Holding a mutex across synchronize_rcu_tasks() and acquiring
that same mutex in code called from do_exit() after its call to
exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop()
results in deadlock. This is by design, because tasks that are far
enough into do_exit() are no longer present on the tasks list, making
it a bit difficult for RCU Tasks to find them, let alone wait on them
to do a voluntary context switch. However, such deadlocks are becoming
more frequent. In addition, lockdep currently does not detect such
deadlocks and they can be difficult to reproduce.
In addition, if a task voluntarily context switches during that time
(for example, if it blocks acquiring a mutex), then this task is in an
RCU Tasks quiescent state. And with some adjustments, RCU Tasks could
just as well take advantage of that fact.
This commit therefore adds the data structures that will be needed
to rely on these quiescent states and to eliminate these deadlocks.
Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/
Reported-by: Chen Zhongjin <chenzhongjin@huawei.com>
Reported-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yang Jihong <yangjihong1@huawei.com>
Tested-by: Chen Zhongjin <chenzhongjin@huawei.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
By splitting CRASH_RESERVE and VMCORE_INFO out from CRASH_CORE, cleaning
up the dependency of FA_DMUMP on CRASH_DUMP, and moving crash codes from
kexec_core.c to crash_core.c, now we can rearrange CRASH_DUMP to
depend on KEXEC_CORE, and make CRASH_DUMP select CRASH_RESERVE and
VMCORE_INFO.
KEXEC_CORE won't select CRASH_RESERVE and VMCORE_INFO any more because
KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are shared
by both kexec reboot and crash dumping.
Doing this makes codes and the corresponding config items more
logical (the right item depends on or is selected by the left item).
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE--> kexec reboot
KEXEC_FILE --|
Link: https://lkml.kernel.org/r/20240124051254.67105-6-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, KEXEC_CORE select CRASH_CORE automatically because crash codes
need be built in to avoid compiling error when building kexec code even
though the crash dumping functionality is not enabled. E.g
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
After splitting out crashkernel reservation code and vmcoreinfo exporting
code, there's only crash related code left in kernel/crash_core.c. Now
move crash related codes from kexec_core.c to crash_core.c and only build it
in when CONFIG_CRASH_DUMP=y.
And also wrap up crash codes inside CONFIG_CRASH_DUMP ifdeffery scope,
or replace inappropriate CONFIG_KEXEC_CORE ifdef with CONFIG_CRASH_DUMP
ifdef in generic kernel files.
With these changes, crash_core codes are abstracted from kexec codes and
can be disabled at all if only kexec reboot feature is wanted.
Link: https://lkml.kernel.org/r/20240124051254.67105-5-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In kdump kernel, /proc/vmcore is an elf file mapping the crashed kernel's
old memory content. Its elf header is constructed in 1st kernel and passed
to kdump kernel via elfcorehdr_addr. Config CRASH_DUMP enables the code
of 1st kernel's old memory accessing in different architectures.
Currently, config FA_DUMP has dependency on CRASH_DUMP because fadump
needs access global variable 'elfcorehdr_addr' to judge if it's in
kdump kernel within function is_kdump_kernel(). In the current
kernel/crash_dump.c, variable 'elfcorehdr_addr' is defined, and function
setup_elfcorehdr() used to parse kernel parameter to fetch the passed
value of elfcorehdr_addr. Only for accessing elfcorehdr_addr, FA_DUMP
really doesn't have to depends on CRASH_DUMP.
To remove the dependency of FA_DUMP on CRASH_DUMP to avoid confusion,
rename kernel/crash_dump.c to kernel/elfcorehdr.c, and build it when
CONFIG_VMCORE_INFO is ebabled. With this, FA_DUMP doesn't need to depend
on CRASH_DUMP.
[bhe@redhat.com: power/fadump: make FA_DUMP select CRASH_DUMP]
Link: https://lkml.kernel.org/r/Zb8D1ASrgX0qVm9z@MiWiFi-R3L-srv
Link: https://lkml.kernel.org/r/20240124051254.67105-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Split crash out from kexec and clean up related config
items", v3.
