mirror of https://github.com/mongodb/mongo
251 lines
11 KiB
Python
251 lines
11 KiB
Python
# Copyright (C) 2022-present MongoDB, Inc.
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the Server Side Public License, version 1,
|
|
# as published by MongoDB, Inc.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# Server Side Public License for more details.
|
|
#
|
|
# You should have received a copy of the Server Side Public License
|
|
# along with this program. If not, see
|
|
# <http://www.mongodb.com/licensing/server-side-public-license>.
|
|
#
|
|
# As a special exception, the copyright holders give permission to link the
|
|
# code of portions of this program with the OpenSSL library under certain
|
|
# conditions as described in each individual source file and distribute
|
|
# linked combinations including the program with the OpenSSL library. You
|
|
# must comply with the Server Side Public License in all respects for
|
|
# all of the code used other than as permitted herein. If you modify file(s)
|
|
# with this exception, you may extend this exception to your version of the
|
|
# file(s), but you are not obligated to do so. If you do not wish to do so,
|
|
# delete this exception statement from your version. If you delete this
|
|
# exception statement from all source files in the program, then also delete
|
|
# it in the license file.
|
|
#
|
|
"""Calibration configuration."""
|
|
|
|
import random
|
|
import config
|
|
from random_generator import RangeGenerator, RandomDistribution, ArrayRandomDistribution, DataType
|
|
|
|
__all__ = ['main_config', 'distributions']
|
|
|
|
# A string value to fill up collections and not used in queries.
|
|
HIDDEN_STRING_VALUE = '__hidden_string_value'
|
|
|
|
# Data distributions settings.
|
|
distributions = {}
|
|
|
|
string_choice_values = [
|
|
'h',
|
|
'hi',
|
|
'hi!',
|
|
'hola',
|
|
'hello',
|
|
'square',
|
|
'squared',
|
|
'gaussian',
|
|
'chisquare',
|
|
'chisquared',
|
|
'hello world',
|
|
'distribution',
|
|
]
|
|
|
|
string_choice_weights = [10, 20, 5, 17, 30, 7, 9, 15, 40, 2, 12, 1]
|
|
|
|
distributions['string_choice'] = RandomDistribution.choice(string_choice_values,
|
|
string_choice_weights)
|
|
|
|
small_query_weights = [i for i in range(10, 201, 10)]
|
|
small_query_cardinality = sum(small_query_weights)
|
|
|
|
int_choice_values = [i for i in range(1, 1000, 50)]
|
|
random.shuffle(int_choice_values)
|
|
distributions['int_choice'] = RandomDistribution.choice(int_choice_values, small_query_weights)
|
|
|
|
distributions['random_string'] = ArrayRandomDistribution(
|
|
RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 5, 10, 2)),
|
|
RandomDistribution.uniform(RangeGenerator(DataType.STRING, "a", "z")))
|
|
|
|
|
|
def generate_random_str(num: int):
|
|
strs = distributions['random_string'].generate(num)
|
|
str_list = []
|
|
for char_array in strs:
|
|
str_res = "".join(char_array)
|
|
str_list.append(str_res)
|
|
|
|
return str_list
|
|
|
|
|
|
def random_strings_distr(size: int, count: int):
|
|
distr = ArrayRandomDistribution(
|
|
RandomDistribution.uniform([size]),
|
|
RandomDistribution.uniform(RangeGenerator(DataType.STRING, "a", "z")))
|
|
|
|
return RandomDistribution.uniform([''.join(s) for s in distr.generate(count)])
|
|
|
|
|
|
small_string_choice = generate_random_str(20)
|
|
|
|
distributions['string_choice_small'] = RandomDistribution.choice(small_string_choice,
|
|
small_query_weights)
|
|
|
|
