc...
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211228232437.1875318-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Verify that the PMU event filter works as expected.
Note that the virtual PMU doesn't work as expected on AMD Zen CPUs (an
intercepted rdmsr is counted as a retired branch instruction), but the
PMU event filter does work.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220115052431.447232-7-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In preparation to reusing the existing 'get_cpuid_test' for testing
"KVM_SET_CPUID{,2} after KVM_RUN" rename it to 'cpuid_test' to avoid
the confusion.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220117150542.2176196-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This selftest covers two aspects of AMX. The first is triggering #NM
exception and checking the MSR XFD_ERR value. The second case is
loading tile config and tile data into guest registers and trapping to
the host side for a complete save/load of the guest state. TMM0
is also checked against memory data after save/restore.
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20211223145322.2914028-4-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM/riscv changes for 5.17, take #1
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
KVM/arm64 updates for Linux 5.16
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
We add initial support for RISC-V 64-bit in KVM selftests using
which we can cross-compile and run arch independent tests such as:
demand_paging_test
dirty_log_test
kvm_create_max_vcpus,
kvm_page_table_test
set_memory_region_test
kvm_binary_stats_test
All VM guest modes defined in kvm_util.h require at least 48-bit
guest virtual address so to use KVM RISC-V selftests hardware
need to support at least Sv48 MMU for guest (i.e. VS-mode).
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-and-tested-by: Atish Patra <atishp@rivosinc.com>
We add EXTRA_CFLAGS to the common CFLAGS of top-level Makefile which will
allow users to pass additional compile-time flags such as "-static".
Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-and-tested-by: Atish Patra <atishp@rivosinc.com>
Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Add a selftest to attempt to enter L2 with invalid guests state by
exiting to userspace via I/O from L2, and then using KVM_SET_SREGS to set
invalid guest state (marking TR unusable is arbitrary chosen for its
relative simplicity).
This is a regression test for a bug introduced by commit c8607e4a08
("KVM: x86: nVMX: don't fail nested VM entry on invalid guest state if
!from_vmentry"), which incorrectly set vmx->fail=true when L2 had invalid
guest state and ultimately triggered a WARN due to nested_vmx_vmexit()
seeing vmx->fail==true while attempting to synthesize a nested VM-Exit.
The is also a functional test to verify that KVM sythesizes TRIPLE_FAULT
for L2, which is somewhat arbitrary behavior, instead of emulating L2.
KVM should never emulate L2 due to invalid guest state, as it's
architecturally impossible for L1 to run an L2 guest with invalid state
as nested VM-Enter should always fail, i.e. L1 needs to do the emulation.
Stuffing state via KVM ioctl() is a non-architctural, out-of-band case,
hence the TRIPLE_FAULT being rather arbitrary.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211207193006.120997-5-seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an x86 selftest to verify that KVM doesn't WARN or otherwise explode
if userspace modifies RCX during a userspace exit to handle string I/O.
This is a regression test for a user-triggerable WARN introduced by
commit 3b27de2718 ("KVM: x86: split the two parts of emulator_pio_in").
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211025201311.1881846-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
* kvm/selftests/memslot:
: .
: Enable KVM memslot selftests on arm64, making them less
: x86 specific.
: .
KVM: selftests: Build the memslot tests for arm64
KVM: selftests: Make memslot_perf_test arch independent
Signed-off-by: Marc Zyngier <maz@kernel.org>
Add a selftest for the new KVM clock UAPI that was introduced. Ensure
that the KVM clock is consistent between userspace and the guest, and
that the difference in realtime will only ever cause the KVM clock to
advance forward.
Cc: Andrew Jones <drjones@redhat.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20210916181555.973085-3-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a KVM selftest to validate the arch_timer functionality.
Primarily, the test sets up periodic timer interrupts and
validates the basic architectural expectations upon its receipt.
The test provides command-line options to configure the period
of the timer, number of iterations, and number of vCPUs.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211007233439.1826892-15-rananta@google.com
Implement a simple library to perform vGIC-v3 setup
from a host point of view. This includes creating a
vGIC device, setting up distributor and redistributor
attributes, and mapping the guest physical addresses.
The definition of REDIST_REGION_ATTR_ADDR is taken from
aarch64/vgic_init test. Hence, replace the definition
by including vgic.h in the test file.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211007233439.1826892-14-rananta@google.com
Test that if:
* L1 disables virtual interrupt masking, and INTR intercept.
* L1 setups a virtual interrupt to be injected to L2 and enters L2 with
interrupts disabled, thus the virtual interrupt is pending.
* Now an external interrupt arrives in L1 and since
L1 doesn't intercept it, it should be delivered to L2 when
it enables interrupts.
to do this L0 (abuses) V_IRQ to setup an
interrupt window, and returns to L2.
* L2 enables interrupts.
This should trigger the interrupt window,
injection of the external interrupt and delivery
of the virtual interrupt that can now be done.
* Test that now L2 gets those interrupts.
