Files
linux/Documentation/admin-guide
Linus Torvalds 480e035fc4 Merge tag 'drm-next-2024-03-13' of https://gitlab.freedesktop.org/drm/kernel
Pull drm updates from Dave Airlie:
 "Highlights are usual, more AMD IP blocks for future hw, i915/xe
  changes, Displayport tunnelling support for i915, msm YUV over DP
  changes, new tests for ttm, but its mostly a lot of stuff all over the
  place from lots of people.

  core:
   - EDID cleanups
   - scheduler error handling fixes
   - managed: add drmm_release_action() with tests
   - add ratelimited drm debug print
   - DPCD PSR early transport macro
   - DP tunneling and bandwidth allocation helpers
   - remove built-in edids
   - dp: Avoid AUX transfers on powered-down displays
   - dp: Add VSC SDP helpers

  cross drivers:
   - use new drm print helpers
   - switch to ->read_edid callback
   - gem: add stats for shared buffers plus updates to amdgpu, i915, xe

  syncobj:
   - fixes to waiting and sleeping

  ttm:
   - add tests
   - fix errno codes
   - simply busy-placement handling
   - fix page decryption

  media:
   - tc358743: fix v4l device registration

  video:
   - move all kernel parameters for video behind CONFIG_VIDEO

  sound:
   - remove <drm/drm_edid.h> include from header

  ci:
   - add tests for msm
   - fix apq8016 runner

  efifb:
   - use copy of global screen_info state

  vesafb:
   - use copy of global screen_info state

  simplefb:
   - fix logging

  bridge:
   - ite-6505: fix DP link-training bug
   - samsung-dsim: fix error checking in probe
   - samsung-dsim: add bsh-smm-s2/pro boards
   - tc358767: fix regmap usage
   - imx: add i.MX8MP HDMI PVI plus DT bindings
   - imx: add i.MX8MP HDMI TX plus DT bindings
   - sii902x: fix probing and unregistration
   - tc358767: limit pixel PLL input range
   - switch to new drm_bridge_read_edid() interface

  panel:
   - ltk050h3146w: error-handling fixes
   - panel-edp: support delay between power-on and enable; use put_sync
     in unprepare; support Mediatek MT8173 Chromebooks, BOE NV116WHM-N49
     V8.0, BOE NV122WUM-N41, CSO MNC207QS1-1 plus DT bindings
   - panel-lvds: support EDT ETML0700Z9NDHA plus DT bindings
   - panel-novatek: FRIDA FRD400B25025-A-CTK plus DT bindings
   - add BOE TH101MB31IG002-28A plus DT bindings
   - add EDT ETML1010G3DRA plus DT bindings
   - add Novatek NT36672E LCD DSI plus DT bindings
   - nt36523: support 120Hz timings, fix includes
   - simple: fix display timings on RK32FN48H
   - visionox-vtdr6130: fix initialization
   - add Powkiddy RGB10MAX3 plus DT bindings
   - st7703: support panel rotation plus DT bindings
   - add Himax HX83112A plus DT bindings
   - ltk500hd1829: add support for ltk101b4029w and admatec 9904370
   - simple: add BOE BP082WX1-100 8.2" panel plus DT bindungs

  panel-orientation-quirks:
   - GPD Win Mini

  amdgpu:
   - Validate DMABuf imports in compute VMs
   - Add RAS ACA framework
   - PSP 13 fixes
   - Misc code cleanups
   - Replay fixes
   - Atom interpretor PS, WS bounds checking
   - DML2 fixes
   - Audio fixes
   - DCN 3.5 Z state fixes
   - Remove deprecated ida_simple usage
   - UBSAN fixes
   - RAS fixes
   - Enable seq64 infrastructure
   - DC color block enablement
   - Documentation updates
   - DC documentation updates
   - DMCUB updates
   - ATHUB 4.1 support
   - LSDMA 7.0 support
   - JPEG DPG support
   - IH 7.0 support
   - HDP 7.0 support
   - VCN 5.0 support
   - SMU 13.0.6 updates
   - NBIO 7.11 updates
   - SDMA 6.1 updates
   - MMHUB 3.3 updates
   - DCN 3.5.1 support
   - NBIF 6.3.1 support
   - VPE 6.1.1 support

