// From the work done for SERVER-22093, an aggregation pipeline that does not require any fields // from the input documents will tell the query planner to use a count scan, which is faster than an // index scan. In this test file, we check this behavior through explain(). // // Cannot implicitly shard accessed collections because the explain output from a mongod when run // against a sharded collection is wrapped in a "shards" object with keys for each shard. // // This test assumes that an initial $match will be absorbed by the query system, which will not // happen if the $match is wrapped within a $facet stage. // @tags: [ // assumes_unsharded_collection, // do_not_wrap_aggregations_in_facets, // ] import {aggPlanHasStage, getAggPlanStage, getQueryPlanner, planHasStage} from "jstests/libs/query/analyze_plan.js"; let coll = db.countscan; coll.drop(); for (let i = 0; i < 3; i++) { for (let j = 0; j < 10; j += 2) { coll.insert({foo: i, bar: j}); } } coll.createIndex({foo: 1}); let simpleGroup = coll.aggregate([{$group: {_id: null, count: {$sum: 1}}}]).toArray(); assert.eq(simpleGroup.length, 1); assert.eq(simpleGroup[0]["count"], 15); // Retrieve the query plain from explain, whose shape varies depending on the query and the // engines used (classic/sbe). const getQueryPlan = function (explain) { const queryPlanner = getQueryPlanner(explain); let winningPlan = queryPlanner.winningPlan; return winningPlan.queryPlan ? winningPlan.queryPlan : winningPlan; }; let explained = coll.explain().aggregate([{$match: {foo: {$gt: 0}}}, {$group: {_id: null, count: {$sum: 1}}}]); assert(planHasStage(db, getQueryPlan(explained), "COUNT_SCAN")); explained = coll .explain() .aggregate([ {$match: {foo: {$gt: 0}}}, {$project: {_id: 0, a: {$literal: null}}}, {$group: {_id: null, count: {$sum: 1}}}, ]); assert(planHasStage(db, getQueryPlan(explained), "COUNT_SCAN")); // Make sure a $count stage can use the COUNT_SCAN optimization. explained = coll.explain().aggregate([{$match: {foo: {$gt: 0}}}, {$count: "count"}]); assert(planHasStage(db, getQueryPlan(explained), "COUNT_SCAN")); // A $match that is not a single range cannot use the COUNT_SCAN optimization. explained = coll.explain().aggregate([{$match: {foo: {$in: [0, 1]}}}, {$count: "count"}]); assert(!planHasStage(db, getQueryPlan(explained), "COUNT_SCAN")); // Test that COUNT_SCAN can be used when there is a $sort. explained = coll.explain().aggregate([{$sort: {foo: 1}}, {$count: "count"}]); assert(aggPlanHasStage(explained, "COUNT_SCAN"), explained); // Test that a forward COUNT_SCAN plan is chosen even when there is a $sort in the direction // opposite that of the index. explained = coll.explain().aggregate([{$sort: {foo: -1}}, {$count: "count"}]); let countScan = getAggPlanStage(explained, "COUNT_SCAN"); assert.neq(null, countScan, explained); assert.eq({foo: MinKey}, countScan.indexBounds.startKey, explained); assert.eq(true, countScan.indexBounds.startKeyInclusive, explained); assert.eq({foo: MaxKey}, countScan.indexBounds.endKey, explained); assert.eq(true, countScan.indexBounds.endKeyInclusive, explained); // Test that the inclusivity/exclusivity of the index bounds for COUNT_SCAN are correct when // there is a $sort in the opposite direction of the index. explained = coll.explain().aggregate([{$match: {foo: {$gte: 0, $lt: 10}}}, {$sort: {foo: -1}}, {$count: "count"}]); countScan = getAggPlanStage(explained, "COUNT_SCAN"); assert.neq(null, countScan, explained); assert.eq({foo: 0}, countScan.indexBounds.startKey, explained); assert.eq(true, countScan.indexBounds.startKeyInclusive, explained); assert.eq({foo: 10}, countScan.indexBounds.endKey, explained); assert.eq(false, countScan.indexBounds.endKeyInclusive, explained);