This is the test that demonstrates the issue that was
fixed in the previous patch.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a test to verify an rseq's CPU ID is updated correctly if the task is
migrated while the kernel is handling KVM_RUN. This is a regression test
for a bug introduced by commit 72c3c0fe54 ("x86/kvm: Use generic xfer
to guest work function"), where TIF_NOTIFY_RESUME would be cleared by KVM
without updating rseq, leading to a stale CPU ID and other badness.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Message-Id: <20210901203030.1292304-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This test measures the performance effects of KVM's access tracking.
Access tracking is driven by the MMU notifiers test_young, clear_young,
and clear_flush_young. These notifiers do not have a direct userspace
API, however the clear_young notifier can be triggered by marking a
pages as idle in /sys/kernel/mm/page_idle/bitmap. This test leverages
that mechanism to enable access tracking on guest memory.
To measure performance this test runs a VM with a configurable number of
vCPUs that each touch every page in disjoint regions of memory.
Performance is measured in the time it takes all vCPUs to finish
touching their predefined region.
Example invocation:
$ ./access_tracking_perf_test -v 8
Testing guest mode: PA-bits:ANY, VA-bits:48, 4K pages
guest physical test memory offset: 0xffdfffff000
Populating memory : 1.337752570s
Writing to populated memory : 0.010177640s
Reading from populated memory : 0.009548239s
Mark memory idle : 23.973131748s
Writing to idle memory : 0.063584496s
Mark memory idle : 24.924652964s
Reading from idle memory : 0.062042814s
Breaking down the results:
* "Populating memory": The time it takes for all vCPUs to perform the
first write to every page in their region.
* "Writing to populated memory" / "Reading from populated memory": The
time it takes for all vCPUs to write and read to every page in their
region after it has been populated. This serves as a control for the
later results.
* "Mark memory idle": The time it takes for every vCPU to mark every
page in their region as idle through page_idle.
* "Writing to idle memory" / "Reading from idle memory": The time it
takes for all vCPUs to write and read to every page in their region
after it has been marked idle.
This test should be portable across architectures but it is only enabled
for x86_64 since that's all I have tested.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20210713220957.3493520-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM/arm64 updates for v5.14.
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
This test exercises the feature KVM_CAP_EXIT_ON_EMULATION_FAILURE. When
enabled, errors in the in-kernel instruction emulator are forwarded to
userspace with the instruction bytes stored in the exit struct for
KVM_EXIT_INTERNAL_ERROR. So, when the guest attempts to emulate an
'flds' instruction, which isn't able to be emulated in KVM, instead
of failing, KVM sends the instruction to userspace to handle.
For this test to work properly the module parameter
'allow_smaller_maxphyaddr' has to be set.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20210510144834.658457-3-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an x86-only test to verify that x86's MMU reacts to CPUID updates
that impact the MMU. KVM has had multiple bugs where it fails to
reconfigure the MMU after the guest's vCPU model changes.
Sadly, this test is effectively limited to shadow paging because the
hardware page walk handler doesn't support software disabling of GBPAGES
support, and KVM doesn't manually walk the GVA->GPA on faults for
performance reasons (doing so would large defeat the benefits of TDP).
Don't require !TDP for the tests as there is still value in running the
tests with TDP, even though the tests will fail (barring KVM hacks).
E.g. KVM should not completely explode if MAXPHYADDR results in KVM using
4-level vs. 5-level paging for the guest.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622200529.3650424-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Selftest updates from Andrew Jones, fixing the sysgreg list
expectations by dealing with multiple configurations, such
as with or without a PMU.
* kvm-arm64/selftest/sysreg-list-fix:
KVM: arm64: Update MAINTAINERS to include selftests
KVM: arm64: selftests: get-reg-list: Split base and pmu registers
KVM: arm64: selftests: get-reg-list: Remove get-reg-list-sve
KVM: arm64: selftests: get-reg-list: Provide config selection option
KVM: arm64: selftests: get-reg-list: Prepare to run multiple configs at once
KVM: arm64: selftests: get-reg-list: Introduce vcpu configs
Now that we can easily run the test for multiple vcpu configs, let's
merge get-reg-list and get-reg-list-sve into just get-reg-list. We
also add a final change to make it more possible to run multiple
tests, which is to fork the test, rather than directly run it. That
allows a test to fail, but subsequent tests can still run.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210531103344.29325-5-drjones@redhat.com
Add the infrastructure needed to enable exception handling in aarch64
selftests. The exception handling defaults to an unhandled-exception
handler which aborts the test, just like x86. These handlers can be
overridden by calling vm_install_exception_handler(vector) or
vm_install_sync_handler(vector, ec). The unhandled exception reporting
from the guest is done using the ucall type introduced in a previous
commit, UCALL_UNHANDLED.
The exception handling code is inspired on kvm-unit-tests.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210611011020.3420067-6-ricarkol@google.com
This benchmark contains the following tests:
* Map test, where the host unmaps guest memory while the guest writes to
it (maps it).