  amdkfd:
   - Validate DMABuf imports in compute VMs
   - SVM fixes
   - Trap handler updates and enhancements
   - Fix cache size reporting
   - Relocate the trap handler

  radeon:
   - Atom interpretor PS, WS bounds checking
   - Misc code cleanups

  xe:
   - new query for GuC submission version
   - Remove unused persistent exec_queues
   - Add vram frequency sysfs attributes
   - Add the flag XE_VM_BIND_FLAG_DUMPABLE
   - Drop pre-production workarounds
   - Drop kunit tests for unsupported platforms
   - Start pumbling SR-IOV support with memory based interrupts for VF
   - Allow to map BO in GGTT with PAT index corresponding to XE_CACHE_UC
     to work with memory based interrupts
   - Add GuC Doorbells Manager as prep work SR-IOV
   - Implement additional workarounds for xe2 and MTL
   - Program a few registers according to perfomance guide spec for Xe2
   - Fix remaining 32b build issues and enable it back
   - Fix build with CONFIG_DEBUG_FS=n
   - Fix warnings from GuC ABI headers
   - Introduce Relay Communication for SR-IOV for VF <-> GuC <-> PF
   - Release mmap mappings on rpm suspend
   - Disable mid-thread preemption when not properly supported by
     hardware
   - Fix xe_exec by reserving extra fence slot for CPU bind
   - Fix xe_exec with full long running exec queue
   - Canonicalize addresses where needed for Xe2 and add to devcoredum
   - Toggle USM support for Xe2
   - Only allow 1 ufence per exec / bind IOCTL
   - Add GuC firmware loading for Lunar Lake
   - Add XE_VMA_PTE_64K VMA flag

  i915:
   - Add more ADL-N PCI IDs
   - Enable fastboot also on older platforms
   - Early transport for panel replay and PSR
   - New ARL PCI IDs
   - DP TPS4 PHY test pattern support
   - Unify and improve VSC SDP for PSR and non-PSR cases
   - Refactor memory regions and improve debug logging
   - Rework global state serialization
   - Remove unused CDCLK divider fields
   - Unify HDCP connector logging format
   - Use display instead of graphics version in display code
   - Move VBT and opregion debugfs next to the implementation
   - Abstract opregion interface, use opaque type
   - MTL fixes
   - HPD handling fixes
   - Add GuC submission interface version query
   - Atomically invalidate userptr on mmu-notifier
   - Update handling of MMIO triggered reports
   - Don't make assumptions about intel_wakeref_t type
   - Extend driver code of Xe_LPG to Xe_LPG+
   - Add flex arrays to struct i915_syncmap
   - Allow for very slow HuC loading
   - DP tunneling and bandwidth allocation support

  msm:
   - Correct bindings for MSM8976 and SM8650 platforms
   - Start migration of MDP5 platforms to DPU driver
   - X1E80100 MDSS support
   - DPU:
      - Improve DSC allocation, fixing several important corner cases
      - Add support for SDM630/SDM660 platforms
      - Simplify dpu_encoder_phys_ops
      - Apply fixes targeting DSC support with a single DSC encoder
      - Apply fixes for HCTL_EN timing configuration
      - X1E80100 support
      - Add support for YUV420 over DP
   - GPU:
      - fix sc7180 UBWC config
      - fix a7xx LLC config
      - new gpu support: a305B, a750, a702
      - machine support: SM7150 (different power levels than other a618)
      - a7xx devcoredump support

  habanalabs:
   - configure IRQ affinity according to NUMA node
   - move HBM MMU page tables inside the HBM
   - improve device reset
   - check extended PCIe errors

  ivpu:
   - updates to firmware API
   - refactor BO allocation

  imx:
   - use devm_ functions during init

  hisilicon:
   - fix EDID includes

  mgag200:
   - improve ioremap usage
   - convert to struct drm_edid
   - Work around PCI write bursts

  nouveau:
   - disp: use kmemdup()
   - fix EDID includes
   - documentation fixes

  qaic:
   - fixes to BO handling
   - make use of DRM managed release
   - fix order of remove operations

  rockchip:
   - analogix_dp: get encoder port from DT
   - inno_hdmi: support HDMI for RK3128
   - lvds: error-handling fixes