Motivation:
=============
Previously, LKP reported a building error. When investigating, it can't
be resolved reasonablly with the present messy kdump config items.
https://lore.kernel.org/oe-kbuild-all/202312182200.Ka7MzifQ-lkp@intel.com/
The kdump (crash dumping) related config items could causes confusions:
Firstly,
CRASH_CORE enables codes including
- crashkernel reservation;
- elfcorehdr updating;
- vmcoreinfo exporting;
- crash hotplug handling;
Now fadump of powerpc, kcore dynamic debugging and kdump all selects
CRASH_CORE, while fadump
- fadump needs crashkernel parsing, vmcoreinfo exporting, and accessing
global variable 'elfcorehdr_addr';
- kcore only needs vmcoreinfo exporting;
- kdump needs all of the current kernel/crash_core.c.
So only enabling PROC_CORE or FA_DUMP will enable CRASH_CORE, this
mislead people that we enable crash dumping, actual it's not.
Secondly,
It's not reasonable to allow KEXEC_CORE select CRASH_CORE.
Because KEXEC_CORE enables codes which allocate control pages, copy
kexec/kdump segments, and prepare for switching. These codes are
shared by both kexec reboot and kdump. We could want kexec reboot,
but disable kdump. In that case, CRASH_CORE should not be selected.
--------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC=y
CONFIG_KEXEC_FILE=y
---------------------
Thirdly,
It's not reasonable to allow CRASH_DUMP select KEXEC_CORE.
That could make KEXEC_CORE, CRASH_DUMP are enabled independently from
KEXEC or KEXEC_FILE. However, w/o KEXEC or KEXEC_FILE, the KEXEC_CORE
code built in doesn't make any sense because no kernel loading or
switching will happen to utilize the KEXEC_CORE code.
---------------------
CONFIG_CRASH_CORE=y
CONFIG_KEXEC_CORE=y
CONFIG_CRASH_DUMP=y
---------------------
In this case, what is worse, on arch sh and arm, KEXEC relies on MMU,
while CRASH_DUMP can still be enabled when !MMU, then compiling error is
seen as the lkp test robot reported in above link.
------arch/sh/Kconfig------
config ARCH_SUPPORTS_KEXEC
def_bool MMU
config ARCH_SUPPORTS_CRASH_DUMP
def_bool BROKEN_ON_SMP
---------------------------
Changes:
===========
1, split out crash_reserve.c from crash_core.c;
2, split out vmcore_infoc. from crash_core.c;
3, move crash related codes in kexec_core.c into crash_core.c;
4, remove dependency of FA_DUMP on CRASH_DUMP;
5, clean up kdump related config items;
6, wrap up crash codes in crash related ifdefs on all 8 arch-es
which support crash dumping, except of ppc;
Achievement:
===========
With above changes, I can rearrange the config item logic as below (the right
item depends on or is selected by the left item):
PROC_KCORE -----------> VMCORE_INFO
|----------> VMCORE_INFO
FA_DUMP----|
|----------> CRASH_RESERVE
---->VMCORE_INFO
/
|---->CRASH_RESERVE
KEXEC --| /|
|--> KEXEC_CORE--> CRASH_DUMP-->/-|---->PROC_VMCORE
KEXEC_FILE --| \ |
\---->CRASH_HOTPLUG
KEXEC --|
|--> KEXEC_CORE (for kexec reboot only)
KEXEC_FILE --|
Test
========
On all 8 architectures, including x86_64, arm64, s390x, sh, arm, mips,
riscv, loongarch, I did below three cases of config item setting and
building all passed. Take configs on x86_64 as exampmle here:
(1) Both CONFIG_KEXEC and KEXEC_FILE is unset, then all kexec/kdump
items are unset automatically:
# Kexec and crash features
# CONFIG_KEXEC is not set
# CONFIG_KEXEC_FILE is not set
# end of Kexec and crash features
(2) set CONFIG_KEXEC_FILE and 'make olddefconfig':
---------------
# Kexec and crash features
CONFIG_CRASH_RESERVE=y
CONFIG_VMCORE_INFO=y
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
CONFIG_CRASH_DUMP=y
CONFIG_CRASH_HOTPLUG=y
CONFIG_CRASH_MAX_MEMORY_RANGES=8192
# end of Kexec and crash features
---------------
(3) unset CONFIG_CRASH_DUMP in case 2 and execute 'make olddefconfig':
------------------------
# Kexec and crash features
CONFIG_KEXEC_CORE=y
CONFIG_KEXEC_FILE=y
# end of Kexec and crash features
------------------------
Note:
For ppc, it needs investigation to make clear how to split out crash
code in arch folder. Hope Hari and Pingfan can help have a look, see if
it's doable. Now, I make it either have both kexec and crash enabled, or
disable both of them altogether.
