mirror of https://github.com/ollama/ollama
nomic-embed-text:v2: model implementation (#13162)
This commit is contained in:
parent
2bccf8c624
commit
76f88caf43
|
|
@ -202,6 +202,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||||
conv = &qwen3VLModel{}
|
conv = &qwen3VLModel{}
|
||||||
case "BertModel":
|
case "BertModel":
|
||||||
conv = &bertModel{}
|
conv = &bertModel{}
|
||||||
|
case "NomicBertModel", "NomicBertMoEModel":
|
||||||
|
conv = &nomicbertModel{}
|
||||||
case "CohereForCausalLM":
|
case "CohereForCausalLM":
|
||||||
conv = &commandrModel{}
|
conv = &commandrModel{}
|
||||||
case "GptOssForCausalLM":
|
case "GptOssForCausalLM":
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,213 @@
|
||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"encoding/json"
|
||||||
|
"io/fs"
|
||||||
|
"path/filepath"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type nomicbertModel struct {
|
||||||
|
ModelParameters
|
||||||
|
NLayers uint32 `json:"n_layers"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||||
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||||
|
RopeFreqBase float32 `json:"rope_theta"`
|
||||||
|
normalizeEmbeddings bool
|
||||||
|
PoolingType uint32
|
||||||
|
|
||||||
|
// MoE parameters (only present in v2 models)
|
||||||
|
NumExperts uint32 `json:"num_local_experts"`
|
||||||
|
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
|
||||||
|
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var (
|
||||||
|
_ ModelConverter = (*nomicbertModel)(nil)
|
||||||
|
_ moreParser = (*nomicbertModel)(nil)
|
||||||
|
)
|
||||||
|
|
||||||
|
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
|
||||||
|
bts, err := fs.ReadFile(fsys, "modules.json")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var modules []struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Path string `json:"path"`
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, &modules); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var pooling string
|
||||||
|
for _, m := range modules {
|
||||||
|
switch m.Type {
|
||||||
|
case "sentence_transformers.models.Pooling":
|
||||||
|
pooling = m.Path
|
||||||
|
case "sentence_transformers.models.Normalize":
|
||||||
|
p.normalizeEmbeddings = true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if pooling != "" {
|
||||||
|
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
var pc struct {
|
||||||
|
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
|
||||||
|
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.Unmarshal(bts, &pc); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
if pc.PoolingModeMeanTokens {
|
||||||
|
p.PoolingType = 1
|
||||||
|
} else if pc.PoolingModeCLSToken {
|
||||||
|
p.PoolingType = 2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
|
||||||
|
// Determine architecture based on MoE parameters (following qwen3 pattern)
|
||||||
|
arch := "nomic-bert"
|
||||||
|
if p.MoEEveryNLayers > 0 {
|
||||||
|
arch += "-moe"
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["general.architecture"] = arch
|
||||||
|
kv["attention.causal"] = false
|
||||||
|
kv["pooling_type"] = p.PoolingType
|
||||||
|
kv["normalize_embeddings"] = p.normalizeEmbeddings
|
||||||
|
|
||||||
|
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
|
||||||
|
|
||||||
|
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
|
||||||
|
kv["context_length"] = contextLength
|
||||||
|
}
|
||||||
|
|
||||||
|
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
|
||||||
|
kv["embedding_length"] = p.HiddenSize
|
||||||
|
}
|
||||||
|
|
||||||
|
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
|
||||||
|
kv["feed_forward_length"] = p.IntermediateSize
|
||||||
|
}
|
||||||
|
|
||||||
|
if headCount := p.NumAttentionHeads; headCount > 0 {
|
||||||
|
kv["attention.head_count"] = p.NumAttentionHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
|
||||||
|
kv["attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
|
||||||
|
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RopeFreqBase > 0 {
|
||||||
|
kv["rope.freq_base"] = p.RopeFreqBase
|
||||||
|
}
|
||||||
|
|
||||||
|
// MoE specific parameters (only if MoE is enabled)
|
||||||
|
if p.NumExperts > 0 {
|
||||||
|
kv["expert_count"] = p.NumExperts
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.NumExpertsUsed > 0 {
|
||||||
|
kv["expert_used_count"] = p.NumExpertsUsed
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.MoEEveryNLayers > 0 {
|
||||||
|