string_range_4 = RandomDistribution.normal(RangeGenerator(DataType.STRING, "abca", "abc_"))
|
|
string_range_5 = RandomDistribution.normal(RangeGenerator(DataType.STRING, "abcda", "abcd_"))
|
|
string_range_7 = RandomDistribution.normal(RangeGenerator(DataType.STRING, "hello_a", "hello__"))
|
|
string_range_12 = RandomDistribution.normal(
|
|
RangeGenerator(DataType.STRING, "helloworldaa", "helloworldd_"))
|
|
|
|
distributions['string_mixed'] = RandomDistribution.mixed(
|
|
[string_range_4, string_range_5, string_range_7, string_range_12], [0.1, 0.15, 0.25, 0.5])
|
|
|
|
distributions['string_uniform'] = RandomDistribution.uniform(
|
|
RangeGenerator(DataType.STRING, "helloworldaa", "helloworldd_"))
|
|
|
|
distributions['int_normal'] = RandomDistribution.normal(
|
|
RangeGenerator(DataType.INTEGER, 0, 1000, 2))
|
|
|
|
lengths_distr = RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 1, 10))
|
|
distributions['array_small'] = ArrayRandomDistribution(lengths_distr, distributions['int_normal'])
|
|
|
|
# Database settings
|
|
database = config.DatabaseConfig(connection_string='mongodb://localhost',
|
|
database_name='abt_calibration', dump_path='~/data/dump',
|
|
restore_from_dump=config.RestoreMode.NEVER, dump_on_exit=False)
|
|
|
|
|
|
# Collection template settings
|
|
def create_index_scan_collection_template(name: str, cardinality: int) -> config.CollectionTemplate:
|
|
values = [
|
|
'iqtbr5b5is', 'vt5s3tf8o6', 'b0rgm58qsn', '9m59if353m', 'biw2l9ok17', 'b9ct0ue14d',
|
|
'oxj0vxjsti', 'f3k8w9vb49', 'ec7v82k6nk', 'f49ufwaqx7'
|
|
]
|
|
|
|
start_weight = 10
|
|
step_weight = 25
|
|
finish_weight = start_weight + len(values) * step_weight
|
|
weights = list(range(start_weight, finish_weight, step_weight))
|
|
fill_up_weight = cardinality - sum(weights)
|
|
if fill_up_weight > 0:
|
|
values.append(HIDDEN_STRING_VALUE)
|
|
weights.append(fill_up_weight)
|
|
|
|
distr = RandomDistribution.choice(values, weights)
|
|
|
|
return config.CollectionTemplate(
|
|
name=name, fields=[
|
|
config.FieldTemplate(name="choice", data_type=config.DataType.STRING,
|
|
distribution=distr, indexed=True),
|
|
config.FieldTemplate(name="mixed1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
config.FieldTemplate(name="uniform1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_uniform"], indexed=False),
|
|
config.FieldTemplate(name="choice2", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_choice"], indexed=False),
|
|
config.FieldTemplate(name="mixed2", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
], compound_indexes=[], cardinalities=[cardinality])
|
|
|
|
|
|
def create_physical_scan_collection_template(name: str,
|
|
payload_size: int = 0) -> config.CollectionTemplate:
|
|
template = config.CollectionTemplate(
|
|
name=name, fields=[
|
|
config.FieldTemplate(name="choice1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_choice"], indexed=False),
|
|
config.FieldTemplate(name="mixed1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
config.FieldTemplate(name="uniform1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_uniform"], indexed=False),
|
|
config.FieldTemplate(name="choice", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_choice"], indexed=False),
|
|
config.FieldTemplate(name="mixed2", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
], compound_indexes=[], cardinalities=[1000, 5000, 10000])
|
|
|
|
if payload_size > 0:
|
|
payload_distr = random_strings_distr(payload_size, 1000)
|
|
template.fields.append(
|
|