This patch (of 14):
Both kdump and fa_dump of ppc rely on crashkernel reservation. Move the
relevant codes into separate files: crash_reserve.c,
include/linux/crash_reserve.h.
And also add config item CRASH_RESERVE to control its enabling of the
codes. And update config items which has relationship with crashkernel
reservation.
And also change ifdeffery from CONFIG_CRASH_CORE to CONFIG_CRASH_RESERVE
when those scopes are only crashkernel reservation related.
And also rename arch/XXX/include/asm/{crash_core.h => crash_reserve.h} on
arm64, x86 and risc-v because those architectures' crash_core.h is only
related to crashkernel reservation.
[akpm@linux-foundation.org: s/CRASH_RESEERVE/CRASH_RESERVE/, per Klara Modin]
Link: https://lkml.kernel.org/r/20240124051254.67105-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240124051254.67105-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pingfan Liu <piliu@redhat.com>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Michael Kelley <mhklinux@outlook.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 0a31bd5f2b ("KMEM_CACHE(): simplify slab cache creation")
introduces a new macro. Use the new KMEM_CACHE() macro instead of
direct kmem_cache_create() to simplify the creation of SLAB caches.
Signed-off-by: Kunwu Chan <chentao@kylinos.cn>
[PM: alignment fixes in both code and description]
Signed-off-by: Paul Moore <paul@paul-moore.com>
These 2 maps types are required for HID-BPF when a user wants to do
IO with a device from a sleepable tracing point.
Allowing BPF_MAP_TYPE_QUEUE (and therefore BPF_MAP_TYPE_STACK) allows
for a BPF program to prepare from an IRQ the list of HID commands to send
back to the device and then these commands can be retrieved from the
sleepable trace point.
Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-1-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For debugging kernel panics and other bugs, there is already an option of
panic_print to dump all tasks' call stacks. On today's large servers
running many containers, there could be thousands of tasks or more, and
this will print out huge amount of call stacks, taking a lot of time (for
serial console which is main target user case of panic_print).
And in many cases, only those several tasks being blocked are key for the
panic, so add an option to only dump blocked tasks' call stacks.
[akpm@linux-foundation.org: clarify documentation a little]
Link: https://lkml.kernel.org/r/20240202132042.3609657-1-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
with GCC 13.2.1 and W=1, there's compiling warning like this:
kernel/panic.c: In function `__warn':
kernel/panic.c:676:17: warning: function `__warn' might be a candidate for `gnu_printf' format attribute [-Wsuggest-attribute=format]
676 | vprintk(args->fmt, args->args);
| ^~~~~~~
The normal __printf(x,y) adding can't fix it. So add workaround which
disables -Wsuggest-attribute=format to mute it.