kv["moe_every_n_layers"] = p.MoEEveryNLayers
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["tokenizer.ggml.model"] = "bert"
|
||||||
|
kv["tokenizer.ggml.token_type_count"] = uint32(2)
|
||||||
|
|
||||||
|
// convert to phantom space tokens
|
||||||
|
for i, e := range t.Tokens {
|
||||||
|
switch {
|
||||||
|
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
|
||||||
|
// noop - keep special tokens as-is
|
||||||
|
case strings.HasPrefix(e, "##"):
|
||||||
|
t.Tokens[i] = e[2:]
|
||||||
|
default:
|
||||||
|
t.Tokens[i] = "\u2581" + e
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["tokenizer.ggml.tokens"] = t.Tokens
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
out := make([]*ggml.Tensor, 0, len(ts))
|
||||||
|
for _, t := range ts {
|
||||||
|
if slices.Contains([]string{
|
||||||
|
"embeddings.position_ids",
|
||||||
|
"pooler.dense.weight",
|
||||||
|
"pooler.dense.bias",
|
||||||
|
}, t.Name()) {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (nomicbertModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"encoder.layer", "blk",
|
||||||
|
"encoder.layers", "blk",
|
||||||
|
"embeddings.word_embeddings", "token_embd",
|
||||||
|
"embeddings.token_type_embeddings", "token_types",
|
||||||
|
"embeddings.LayerNorm", "token_embd_norm",
|
||||||
|
|
||||||
|
"attention.self.qkv", "attn_qkv",
|
||||||
|
|
||||||
|
"attention.output.dense", "attn_output",
|
||||||
|
"attention.output.LayerNorm", "attn_output_norm",
|
||||||
|
|
||||||
|
"mlp.up", "ffn_up",
|
||||||
|
"mlp.down", "ffn_down",
|
||||||
|
|
||||||
|
"mlp.router", "ffn_gate_inp",
|
||||||
|
"mlp.experts.up", "ffn_up_exps",
|
||||||
|
"mlp.experts.down", "ffn_down_exps",
|
||||||
|
|
||||||
|
"intermediate.dense", "ffn_up",
|
||||||
|
"output.dense", "ffn_down",
|
||||||
|
"output.LayerNorm", "layer_output_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -34,19 +34,23 @@ type Options struct {
|
||||||
poolingType pooling.Type
|
poolingType pooling.Type
|
||||||
normalize bool
|
normalize bool
|
||||||
ropeFreqBase float32
|
ropeFreqBase float32
|
||||||
|
|
||||||
|
// MoE specific options (used by v2 / MoE models only)
|
||||||
|
numExperts int
|
||||||
|
numExpertsUsed int
|
||||||
|
moeEveryNLayers int
|
||||||
}
|
}
|
||||||
|
|
||||||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
|
||||||
return nn.RoPE(ctx, states, positions, o.headDim, o.ropeFreqBase, 1.0, rope.WithTypeNeoX())
|
return nn.RoPE(ctx, states, positions, o.headDim, o.ropeFreqBase, 1.0, rope.WithTypeNeoX())
|
||||||
}
|
}
|
||||||
|
|
||||||
// Single Encoder Layer
|
|
||||||
type EncoderLayer struct {
|
type EncoderLayer struct {
|
||||||
*Attention
|
*Attention
|
||||||
|
|
||||||
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
|
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
|
||||||
|
|
||||||
*MLP
|
FeedForward FeedForward
|
||||||
|
|
||||||
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
|
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
|
||||||
}
|
}
|
||||||
|
|
@ -56,12 +60,63 @@ type Attention struct {
|
||||||
Output *nn.Linear `gguf:"attn_output"`
|
Output *nn.Linear `gguf:"attn_output"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type MLP struct {
|
type FeedForward interface {
|
||||||
|
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
|
||||||
|
}
|
||||||
|
|
||||||
|
type dense struct {
|
||||||
Gate *nn.Linear `gguf:"ffn_gate"`
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||||
Up *nn.Linear `gguf:"ffn_up"`
|
Up *nn.Linear `gguf:"ffn_up"`
|
||||||
Down *nn.Linear `gguf:"ffn_down"`
|
Down *nn.Linear `gguf:"ffn_down"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
|
||||||
|
hidden := mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||||||
|
return mlp.Down.Forward(ctx, hidden)
|
||||||
|
}
|
||||||
|
|
||||||
|
// denseGELU implements MLP with GELU activation for v2 MoE dense layers
|
||||||
|
type denseGELU struct {
|
||||||
|
Up *nn.Linear `gguf:"ffn_up"`
|
||||||
|
Down *nn.Linear `gguf:"ffn_down"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (mlp *denseGELU) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
|
||||||
|
return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenStates).GELU(ctx))
|
||||||
|
}
|
||||||
|
|
||||||
|
// sparse implements MoE with expert routing
|
||||||
|
type sparse struct {
|
||||||
|
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
||||||
|
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
|
||||||
|
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