  ssd130x:
   - support SSD133x plus DT bindings

  tegra:
   - fix error handling

  tilcdc:
   - make use of DRM managed release

  v3d:
   - show memory stats in debugfs
   - Support display MMU page size

  vc4:
   - fix error handling in plane prepare_fb
   - fix framebuffer test in plane helpers

  virtio:
   - add venus capset defines

  vkms:
   - fix OOB access when programming the LUT
   - Kconfig improvements

  vmwgfx:
   - unmap surface before changing plane state
   - fix memory leak in error handling
   - documentation fixes
   - list command SVGA_3D_CMD_DEFINE_GB_SURFACE_V4 as invalid
   - fix null-pointer deref in execbuf
   - refactor display-mode probing
   - fix fencing for creating cursor MOBs
   - fix cursor-memory lifetime

  xlnx:
   - fix live video input for ZynqMP DPSUB

  lima:
   - fix memory leak

  loongson:
   - fail if no VRAM present

  meson:
   - switch to new drm_bridge_read_edid() interface

  renesas:
   - add RZ/G2L DU support plus DT bindings

  mxsfb:
   - Use managed mode config

  sun4i:
   - HDMI: updates to atomic mode setting

  mediatek:
   - Add display driver for MT8188 VDOSYS1
   - DSI driver cleanups
   - Filter modes according to hardware capability
   - Fix a null pointer crash in mtk_drm_crtc_finish_page_flip

  etnaviv:
   - enhancements for NPU and MRT support"

* tag 'drm-next-2024-03-13' of https://gitlab.freedesktop.org/drm/kernel: (1420 commits)
  drm/amd/display: Removed redundant @ symbol to fix kernel-doc warnings in -next repo
  drm/amd/pm: wait for completion of the EnableGfxImu message
  drm/amdgpu/soc21: add mode2 asic reset for SMU IP v14.0.1
  drm/amdgpu: add smu 14.0.1 support
  drm/amdgpu: add VPE 6.1.1 discovery support
  drm/amdgpu/vpe: add VPE 6.1.1 support
  drm/amdgpu/vpe: don't emit cond exec command under collaborate mode
  drm/amdgpu/vpe: add collaborate mode support for VPE
  drm/amdgpu/vpe: add PRED_EXE and COLLAB_SYNC OPCODE
  drm/amdgpu/vpe: add multi instance VPE support
  drm/amdgpu/discovery: add nbif v6_3_1 ip block
  drm/amdgpu: Add nbif v6_3_1 ip block support
  drm/amdgpu: Add pcie v6_1_0 ip headers (v5)
  drm/amdgpu: Add nbif v6_3_1 ip headers (v5)
  arch/powerpc: Remove <linux/fb.h> from backlight code
  macintosh/via-pmu-backlight: Include <linux/backlight.h>
  fbdev/chipsfb: Include <linux/backlight.h>
  drm/etnaviv: Restore some id values
  drm/amdkfd: make kfd_class constant
  drm/amdgpu: add ring timeout information in devcoredump
  ...
2024-03-13 18:34:05 -07:00
..
2023-10-26 11:35:21 -06:00

.. _readme:

Linux kernel release 6.x <http://kernel.org/>
=============================================

These are the release notes for Linux version 6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.

What is Linux?
--------------

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License v2 - see the
  accompanying COPYING file for more details.

On what hardware does it run?
-----------------------------

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
  ARC architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

Documentation
-------------

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some
   drivers for example. Please read the
   :ref:`Documentation/process/changes.rst <changes>` file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

Installing the kernel source
----------------------------

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (e.g. your home directory) and
   unpack it::

     xz -cd linux-6.x.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 6.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-6.x) and execute::

     xz -cd ../patch-6.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "x" of your current
   source tree, **in_order**, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 6.x kernels, patches for the 6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 6.x kernel.  For example, if your base kernel is 6.0
   and you want to apply the 6.0.3 patch, you must not first apply the 6.0.1
   and 6.0.2 patches. Similarly, if you are running kernel version 6.0.2 and
   want to jump to 6.0.3, you must first reverse the 6.0.2 patch (that is,
   patch -R) **before** applying the 6.0.3 patch. You can read more on this in
   :ref:`Documentation/process/applying-patches.rst <applying_patches>`.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found::

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around::

     cd linux
     make mrproper

   You should now have the sources correctly installed.