Link: https://lkml.kernel.org/r/20240107091641.579849-1-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Recently, st_ops->cfi_stubs was introduced. However, the upcoming new
struct_ops support (e.g. sched_ext) is not aware of this and does not
provide its own cfi_stubs. The kernel ends up NULL dereferencing the
st_ops->cfi_stubs.
Considering struct_ops supports kernel module now, this NULL check
is necessary. This patch is to reject struct_ops registration
that does not provide a cfi_stubs.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240222021105.1180475-2-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
During the static checks nr_states has been mentioned by the kernel test
robot. Fix the warning in those 2 places.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
set_memory_ro() and set_memory_rw() can fail, leaving memory
unprotected.
Take the returned value into account and abort in case of
failure.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently the default compression algorithm is selected based on
compile time options. Introduce a module parameter "hibernate.compressor"
to override this behaviour.
Different compression algorithms have different characteristics and
hibernation may benefit when it uses any of these algorithms, especially
when a secondary algorithm(LZ4) offers better decompression speeds over
a default algorithm(LZO), which in turn reduces hibernation image
restore time.
Users can override the default algorithm in two ways:
1) Passing "hibernate.compressor" as kernel command line parameter.
Usage:
LZO: hibernate.compressor=lzo
LZ4: hibernate.compressor=lz4
2) Specifying the algorithm at runtime.
Usage:
LZO: echo lzo > /sys/module/hibernate/parameters/compressor
LZ4: echo lz4 > /sys/module/hibernate/parameters/compressor
Currently LZO and LZ4 are the supported algorithms. LZO is the default
compression algorithm used with hibernation.
Signed-off-by: Nikhil V <quic_nprakash@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull networking fixes from Paolo Abeni:
"Including fixes from bpf and netfilter.
Current release - regressions:
- af_unix: fix another unix GC hangup
Previous releases - regressions:
- core: fix a possible AF_UNIX deadlock
- bpf: fix NULL pointer dereference in sk_psock_verdict_data_ready()
- netfilter: nft_flow_offload: release dst in case direct xmit path
is used
- bridge: switchdev: ensure MDB events are delivered exactly once
- l2tp: pass correct message length to ip6_append_data
- dccp/tcp: unhash sk from ehash for tb2 alloc failure after
check_estalblished()
- tls: fixes for record type handling with PEEK
- devlink: fix possible use-after-free and memory leaks in
devlink_init()
Previous releases - always broken:
- bpf: fix an oops when attempting to read the vsyscall page through
bpf_probe_read_kernel
- sched: act_mirred: use the backlog for mirred ingress
- netfilter: nft_flow_offload: fix dst refcount underflow
- ipv6: sr: fix possible use-after-free and null-ptr-deref
- mptcp: fix several data races
- phonet: take correct lock to peek at the RX queue
Misc:
- handful of fixes and reliability improvements for selftests"
* tag 'net-6.8.0-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (72 commits)
l2tp: pass correct message length to ip6_append_data
net: phy: realtek: Fix rtl8211f_config_init() for RTL8211F(D)(I)-VD-CG PHY
selftests: ioam: refactoring to align with the fix
Fix write to cloned skb in ipv6_hop_ioam()
phonet/pep: fix racy skb_queue_empty() use
phonet: take correct lock to peek at the RX queue
net: sparx5: Add spinlock for frame transmission from CPU
net/sched: flower: Add lock protection when remove filter handle
devlink: fix port dump cmd type
net: stmmac: Fix EST offset for dwmac 5.10
tools: ynl: don't leak mcast_groups on init error
tools: ynl: make sure we always pass yarg to mnl_cb_run
net: mctp: put sock on tag allocation failure
netfilter: nf_tables: use kzalloc for hook allocation
netfilter: nf_tables: register hooks last when adding new chain/flowtable
netfilter: nft_flow_offload: release dst in case direct xmit path is used
netfilter: nft_flow_offload: reset dst in route object after setting up flow
netfilter: nf_tables: set dormant flag on hook register failure
selftests: tls: add test for peeking past a record of a different type
selftests: tls: add test for merging of same-type control messages
...