config.FieldTemplate(name="payload", data_type=config.DataType.STRING,
|
|
distribution=payload_distr, indexed=False))
|
|
return template
|
|
|
|
|
|
collection_caridinalities = list(range(10000, 50001, 10000))
|
|
|
|
c_int_05 = config.CollectionTemplate(
|
|
name="c_int_05", fields=[
|
|
config.FieldTemplate(name="in1", data_type=config.DataType.INTEGER,
|
|
distribution=distributions["int_normal"], indexed=True),
|
|
config.FieldTemplate(name="mixed1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
config.FieldTemplate(name="uniform1", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_uniform"], indexed=False),
|
|
config.FieldTemplate(name="in2", data_type=config.DataType.INTEGER,
|
|
distribution=distributions["int_normal"], indexed=True),
|
|
config.FieldTemplate(name="mixed2", data_type=config.DataType.STRING,
|
|
distribution=distributions["string_mixed"], indexed=False),
|
|
], compound_indexes=[], cardinalities=collection_caridinalities)
|
|
|
|
c_arr_01 = config.CollectionTemplate(
|
|
name="c_arr_01", fields=[
|
|
config.FieldTemplate(name="as", data_type=config.DataType.INTEGER,
|
|
distribution=distributions["array_small"], indexed=True)
|
|
], compound_indexes=[], cardinalities=collection_caridinalities)
|
|
|
|
index_scan = create_index_scan_collection_template('index_scan', 1000000)
|
|
|
|
physical_scan = create_physical_scan_collection_template('physical_scan', 2000)
|
|
|
|
# Data Generator settings
|
|
data_generator = config.DataGeneratorConfig(
|
|
enabled=True, create_indexes=True, batch_size=10000,
|
|
collection_templates=[index_scan, physical_scan, c_int_05, c_arr_01],
|
|
write_mode=config.WriteMode.REPLACE, collection_name_with_card=True)
|
|
|
|
# Workload Execution settings
|
|
workload_execution = config.WorkloadExecutionConfig(
|
|
enabled=True, output_collection_name='calibrationData', write_mode=config.WriteMode.REPLACE,
|
|
warmup_runs=3, runs=30)
|
|
|
|
|
|
def make_filter_by_note(note_value: any):
|
|
def impl(df):
|
|
return df[df.note == note_value]
|
|
|
|
return impl
|
|
|
|
|
|
abt_nodes = [
|
|
config.AbtNodeCalibrationConfig(type='PhysicalScan',
|
|
filter_function=make_filter_by_note('PhysicalScan')),
|
|
config.AbtNodeCalibrationConfig(type='IndexScan',
|
|
filter_function=make_filter_by_note('IndexScan')),
|
|
config.AbtNodeCalibrationConfig(type='Seek', filter_function=make_filter_by_note('IndexScan')),
|
|
config.AbtNodeCalibrationConfig(type='Filter',
|
|
filter_function=make_filter_by_note('PhysicalScan')),
|
|
config.AbtNodeCalibrationConfig(type='Evaluation',
|
|
filter_function=make_filter_by_note('Evaluation')),
|
|
config.AbtNodeCalibrationConfig(type='NestedLoopJoin'),
|
|
config.AbtNodeCalibrationConfig(type='HashJoin'),
|
|
config.AbtNodeCalibrationConfig(type='MergeJoin'),
|
|
config.AbtNodeCalibrationConfig(type='Union'),
|
|
config.AbtNodeCalibrationConfig(type='LimitSkip',
|
|
filter_function=make_filter_by_note('LimitSkip')),
|
|
config.AbtNodeCalibrationConfig(type='GroupBy'),
|
|
config.AbtNodeCalibrationConfig(type='Unwind'),
|
|
config.AbtNodeCalibrationConfig(type='Unique'),
|
|
]
|
|
|
|
# Calibrator settings
|
|
abt_calibrator = config.AbtCalibratorConfig(
|
|
enabled=True, test_size=0.2, input_collection_name=workload_execution.output_collection_name,
|
|
trace=False, nodes=abt_nodes)
|
|
|
|
main_config = config.Config(database=database, data_generator=data_generator,
|
|
abt_calibrator=abt_calibrator, workload_execution=workload_execution)
|