Software requirements
---------------------

   Compiling and running the 6.x kernels requires up-to-date
   versions of various software packages.  Consult
   :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
   required and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

Build directory for the kernel
------------------------------

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option ``make O=output/dir`` allows you to specify an alternate
   place for the output files (including .config).
   Example::

     kernel source code: /usr/src/linux-6.x
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use::

     cd /usr/src/linux-6.x
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the ``O=output/dir`` option is used, then it must be
   used for all invocations of make.

Configuring the kernel
----------------------

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use ``make oldconfig``, which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are::

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     Qt based configuration tool.

     "make gconfig"     GTK+ based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                           Also, you can preserve modules in certain folders
                           or kconfig files by specifying their paths in
                           parameter LMC_KEEP.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod \
                           LMC_KEEP="drivers/usb:drivers/gpu:fs" \
                           localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options. You can
                           also preserve modules by LMC_KEEP.

     "make kvm_guest.config"   Enable additional options for kvm guest kernel
                               support.

     "make xen.config"   Enable additional options for xen dom0 guest kernel
                         support.

     "make tinyconfig"  Configure the tiniest possible kernel.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.rst.

 - NOTES on ``make config``:

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

Compiling the kernel
--------------------

 - Make sure you have at least gcc 5.1 available.
   For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.

 - Do a ``make`` to create a compressed kernel image. It is also possible to do
   ``make install`` if you have lilo installed or if your distribution has an
   install script recognised by the kernel's installer. Most popular
   distributions will have a recognized install script. You may want to
   check your distribution's setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as ``modules``, you
   will also have to do ``make modules_install``.

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by passing
   ``V=1`` to the ``make`` command, e.g.::

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use ``V=2``.  The default is ``V=0``.

 - Keep a backup kernel handy in case something goes wrong.  This is
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a ``make modules_install``.

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found.

 - Booting a kernel directly from a storage device without the assistance
   of a bootloader such as LILO or GRUB, is no longer supported in BIOS
   (non-EFI systems). On UEFI/EFI systems, however, you can use EFISTUB
   which allows the motherboard to boot directly to the kernel.
   On modern workstations and desktops, it's generally recommended to use a
   bootloader as difficulties can arise with multiple kernels and secure boot.
   For more details on EFISTUB,
   see "Documentation/admin-guide/efi-stub.rst".

 - It's important to note that as of 2016 LILO (LInux LOader) is no longer in
   active development, though as it was extremely popular, it often comes up
   in documentation. Popular alternatives include GRUB2, rEFInd, Syslinux,
   systemd-boot, or EFISTUB. For various reasons, it's not recommended to use
   software that's no longer in active development.

 - Chances are your distribution includes an install script and running
   ``make install`` will be all that's needed. Should that not be the case
   you'll have to identify your bootloader and reference its documentation or
   configure your EFI.

Legacy LILO Instructions
------------------------


 - If you use LILO the kernel images are specified in the file /etc/lilo.conf.
   The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage. To use the new kernel, save a copy of the old image and copy
   the new image over the old one. Then, you MUST RERUN LILO to update the
   loading map! If you don't, you won't be able to boot the new kernel image.

 - Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish
   to edit /etc/lilo.conf to specify an entry for your old kernel image
   (say, /vmlinux.old) in case the new one does not work. See the LILO docs
   for more information.

 - After reinstalling LILO, you should be all set. Shutdown the system,
   reboot, and enjoy!

 - If you ever need to change the default root device, video mode, etc. in the
   kernel image, use your bootloader's boot options where appropriate. No need
   to recompile the kernel to change these parameters.

 - Reboot with the new kernel and enjoy.


If something goes wrong
-----------------------

If you have problems that seem to be due to kernel bugs, please follow the
instructions at 'Documentation/admin-guide/reporting-issues.rst'.

Hints on understanding kernel bug reports are in
'Documentation/admin-guide/bug-hunting.rst'. More on debugging the kernel
with gdb is in 'Documentation/dev-tools/gdb-kernel-debugging.rst' and
'Documentation/dev-tools/kgdb.rst'.