When CONFIG_WQ_CPU_INTENSIVE_REPORT is set, the kernel will report
the work functions which violate the intensive_threshold_us repeatedly.
And now, only when the violate times exceed 4 and is a power of 2,
the kernel warning could be triggered.
However, sometimes, even if a long work execution time occurs only once,
it may cause other work to be delayed for a long time. This may also
cause some problems sometimes.
In order to freely control the threshold of warninging, a boot argument
is added so that the user can control the warning threshold to be printed.
At the same time, keep the exponential backoff to prevent reporting too much.
By default, the warning threshold is 4.
tj: Updated kernel-parameters.txt description.
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull tracing fix from Steven Rostedt:
- While working on the ring buffer I noticed that the counter used for
knowing where the end of the data is on a sub-buffer was not a full
"int" but just 20 bits. It was masked out to 0xfffff.
With the new code that allows the user to change the size of the
sub-buffer, it is theoretically possible to ask for a size bigger
than 2^20. If that happens, unexpected results may occur as there's
no code checking if the counter overflowed the 20 bits of the write
mask. There are other checks to make sure events fit in the
sub-buffer, but if the sub-buffer itself is too big, that is not
checked.
Add a check in the resize of the sub-buffer to make sure that it
never goes beyond the size of the counter that holds how much data is
on it.
* tag 'trace-v6.8-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Do not let subbuf be bigger than write mask
Placing timers at enqueue time on a target CPU based on dubious heuristics
does not make any sense:
1) Most timer wheel timers are canceled or rearmed before they expire.
2) The heuristics to predict which CPU will be busy when the timer expires
are wrong by definition.
So placing the timers at enqueue wastes precious cycles.
The proper solution to this problem is to always queue the timers on the
local CPU and allow the non pinned timers to be pulled onto a busy CPU at
expiry time.
Therefore split the timer storage into local pinned and global timers:
Local pinned timers are always expired on the CPU on which they have been
queued. Global timers can be expired on any CPU.
As long as a CPU is busy it expires both local and global timers. When a
CPU goes idle it arms for the first expiring local timer. If the first
expiring pinned (local) timer is before the first expiring movable timer,
then no action is required because the CPU will wake up before the first
movable timer expires. If the first expiring movable timer is before the
first expiring pinned (local) timer, then this timer is queued into an idle
timerqueue and eventually expired by another active CPU.
To avoid global locking the timerqueues are implemented as a hierarchy. The
lowest level of the hierarchy holds the CPUs. The CPUs are associated to
groups of 8, which are separated per node. If more than one CPU group
exist, then a second level in the hierarchy collects the groups. Depending
on the size of the system more than 2 levels are required. Each group has a
"migrator" which checks the timerqueue during the tick for remote expirable
timers.
If the last CPU in a group goes idle it reports the first expiring event in
the group up to the next group(s) in the hierarchy. If the last CPU goes
idle it arms its timer for the first system wide expiring timer to ensure
that no timer event is missed.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240222103710.32582-1-anna-maria@linutronix.de
Due to the conversion of the NOHZ timer placement to a pull at expiry
time model, the per CPU timer bases with non pinned timers are no
longer handled only by the local CPU. In case a remote CPU already
expires the non pinned timers base of the local CPU, nothing more
needs to be done by the local CPU. A check at the begin of the expire
timers routine is required, because timer base lock is dropped before
executing the timer callback function.
This is a preparatory work, but has no functional impact right now.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-16-anna-maria@linutronix.de
To prepare for the conversion of the NOHZ timer placement to a pull at
expiry time model it's required to have functionality available getting the
next timer interrupt on a remote CPU.
Locking of the timer bases and getting the information for the next timer
interrupt functionality is split into separate functions. This is required
to be compliant with lock ordering when the new model is in place.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-14-anna-maria@linutronix.de
The functionality for getting the next timer interrupt in
get_next_timer_interrupt() is split into a separate function
fetch_next_timer_interrupt() to be usable by other call sites.
This is preparatory work for the conversion of the NOHZ timer
placement to a pull at expiry time model. No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-13-anna-maria@linutronix.de
The logic for raising a softirq the way it is implemented right now, is
readable for two timer bases. When increasing the number of timer bases,
code gets harder to read. With the introduction of the timer migration
hierarchy, there will be three timer bases.
Therefore restructure the code to use a loop. No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-9-anna-maria@linutronix.de
When adding a timer to the timer wheel using add_timer_on(), it is an
implicitly pinned timer. With the timer pull at expiry time model in place,
the TIMER_PINNED flag is required to make sure timers end up in proper
base.
Set the TIMER_PINNED flag unconditionally when add_timer_on() is executed.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-8-anna-maria@linutronix.de
The implementation of the NOHZ pull at expiry model will change the timer
bases per CPU. Timers, that have to expire on a specific CPU, require the
TIMER_PINNED flag. If the CPU doesn't matter, the TIMER_PINNED flag must be
dropped. This is required for call sites which use the timer alternately as
pinned and not pinned timer like workqueues do.
Therefore use add_timer_global() in __queue_delayed_work() for non-bound
delayed work to make sure the TIMER_PINNED flag is dropped.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-7-anna-maria@linutronix.de
A timer might be used as a pinned timer (using add_timer_on()) and later on
as non-pinned timer using add_timer(). When the "NOHZ timer pull at expiry
model" is in place, the TIMER_PINNED flag is required to be used whenever a
timer needs to expire on a dedicated CPU. Otherwise the flag must not be
set if expiration on a dedicated CPU is not required.
add_timer_on()'s behavior will be changed during the preparation patches
for the "NOHZ timer pull at expiry model" to unconditionally set the
TIMER_PINNED flag. To be able to clear/ set the flag when queueing a
timer, two variants of add_timer() are introduced.
This is a preparatory step and has no functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-6-anna-maria@linutronix.de
When tick is stopped also the timer base is_idle flag is set. When
reentering timer_base_try_to_set_idle() with the tick stopped, there is no
need to check whether the timer base needs to be set idle again. When a
timer was enqueued in the meantime, this is already handled by the
tick_nohz_next_event() call which was executed before
tick_nohz_stop_tick().
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-5-anna-maria@linutronix.de
The timer base is marked idle when get_next_timer_interrupt() is
executed. But the decision whether the tick will be stopped and whether the
system is able to go idle is done later. When the timer bases is marked
idle and a new first timer is enqueued remote an IPI is raised. Even if it
is not required because the tick is not stopped and the timer base is
evaluated again at the next tick.
To prevent this, the timer base is marked idle in tick_nohz_stop_tick() and
get_next_timer_interrupt() is streamlined by only looking for the next timer
interrupt. All other work is postponed to timer_base_try_to_set_idle() which is
called by tick_nohz_stop_tick(). timer_base_try_to_set_idle() never resets
timer_base::is_idle state. This is done when the tick is restarted via
tick_nohz_restart_sched_tick().
With this, tick_sched::tick_stopped and timer_base::is_idle are always in
sync. So there is no longer the need to execute timer_clear_idle() in
tick_nohz_idle_retain_tick(). This was required before, as
tick_nohz_next_event() set timer_base::is_idle even if the tick would not be
stopped. So timer_clear_idle() is only executed, when timer base is idle. So the
check whether timer base is idle, is now no longer required as well.
While at it fix some nearby whitespace damage as well.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-4-anna-maria@linutronix.de
get_next_timer_interrupt() contains two parts for the next timer interrupt
calculation. Those two parts are separated by forwarding the base
clock. But the second part does not depend on the forwarded base
clock.
Therefore restructure get_next_timer_interrupt() to keep things together
which belong together.
No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240221090548.36600-2-anna-maria@linutronix.de