The test is designed in a way to make the unmap operation on the host
take a negligible amount of time in comparison with the mapping
operation in the guest.
The test area is actually split in two: the first half is being mapped
by the guest while the second half in being unmapped by the host.
Then a guest <-> host sync happens and the areas are reversed.
* Unmap test which is broadly similar to the above map test, but it is
designed in an opposite way: to make the mapping operation in the guest
take a negligible amount of time in comparison with the unmap operation
on the host.
This test is available in two variants: with per-page unmap operation
or a chunked one (using 2 MiB chunk size).
* Move active area test which involves moving the last (highest gfn)
memslot a bit back and forth on the host while the guest is
concurrently writing around the area being moved (including over the
moved memslot).
* Move inactive area test which is similar to the previous move active
area test, but now guest writes all happen outside of the area being
moved.
* Read / write test in which the guest writes to the beginning of each
page of the test area while the host writes to the middle of each such
page.
Then each side checks the values the other side has written.
This particular test is not expected to give different results depending
on particular memslots implementation, it is meant as a rough sanity
check and to provide insight on the spread of test results expected.
Each test performs its operation in a loop until a test period ends
(this is 5 seconds by default, but it is configurable).
Then the total count of loops done is divided by the actual elapsed
time to give the test result.
The tests have a configurable memslot cap with the "-s" test option, by
default the system maximum is used.
Each test is repeated a particular number of times (by default 20
times), the best result achieved is printed.
The test memory area is divided equally between memslots, the reminder
is added to the last memslot.
The test area size does not depend on the number of memslots in use.
The tests also measure the time that it took to add all these memslots.
The best result from the tests that use the whole test area is printed
after all the requested tests are done.
In general, these tests are designed to use as much memory as possible
(within reason) while still doing 100+ loops even on high memslot counts
with the default test length.
Increasing the test runtime makes it increasingly more likely that some
event will happen on the system during the test run, which might lower
the test result.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <8d31bb3d92bc8fa33a9756fa802ee14266ab994e.1618253574.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM selftest framework was using a simple list for keeping track of
the memslots currently in use.
This resulted in lookups and adding a single memslot being O(n), the
later due to linear scanning of the existing memslot set to check for
the presence of any conflicting entries.
Before this change, benchmarking high count of memslots was more or less
impossible as pretty much all the benchmark time was spent in the
selftest framework code.
We can simply use a rbtree for keeping track of both of gfn and hva.
We don't need an interval tree for hva here as we can't have overlapping
memslots because we allocate a completely new memory chunk for each new
memslot.
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Message-Id: <b12749d47ee860468240cf027412c91b76dbe3db.1618253574.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
Pull Kbuild updates from Masahiro Yamada:
- Evaluate $(call cc-option,...) etc. only for build targets
- Add CONFIG_VMLINUX_MAP to generate .map file when linking vmlinux
- Remove unnecessary --gcc-toolchains Clang flag because the --prefix
flag finds the toolchains
- Do not pass Clang's --prefix flag when using the integrated as
- Check the assembler version in Kconfig time
- Add new CONFIG options, AS_VERSION, AS_IS_GNU, AS_IS_LLVM to clean up
some dependencies in Kconfig
- Fix invalid Module.symvers creation when building only modules
without vmlinux
- Fix false-positive modpost warnings when CONFIG_TRIM_UNUSED_KSYMS is
set, but there is no module to build
- Refactor module installation Makefile
- Support zstd for module compression
- Convert alpha and ia64 to use generic shell scripts to generate the
syscall headers
- Add a new elfnote to indicate if the kernel was built with LTO, which
will be used by pahole
- Flatten the directory structure under include/config/ so CONFIG
options and filenames match
- Change the deb source package name from linux-$(KERNELRELEASE) to
linux-upstream
* tag 'kbuild-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (42 commits)
kbuild: Add $(KBUILD_HOSTLDFLAGS) to 'has_libelf' test
kbuild: deb-pkg: change the source package name to linux-upstream
tools: do not include scripts/Kbuild.include
kbuild: redo fake deps at include/config/*.h
kbuild: remove TMPO from try-run
MAINTAINERS: add pattern for dummy-tools
kbuild: add an elfnote for whether vmlinux is built with lto
ia64: syscalls: switch to generic syscallhdr.sh
ia64: syscalls: switch to generic syscalltbl.sh
alpha: syscalls: switch to generic syscallhdr.sh
alpha: syscalls: switch to generic syscalltbl.sh
sysctl: use min() helper for namecmp()
kbuild: add support for zstd compressed modules
kbuild: remove CONFIG_MODULE_COMPRESS
kbuild: merge scripts/Makefile.modsign to scripts/Makefile.modinst
kbuild: move module strip/compression code into scripts/Makefile.modinst
kbuild: refactor scripts/Makefile.modinst
kbuild: rename extmod-prefix to extmod_prefix
kbuild: check module name conflict for external modules as well
kbuild: show the target directory for depmod log
...