||||||
|
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
|
||||||
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
|
||||||
|
|
||||||
|
routerLogits := moe.Router.Forward(ctx, hiddenStates)
|
||||||
|
routingWeights := routerLogits.Softmax(ctx)
|
||||||
|
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
|
||||||
|
|
||||||
|
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
|
||||||
|
|
||||||
|
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
||||||
|
|
||||||
|
hiddenStates = moe.Up.Forward(ctx, hiddenStates, selectedExperts).GELU(ctx)
|
||||||
|
experts := moe.Down.Forward(ctx, hiddenStates, selectedExperts)
|
||||||
|
|
||||||
|
experts = experts.Mul(ctx, routingWeights)
|
||||||
|
|
||||||
|
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
||||||
|
for i := 1; i < opts.numExpertsUsed; i++ {
|
||||||
|
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
||||||
|
}
|
||||||
|
|
||||||
|
return nextStates
|
||||||
|
}
|
||||||
|
|
||||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||||
|
|
||||||
|
|
@ -92,7 +147,7 @@ func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions
|
||||||
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||||
|
|
||||||
residual = hiddenStates
|
residual = hiddenStates
|
||||||
hiddenStates = e.MLP.Forward(ctx, hiddenStates)
|
hiddenStates = e.FeedForward.Forward(ctx, hiddenStates, opts)
|
||||||
hiddenStates = hiddenStates.Add(ctx, residual)
|
hiddenStates = hiddenStates.Add(ctx, residual)
|
||||||
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
||||||
|
|
||||||
|
|
@ -118,12 +173,6 @@ func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml
|
||||||
return a.Output.Forward(ctx, attention)
|
return a.Output.Forward(ctx, attention)
|
||||||
}
|
}
|
||||||
|
|
||||||
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
|
|
||||||
hidden := m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))
|
|
||||||
|
|
||||||
return m.Down.Forward(ctx, hidden)
|
|
||||||
}
|
|
||||||
|
|
||||||
func New(c fs.Config) (model.Model, error) {
|
func New(c fs.Config) (model.Model, error) {
|
||||||
hiddenSize := int(c.Uint("embedding_length"))
|
hiddenSize := int(c.Uint("embedding_length"))
|
||||||
numHeads := int(c.Uint("attention.head_count"))
|
numHeads := int(c.Uint("attention.head_count"))
|
||||||
|
|
@ -152,9 +201,26 @@ func New(c fs.Config) (model.Model, error) {
|
||||||
false,
|
false,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
blockCount := int(c.Uint("block_count"))
|
||||||
|
moeEveryNLayers := int(c.Uint("moe_every_n_layers", 0))
|
||||||
|
layers := make([]EncoderLayer, blockCount)
|
||||||
|
|
||||||
|
for i := range layers {
|
||||||
|
if moeEveryNLayers > 0 {
|
||||||
|
// Layer uses MoE if (i+1) % moe_every_n_layers == 0
|
||||||
|
if (i+1)%moeEveryNLayers == 0 {
|
||||||
|
layers[i].FeedForward = &sparse{}
|
||||||
|
} else {
|
||||||
|
layers[i].FeedForward = &denseGELU{}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
layers[i].FeedForward = &dense{}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return &Model{
|
return &Model{
|
||||||
TextProcessor: processor,
|
TextProcessor: processor,
|
||||||
Layers: make([]EncoderLayer, c.Uint("block_count")),
|
Layers: layers,
|
||||||
Options: Options{
|
Options: Options{
|
||||||
hiddenSize: hiddenSize,
|
hiddenSize: hiddenSize,
|
||||||
numHeads: numHeads,
|
numHeads: numHeads,
|
||||||
|
|
@ -163,6 +229,9 @@ func New(c fs.Config) (model.Model, error) {
|
||||||
poolingType: pooling.Type(c.Uint("pooling_type")),
|
poolingType: pooling.Type(c.Uint("pooling_type")),
|
||||||
normalize: c.Bool("normalize_embeddings", false),
|
normalize: c.Bool("normalize_embeddings", false),
|
||||||
ropeFreqBase: c.Float("rope.freq_base", 1000.0),
|
ropeFreqBase: c.Float("rope.freq_base", 1000.0),
|
||||||
|
numExperts: int(c.Uint("expert_count")),
|
||||||
|
numExpertsUsed: int(c.Uint("expert_used_count")),
|
||||||
|
moeEveryNLayers: moeEveryNLayers,
|
||||||
},
|
},
|
||||||
}, nil
|
}, nil
|
||||||
}
|
}
|
||||||
|
|
@ -170,4 +239,6 @@ func New(c fs.Config) (model.Model, error) {
|
||||||
func init() {
|
func init() {
|
||||||
model.Register("nomic-bert", New)
|
model.Register("nomic-bert", New)
|
||||||
model.Register("nomic-bert_embed", New)
|
model.Register("nomic-bert_embed", New)
|
||||||
|
model.Register("nomic-bert-moe", New)
|
||||||
|
model.Register("nomic-bert-moe_embed", New)
|
||||||
}
|
}
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue