llama/parsers/renderers: nemotron 3 nano (#13489)

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This commit is contained in:
Parth Sareen 2025-12-15 18:00:08 -08:00 committed by GitHub
parent 7b95087b9d
commit 7e3ea813c1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 2364 additions and 15 deletions

View File

@ -75,6 +75,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_NEMOTRON_H, "nemotron_h" },
{ LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_RWKV6, "rwkv6" },
@ -1765,6 +1766,39 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_NEMOTRON_H_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
// mamba(2) ssm layers
{ LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
{ LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
// attention layers
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
// dense FFN
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
// MoE FFN (for MoE layers)
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B,"blk.%d.exp_probs_b" },
// MoE shared expert layer
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_EXAONE,
{
@ -2838,6 +2872,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_LFM2:
case LLM_ARCH_LFM2MOE:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_QWEN3NEXT:
return true;
default:

View File

@ -79,6 +79,7 @@ enum llm_arch {
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_NEMOTRON_H,
LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6,

View File

@ -1089,6 +1089,16 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_moe_relu", il);
} break;
case LLM_FFN_RELU_SQR:
if (gate_exps) {
// TODO: add support for gated squared relu
GGML_ABORT("fatal error: gated squared relu not implemented");
} else {
cur = ggml_relu(ctx0, cur);
cur = ggml_sqr(ctx0, cur);
cb(cur, "ffn_moe_relu_sqr", il);
}
break;
default:
GGML_ABORT("fatal error");
}

View File

@ -120,6 +120,8 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_16B_A1B: return "16B.A1B";
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
case LLM_TYPE_80B_A3B: return "80B.A3B";
case LLM_TYPE_100B_A6B: return "100B.A6B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
case LLM_TYPE_230B_A10B: return "230B.A10B";
@ -1788,6 +1790,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
@ -1803,7 +1806,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
switch (hparams.n_layer) {
case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
case 56: type = LLM_TYPE_9B; break;
default: type = LLM_TYPE_UNKNOWN;
}
@ -5175,6 +5185,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
{
// mamba2 Mixer SSM params
// NOTE: int64_t for tensor dimensions
@ -5185,6 +5196,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_group = hparams.ssm_n_group;
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
const int64_t n_ff_shexp = hparams.n_ff_shexp;
// embeddings
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -5234,12 +5248,26 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
} else {
// mlp layers
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
} else {
if (n_expert != 0) {
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
// MoE branch
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
// Shared expert branch
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
} else {
// mlp layers
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
}
}
}
} break;
@ -6870,7 +6898,8 @@ void llama_model::print_info() const {
arch == LLM_ARCH_PLAMO2 ||
arch == LLM_ARCH_GRANITE_HYBRID ||
arch == LLM_ARCH_QWEN3NEXT ||
arch == LLM_ARCH_NEMOTRON_H) {
arch == LLM_ARCH_NEMOTRON_H ||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
@ -6926,7 +6955,8 @@ void llama_model::print_info() const {
if (arch == LLM_ARCH_MINICPM ||
arch == LLM_ARCH_GRANITE ||
arch == LLM_ARCH_GRANITE_MOE ||
arch == LLM_ARCH_GRANITE_HYBRID) {
arch == LLM_ARCH_GRANITE_HYBRID ||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@ -7107,7 +7137,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
if (arch == LLM_ARCH_FALCON_H1) {
filter_attn = [&](int32_t) { return true; };
filter_recr = [&](int32_t) { return true; };
} else if (arch == LLM_ARCH_NEMOTRON_H) {
} else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
filter_attn = [&](int32_t il) {
return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
};
@ -7478,6 +7508,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_nemotron>(*this, params);
} break;
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
{
llm = std::make_unique<llm_build_nemotron_h>(*this, params);
} break;
@ -7765,6 +7796,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ARWKV7:
case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values

View File

@ -114,6 +114,7 @@ enum llm_type {
LLM_TYPE_16B_A1B,
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
LLM_TYPE_31B_A3_5B,
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_106B_A12B, // GLM-4.5-Air

View File

@ -107,12 +107,41 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * ffn_inp = cur;
ggml_tensor * moe_out =
build_moe_ffn(ffn_inp,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
nullptr, // no gate
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_RELU_SQR, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
il);
cb(moe_out, "ffn_moe_out", il);
ggml_tensor * ffn_shexp = build_ffn(ffn_inp,
model.layers[il].ffn_up_shexp, NULL, NULL,
NULL /* no gate */ , NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
cur = build_cvec(cur, il);
cb(cur, "l_out", il);

View File

@ -0,0 +1,586 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Daniel Bevenius <daniel.bevenius@gmail.com>
Date: Mon, 15 Dec 2025 15:13:49 +0100
Subject: [PATCH] llama : add support for NVIDIA Nemotron Nano 3
This commit adds support for the NVIDIA Nemotron Nano 3 model, enabling
the conversion and running of this model.
fix indentation in llama-graph.cpp
fix indentation and move ffn_inp
convert : fix modify_tensors in NemotronHModel to call super()
fix pyright error
fix flake8 errors
---
convert_hf_to_gguf.py | 116 +++++++++++++++++++++++++++++++--
gguf-py/gguf/constants.py | 29 +++++++++
gguf-py/gguf/tensor_mapping.py | 9 ++-
src/llama-arch.cpp | 35 ++++++++++
src/llama-arch.h | 1 +
src/llama-graph.cpp | 10 +++
src/llama-model.cpp | 50 +++++++++++---
src/llama-model.h | 1 +
src/models/nemotron-h.cpp | 41 ++++++++++--
9 files changed, 269 insertions(+), 23 deletions(-)
diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
index 867bc9053..57ec2faac 100755
--- a/convert_hf_to_gguf.py
+++ b/convert_hf_to_gguf.py
@@ -8601,8 +8601,18 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
class NemotronHModel(GraniteHybridModel):
"""Hybrid mamba2/attention model from NVIDIA"""
model_arch = gguf.MODEL_ARCH.NEMOTRON_H
+ is_moe: bool = False
def __init__(self, *args, **kwargs):
+ # We have to determine the correct model architecture (MoE vs non-MoE) before
+ # calling the parent __init__. This is because the parent constructor
+ # uses self.model_arch to build the tensor name map, and all MoE-specific
+ # mappings would be missed if it were called with the default non-MoE arch.
+ hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
+ if "num_experts_per_tok" in hparams:
+ self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
+ self.is_moe = True
+
super().__init__(*args, **kwargs)
# Save the top-level head_dim for later
@@ -8614,9 +8624,11 @@ class NemotronHModel(GraniteHybridModel):
# Update the ssm / attn / mlp layers
# M: Mamba2, *: Attention, -: MLP
+ # MoE:
+ # M: Mamba2, *: Attention, E: Expert
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
- self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
+ self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
def get_attn_layers(self):
hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
@@ -8632,10 +8644,28 @@ class NemotronHModel(GraniteHybridModel):
# Set feed_forward_length
# NOTE: This will trigger an override warning. This is preferrable to
# duplicating all the parent logic
- n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
- self.gguf_writer.add_feed_forward_length([
- n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
- ])
+ if not self.is_moe:
+ n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
+ self.gguf_writer.add_feed_forward_length([
+ n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
+ ])
+ else:
+ moe_intermediate_size = self.hparams["moe_intermediate_size"]
+ self.gguf_writer.add_feed_forward_length([
+ moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
+ ])
+ self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
+ self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
+ self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
+ self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
+ self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
+ self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
+ self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
+ self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
+
+ # number of experts used per token (top-k)
+ if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
+ self.gguf_writer.add_expert_used_count(n_experts_used)
def set_vocab(self):
super().set_vocab()
@@ -8643,7 +8673,81 @@ class NemotronHModel(GraniteHybridModel):
# The tokenizer _does_ add a BOS token (via post_processor type
# TemplateProcessing) but does not set add_bos_token to true in the
# config, so we need to explicitly override it here.
- self.gguf_writer.add_add_bos_token(True)
+ if not self.is_moe:
+ self.gguf_writer.add_add_bos_token(True)
+
+ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
+ if self.is_moe and bid is not None:
+ if name.endswith("mixer.gate.e_score_correction_bias"):
+ new_name = name.replace("e_score_correction_bias", "e_score_correction_bias.bias")
+ mapped_name = self.map_tensor_name(new_name)
+ return [(mapped_name, data_torch)]
+
+ if name.endswith("mixer.dt_bias"):
+ new_name = name.replace("dt_bias", "dt.bias")
+ mapped_name = self.map_tensor_name(new_name)
+ return [(mapped_name, data_torch)]
+
+ if name.endswith("mixer.conv1d.weight"):
+ squeezed_data = data_torch.squeeze()
+ mapped_name = self.map_tensor_name(name)
+ return [(mapped_name, squeezed_data)]
+
+ if name.endswith("mixer.A_log"):
+ transformed_data = -torch.exp(data_torch)
+ reshaped_data = transformed_data.squeeze().reshape(-1, 1)
+ mapped_name = self.map_tensor_name(name)
+ return [(mapped_name, reshaped_data)]
+
+ if name.endswith("mixer.D"):
+ reshaped_data = data_torch.squeeze().reshape(-1, 1)
+ mapped_name = self.map_tensor_name(name)
+ return [(mapped_name, reshaped_data)]
+
+ if name.endswith("mixer.norm.weight"):
+ reshaped_data = data_torch.reshape(8, 512)
+ mapped_name = self.map_tensor_name(name)
+ return [(mapped_name, reshaped_data)]
+
+ if name.find("mixer.experts") != -1:
+ n_experts = self.hparams["n_routed_experts"]
+ assert bid is not None
+
+ if self._experts is None:
+ self._experts = [{} for _ in range(self.block_count)]
+
+ self._experts[bid][name] = data_torch
+
+ if len(self._experts[bid]) >= n_experts * 2:
+ # merge the experts into a single tensor
+ tensors: list[tuple[str, Tensor]] = []
+ for w_name in ["down_proj", "up_proj"]:
+ datas: list[Tensor] = []
+
+ for xid in range(n_experts):
+ ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
+ datas.append(self._experts[bid][ename])
+ del self._experts[bid][ename]
+
+ data_torch = torch.stack(datas, dim=0)
+ merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
+ new_name = self.map_tensor_name(merged_name)
+ tensors.append((new_name, data_torch))
+
+ return tensors
+ else:
+ return []
+
+ return super().modify_tensors(data_torch, name, bid)
+
+ def prepare_tensors(self):
+ super().prepare_tensors()
+
+ if self._experts is not None:
+ # flatten `list[dict[str, Tensor]]` into `list[str]`
+ experts = [k for d in self._experts for k in d.keys()]
+ if len(experts) > 0:
+ raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("BailingMoeForCausalLM")
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index 2b8489c59..1852428b4 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -413,6 +413,7 @@ class MODEL_ARCH(IntEnum):
JAIS = auto()
NEMOTRON = auto()
NEMOTRON_H = auto()
+ NEMOTRON_H_MOE = auto()
EXAONE = auto()
EXAONE4 = auto()
GRANITE = auto()
@@ -786,6 +787,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.JAIS: "jais",
MODEL_ARCH.NEMOTRON: "nemotron",
MODEL_ARCH.NEMOTRON_H: "nemotron_h",
+ MODEL_ARCH.NEMOTRON_H_MOE: "nemotron_h_moe",
MODEL_ARCH.EXAONE: "exaone",
MODEL_ARCH.EXAONE4: "exaone4",
MODEL_ARCH.GRANITE: "granite",
@@ -2529,6 +2531,33 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
+ MODEL_ARCH.NEMOTRON_H_MOE: [
+ MODEL_TENSOR.TOKEN_EMBD,
+ MODEL_TENSOR.OUTPUT_NORM,
+ MODEL_TENSOR.OUTPUT,
+ MODEL_TENSOR.ATTN_NORM,
+ MODEL_TENSOR.SSM_IN,
+ MODEL_TENSOR.SSM_CONV1D,
+ MODEL_TENSOR.SSM_DT,
+ MODEL_TENSOR.SSM_A,
+ MODEL_TENSOR.SSM_D,
+ MODEL_TENSOR.SSM_NORM,
+ MODEL_TENSOR.SSM_OUT,
+ MODEL_TENSOR.ATTN_Q,
+ MODEL_TENSOR.ATTN_K,
+ MODEL_TENSOR.ATTN_V,
+ MODEL_TENSOR.ATTN_OUT,
+ MODEL_TENSOR.FFN_DOWN,
+ MODEL_TENSOR.FFN_UP,
+ # experts
+ MODEL_TENSOR.FFN_GATE_INP,
+ MODEL_TENSOR.FFN_UP_EXP,
+ MODEL_TENSOR.FFN_DOWN_EXP,
+ # shared expert
+ MODEL_TENSOR.FFN_DOWN_SHEXP,
+ MODEL_TENSOR.FFN_UP_SHEXP,
+ MODEL_TENSOR.FFN_EXP_PROBS_B,
+ ],
MODEL_ARCH.EXAONE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py
index d9c87da19..7a3c7c5e0 100644
--- a/gguf-py/gguf/tensor_mapping.py
+++ b/gguf-py/gguf/tensor_mapping.py
@@ -377,6 +377,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.gate", # lfm2moe
"model.layers.{bid}.mlp.router.gate", # afmoe
"layers.{bid}.gate", # mistral-large
+ "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@@ -390,6 +391,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.expert_bias", # afmoe
"model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
+ "backbone.layers.{bid}.mixer.gate.e_score_correction_bias" # nemotron-h-moe
),
# Feed-forward up
@@ -438,7 +440,7 @@ class TensorNameMap:
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
- "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
+ "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
"model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
@@ -452,6 +454,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.down_proj",
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
"layers.{bid}.shared_experts.w3", # mistral-large
+ "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
),
MODEL_TENSOR.FFN_UP_CHEXP: (
@@ -546,7 +549,7 @@ class TensorNameMap:
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
- "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
+ "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
"model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
"model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
@@ -561,6 +564,7 @@ class TensorNameMap:
"model.layers.{bid}.shared_mlp.output_linear", # granitemoe
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
"layers.{bid}.shared_experts.w2", # mistral-large
+ "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
),
MODEL_TENSOR.FFN_DOWN_CHEXP: (
@@ -704,6 +708,7 @@ class TensorNameMap:
"model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.dt_proj", # plamo2
"model.layers.{bid}.linear_attn.dt_proj", # qwen3next
+ "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
),
MODEL_TENSOR.SSM_DT_NORM: (
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index a5fe4f66c..ac8b5e033 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -75,6 +75,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_JAIS, "jais" },
{ LLM_ARCH_NEMOTRON, "nemotron" },
{ LLM_ARCH_NEMOTRON_H, "nemotron_h" },
+ { LLM_ARCH_NEMOTRON_H_MOE, "nemotron_h_moe" },
{ LLM_ARCH_EXAONE, "exaone" },
{ LLM_ARCH_EXAONE4, "exaone4" },
{ LLM_ARCH_RWKV6, "rwkv6" },
@@ -1765,6 +1766,39 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_NEMOTRON_H_MOE,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ // mamba(2) ssm layers
+ { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
+ { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
+ { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
+ { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
+ { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
+ { LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
+ { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
+ // attention layers
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ // dense FFN
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ // MoE FFN (for MoE layers)
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
+ { LLM_TENSOR_FFN_EXP_PROBS_B,"blk.%d.exp_probs_b" },
+ // MoE shared expert layer
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
+ },
+ },
{
LLM_ARCH_EXAONE,
{
@@ -2838,6 +2872,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_LFM2:
case LLM_ARCH_LFM2MOE:
case LLM_ARCH_NEMOTRON_H:
+ case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_QWEN3NEXT:
return true;
default:
diff --git a/src/llama-arch.h b/src/llama-arch.h
index ec9e3a6df..61d73786c 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -79,6 +79,7 @@ enum llm_arch {
LLM_ARCH_JAIS,
LLM_ARCH_NEMOTRON,
LLM_ARCH_NEMOTRON_H,
+ LLM_ARCH_NEMOTRON_H_MOE,
LLM_ARCH_EXAONE,
LLM_ARCH_EXAONE4,
LLM_ARCH_RWKV6,
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
index 43620df78..763202d87 100644
--- a/src/llama-graph.cpp
+++ b/src/llama-graph.cpp
@@ -1089,6 +1089,16 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_moe_relu", il);
} break;
+ case LLM_FFN_RELU_SQR:
+ if (gate_exps) {
+ // TODO: add support for gated squared relu
+ GGML_ABORT("fatal error: gated squared relu not implemented");
+ } else {
+ cur = ggml_relu(ctx0, cur);
+ cur = ggml_sqr(ctx0, cur);
+ cb(cur, "ffn_moe_relu_sqr", il);
+ }
+ break;
default:
GGML_ABORT("fatal error");
}
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 3c503b424..94dee78c3 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -120,6 +120,8 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_16B_A1B: return "16B.A1B";
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
+ case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
+ case LLM_TYPE_80B_A3B: return "80B.A3B";
case LLM_TYPE_100B_A6B: return "100B.A6B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
case LLM_TYPE_230B_A10B: return "230B.A10B";
@@ -1788,6 +1790,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NEMOTRON_H:
+ case LLM_ARCH_NEMOTRON_H_MOE:
{
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
@@ -1803,7 +1806,14 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
+ ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared, false);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
+ ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
+
switch (hparams.n_layer) {
+ case 52: type = LLM_TYPE_31B_A3_5B; break; // Nemotron-H_MOE 31B
case 56: type = LLM_TYPE_9B; break;
default: type = LLM_TYPE_UNKNOWN;
}
@@ -5175,6 +5185,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
} break;
case LLM_ARCH_NEMOTRON_H:
+ case LLM_ARCH_NEMOTRON_H_MOE:
{
// mamba2 Mixer SSM params
// NOTE: int64_t for tensor dimensions
@@ -5185,6 +5196,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_group = hparams.ssm_n_group;
const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
+ const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
+ const int64_t n_ff_shexp = hparams.n_ff_shexp;
+
// embeddings
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -5234,12 +5248,26 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- } else {
- // mlp layers
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
+ } else {
+ if (n_expert != 0) {
+ layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
+ layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert }, 0);
+
+ // MoE branch
+ layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
+ layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
+
+ // Shared expert branch
+ layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
+ layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
+
+ } else {
+ // mlp layers
+ layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
+ layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
+ layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
+ layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
+ }
}
}
} break;
@@ -6870,7 +6898,8 @@ void llama_model::print_info() const {
arch == LLM_ARCH_PLAMO2 ||
arch == LLM_ARCH_GRANITE_HYBRID ||
arch == LLM_ARCH_QWEN3NEXT ||
- arch == LLM_ARCH_NEMOTRON_H) {
+ arch == LLM_ARCH_NEMOTRON_H ||
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
@@ -6926,7 +6955,8 @@ void llama_model::print_info() const {
if (arch == LLM_ARCH_MINICPM ||
arch == LLM_ARCH_GRANITE ||
arch == LLM_ARCH_GRANITE_MOE ||
- arch == LLM_ARCH_GRANITE_HYBRID) {
+ arch == LLM_ARCH_GRANITE_HYBRID ||
+ arch == LLM_ARCH_NEMOTRON_H_MOE) {
LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
@@ -7107,7 +7137,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
if (arch == LLM_ARCH_FALCON_H1) {
filter_attn = [&](int32_t) { return true; };
filter_recr = [&](int32_t) { return true; };
- } else if (arch == LLM_ARCH_NEMOTRON_H) {
+ } else if (arch == LLM_ARCH_NEMOTRON_H || arch == LLM_ARCH_NEMOTRON_H_MOE) {
filter_attn = [&](int32_t il) {
return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
};
@@ -7478,6 +7508,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_nemotron>(*this, params);
} break;
case LLM_ARCH_NEMOTRON_H:
+ case LLM_ARCH_NEMOTRON_H_MOE:
{
llm = std::make_unique<llm_build_nemotron_h>(*this, params);
} break;
@@ -7765,6 +7796,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ARWKV7:
case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_NEMOTRON_H:
+ case LLM_ARCH_NEMOTRON_H_MOE:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values
diff --git a/src/llama-model.h b/src/llama-model.h
index cbf4e1bfa..b378b23ec 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -114,6 +114,7 @@ enum llm_type {
LLM_TYPE_16B_A1B,
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
+ LLM_TYPE_31B_A3_5B,
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_106B_A12B, // GLM-4.5-Air
diff --git a/src/models/nemotron-h.cpp b/src/models/nemotron-h.cpp
index 541434888..eb135e63f 100644
--- a/src/models/nemotron-h.cpp
+++ b/src/models/nemotron-h.cpp
@@ -107,12 +107,41 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
- cur = build_ffn(cur,
- model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
- NULL, NULL, NULL,
- model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
- NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
- cb(cur, "ffn_out", il);
+ if (model.layers[il].ffn_gate_inp == nullptr) {
+ cur = build_ffn(cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ NULL, NULL, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
+ cb(cur, "ffn_out", il);
+ } else {
+ ggml_tensor * ffn_inp = cur;
+ ggml_tensor * moe_out =
+ build_moe_ffn(ffn_inp,
+ model.layers[il].ffn_gate_inp,
+ model.layers[il].ffn_up_exps,
+ nullptr, // no gate
+ model.layers[il].ffn_down_exps,
+ model.layers[il].ffn_exp_probs_b,
+ n_expert, n_expert_used,
+ LLM_FFN_RELU_SQR, hparams.expert_weights_norm,
+ true, hparams.expert_weights_scale,
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
+ il);
+ cb(moe_out, "ffn_moe_out", il);
+
+ ggml_tensor * ffn_shexp = build_ffn(ffn_inp,
+ model.layers[il].ffn_up_shexp, NULL, NULL,
+ NULL /* no gate */ , NULL, NULL,
+ model.layers[il].ffn_down_shexp, NULL, NULL,
+ NULL,
+ LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
+ cb(ffn_shexp, "ffn_shexp", il);
+
+ cur = ggml_add(ctx0, moe_out, ffn_shexp);
+ cb(cur, "ffn_out", il);
+ }
cur = build_cvec(cur, il);
cb(cur, "l_out", il);

View File

@ -0,0 +1,255 @@
package parsers
import (
"regexp"
"strings"
"unicode"
"github.com/ollama/ollama/api"
)
type Nemotron3NanoParserState int
const (
Nemotron3NanoCollectingThinking Nemotron3NanoParserState = iota
Nemotron3NanoSkipWhitespaceAfterThinking
Nemotron3NanoCollectingContent
Nemotron3NanoCollectingToolCalls
)
const (
nemotronThinkClose = "</think>"
nemotronToolCallOpen = "<tool_call>"
nemotronToolCallClose = "</tool_call>"
)
type Nemotron3NanoParser struct {
state Nemotron3NanoParserState
buffer strings.Builder
tools []api.Tool
HasThinking bool
}
func (p *Nemotron3NanoParser) HasToolSupport() bool { return true }
func (p *Nemotron3NanoParser) HasThinkingSupport() bool { return p.HasThinking }
func (p *Nemotron3NanoParser) Init(tools []api.Tool, lastMessage *api.Message, thinkValue *api.ThinkValue) []api.Tool {
p.tools = tools
// Check both model capability AND request preference
thinkingEnabled := thinkValue != nil && thinkValue.Bool()
prefill := lastMessage != nil && lastMessage.Role == "assistant"
if !thinkingEnabled {
p.state = Nemotron3NanoCollectingContent
return tools
}
if prefill && lastMessage.Content != "" {
p.state = Nemotron3NanoCollectingContent
return tools
}
p.state = Nemotron3NanoCollectingThinking
return tools
}
type nemotronEvent interface {
isNemotronEvent()
}
type nemotronEventThinkingContent struct {
content string
}
type nemotronEventContent struct {
content string
}
type nemotronEventToolCall struct {
toolCall api.ToolCall
}
func (nemotronEventThinkingContent) isNemotronEvent() {}
func (nemotronEventContent) isNemotronEvent() {}
func (nemotronEventToolCall) isNemotronEvent() {}
func (p *Nemotron3NanoParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
p.buffer.WriteString(s)
events := p.parseEvents()
var toolCalls []api.ToolCall
var contentSb strings.Builder
var thinkingSb strings.Builder
for _, event := range events {
switch event := event.(type) {
case nemotronEventToolCall:
toolCalls = append(toolCalls, event.toolCall)
case nemotronEventThinkingContent:
thinkingSb.WriteString(event.content)
case nemotronEventContent:
contentSb.WriteString(event.content)
}
}
return contentSb.String(), thinkingSb.String(), toolCalls, nil
}
func (p *Nemotron3NanoParser) parseEvents() []nemotronEvent {
var all []nemotronEvent
keepLooping := true
for keepLooping {
var events []nemotronEvent
events, keepLooping = p.eat()
if len(events) > 0 {
all = append(all, events...)
}
}
return all
}
// emitWithPartialCheck extracts unambiguous content before a potential partial tag
func (p *Nemotron3NanoParser) emitWithPartialCheck(bufStr, tag string) (unambiguous, ambiguous string) {
if overlapLen := overlap(bufStr, tag); overlapLen > 0 {
beforePartialTag := bufStr[:len(bufStr)-overlapLen]
trailingLen := trailingWhitespaceLen(beforePartialTag)
return bufStr[:len(beforePartialTag)-trailingLen], bufStr[len(beforePartialTag)-trailingLen:]
}
wsLen := trailingWhitespaceLen(bufStr)
return bufStr[:len(bufStr)-wsLen], bufStr[len(bufStr)-wsLen:]
}
func (p *Nemotron3NanoParser) eat() ([]nemotronEvent, bool) {
bufStr := p.buffer.String()
if bufStr == "" {
return nil, false
}
switch p.state {
case Nemotron3NanoCollectingThinking:
if strings.Contains(bufStr, nemotronThinkClose) {
split := strings.SplitN(bufStr, nemotronThinkClose, 2)
thinking := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
remainder := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.WriteString(remainder)
// Transition to whitespace-skipping state if buffer is empty,
// otherwise go directly to content collection
if remainder == "" {
p.state = Nemotron3NanoSkipWhitespaceAfterThinking
} else {
p.state = Nemotron3NanoCollectingContent
}
if thinking != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: thinking}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronThinkClose)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventThinkingContent{content: unambig}}, false
}
return nil, false
// We only want to skip whitespace between thinking and content
case Nemotron3NanoSkipWhitespaceAfterThinking:
bufStr = strings.TrimLeftFunc(bufStr, unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(bufStr)
if bufStr == "" {
return nil, false
}
p.state = Nemotron3NanoCollectingContent
return nil, true
case Nemotron3NanoCollectingContent:
if strings.Contains(bufStr, nemotronToolCallOpen) {
split := strings.SplitN(bufStr, nemotronToolCallOpen, 2)
content := strings.TrimRightFunc(split[0], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(split[1])
p.state = Nemotron3NanoCollectingToolCalls
if content != "" {
return []nemotronEvent{nemotronEventContent{content: content}}, true
}
return nil, true
}
unambig, ambig := p.emitWithPartialCheck(bufStr, nemotronToolCallOpen)
p.buffer.Reset()
p.buffer.WriteString(ambig)
if unambig != "" {
return []nemotronEvent{nemotronEventContent{content: unambig}}, false
}
return nil, false
case Nemotron3NanoCollectingToolCalls:
if strings.Contains(bufStr, nemotronToolCallClose) {
split := strings.SplitN(bufStr, nemotronToolCallClose, 2)
remaining := strings.TrimLeftFunc(split[1], unicode.IsSpace)
p.buffer.Reset()
p.buffer.WriteString(remaining)
var events []nemotronEvent
if tc, err := p.parseToolCall(split[0]); err == nil {
events = append(events, nemotronEventToolCall{toolCall: tc})
}
if !strings.Contains(remaining, nemotronToolCallOpen) {
p.state = Nemotron3NanoCollectingContent
}
return events, true
}
return nil, false
}
return nil, false
}
var (
nemotronFunctionRegex = regexp.MustCompile(`<function=([^>]+)>`)
nemotronParameterRegex = regexp.MustCompile(`<parameter=([^>]+)>\n?([\s\S]*?)\n?</parameter>`)
)
func (p *Nemotron3NanoParser) parseToolCall(content string) (api.ToolCall, error) {
toolCall := api.ToolCall{}
// Extract function name
fnMatch := nemotronFunctionRegex.FindStringSubmatch(content)
if len(fnMatch) < 2 {
return toolCall, nil
}
toolCall.Function.Name = fnMatch[1]
// Extract parameters
toolCall.Function.Arguments = make(api.ToolCallFunctionArguments)
paramMatches := nemotronParameterRegex.FindAllStringSubmatch(content, -1)
for _, match := range paramMatches {
if len(match) >= 3 {
paramName := match[1]
paramValue := strings.TrimSpace(match[2])
// Try to parse as typed value based on tool definition
toolCall.Function.Arguments[paramName] = p.parseParamValue(paramName, paramValue)
}
}
return toolCall, nil
}
func (p *Nemotron3NanoParser) parseParamValue(paramName string, raw string) any {
// Find the matching tool to get parameter type
var paramType api.PropertyType
for _, tool := range p.tools {
if prop, ok := tool.Function.Parameters.Properties[paramName]; ok {
paramType = prop.Type
break
}
}
return parseValue(raw, paramType)
}

View File

@ -0,0 +1,583 @@
package parsers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestNemotron3NanoParser(t *testing.T) {
tests := []struct {
name string
input string
thinkValue *api.ThinkValue
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "simple content - no thinking",
input: "Hello, how can I help you?",
thinkValue: nil,
expectedContent: "Hello, how can I help you?",
},
{
name: "simple content - thinking disabled",
input: "Hello, how can I help you?",
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "Hello, how can I help you?",
},
{
name: "thinking then content",
input: "Let me think about this...</think>\nHere is my answer.",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Let me think about this...",
expectedContent: "Here is my answer.",
},
{
name: "thinking with newlines",
input: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude</think>\nThe answer is 42.",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Step 1: Analyze\nStep 2: Process\nStep 3: Conclude",
expectedContent: "The answer is 42.",
},
{
name: "simple tool call",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
},
},
{
name: "content then tool call",
input: "Let me check the weather.\n<tool_call>\n<function=get_weather>\n<parameter=city>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "NYC"},
},
},
},
},
{
name: "tool call with multiple parameters",
input: "<tool_call>\n<function=book_flight>\n<parameter=from>\nSFO\n</parameter>\n<parameter=to>\nNYC\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: map[string]any{
"from": "SFO",
"to": "NYC",
},
},
},
},
},
{
name: "multiple tool calls",
input: "<tool_call>\n<function=get_weather>\n<parameter=city>\nSan Francisco\n</parameter>\n</function>\n</tool_call>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nNew York\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "San Francisco"},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "New York"},
},
},
},
},
{
name: "thinking then tool call",
input: "I should check the weather...</think>\n<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "I should check the weather...",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
},
},
{
name: "thinking content then tool call",
input: "Let me think...</think>\nI'll check for you.\n<tool_call>\n<function=search>\n<parameter=query>\ntest\n</parameter>\n</function>\n</tool_call>",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Let me think...",
expectedContent: "I'll check for you.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "search",
Arguments: map[string]any{"query": "test"},
},
},
},
},
{
name: "tool call with multiline parameter value",
input: "<tool_call>\n<function=create_note>\n<parameter=content>\nLine 1\nLine 2\nLine 3\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: map[string]any{"content": "Line 1\nLine 2\nLine 3"},
},
},
},
},
{
name: "empty thinking block - immediate close",
input: "</think>\nHere is my answer.",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "",
expectedContent: "Here is my answer.",
},
{
name: "thinking disabled but model outputs think close anyway",
input: "</think>\nSome content after spurious tag.",
thinkValue: &api.ThinkValue{Value: false},
expectedContent: "</think>\nSome content after spurious tag.",
},
{
name: "tool call with no function name - returns empty tool call",
input: "<tool_call>\n<function=>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{{Function: api.ToolCallFunction{Name: "", Arguments: nil}}},
},
{
name: "content with newlines preserved",
input: "Line 1\n\nLine 2\n\n\nLine 3",
thinkValue: nil,
expectedContent: "Line 1\n\nLine 2\n\n\nLine 3",
},
{
name: "thinking with only whitespace after close tag",
input: "My thoughts...</think> \n\t\n Content here.",
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "My thoughts...",
expectedContent: "Content here.",
},
{
name: "unicode content",
input: "Hello 世界! 🌍 Ñoño",
thinkValue: nil,
expectedContent: "Hello 世界! 🌍 Ñoño",
},
{
name: "tool call with numeric parameter",
input: "<tool_call>\n<function=set_temp>\n<parameter=value>\n42\n</parameter>\n</function>\n</tool_call>",
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "set_temp",
Arguments: map[string]any{"value": "42"},
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: tt.thinkValue != nil && tt.thinkValue.Bool()}
p.Init(nil, nil, tt.thinkValue)
content, thinking, calls, err := p.Add(tt.input, false)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
// Drain remaining content
finalContent, finalThinking, finalCalls, err := p.Add("", true)
if err != nil {
t.Fatalf("unexpected error on done: %v", err)
}
content += finalContent
thinking += finalThinking
calls = append(calls, finalCalls...)
if diff := cmp.Diff(content, tt.expectedContent); diff != "" {
t.Errorf("content mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(thinking, tt.expectedThinking); diff != "" {
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(calls, tt.expectedCalls); diff != "" {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestNemotron3NanoParser_Streaming(t *testing.T) {
tests := []struct {
name string
chunks []string
thinkValue *api.ThinkValue
expectedContent string
expectedThinking string
expectedCalls []api.ToolCall
}{
{
name: "streaming content character by character",
chunks: []string{"H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!"},
thinkValue: nil,
expectedContent: "Hello, world!",
},
{
name: "streaming content small tokens",
chunks: []string{"Hel", "lo", ", ", "how ", "can", " I", " help", " you", " today", "?"},
thinkValue: nil,
expectedContent: "Hello, how can I help you today?",
},
{
name: "streaming thinking then content - granular",
chunks: []string{"Let", " me", " th", "ink", " about", " this", "...", "<", "/", "think", ">", "\n", "Here", " is", " my", " answer", "."},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Let me think about this...",
expectedContent: "Here is my answer.",
},
{
name: "streaming thinking with newlines - granular",
chunks: []string{"Step", " 1", ":", " Ana", "lyze\n", "Step", " 2", ":", " Pro", "cess", "</", "thi", "nk>", "\n", "The", " ans", "wer."},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Step 1: Analyze\nStep 2: Process",
expectedContent: "The answer.",
},
{
name: "streaming tool call - highly granular",
chunks: []string{"<", "tool", "_", "call", ">", "\n", "<", "func", "tion", "=", "get", "_", "weather", ">", "\n", "<", "param", "eter", "=", "city", ">", "\n", "Par", "is", "\n", "</", "param", "eter", ">", "\n", "</", "func", "tion", ">", "\n", "</", "tool", "_", "call", ">"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
},
},
{
name: "streaming content then tool call - granular",
chunks: []string{"Let", " me", " check", " the", " weather", ".", "\n<", "tool_call", ">", "\n", "<function=", "get_weather", ">", "\n", "<parameter=", "city", ">", "\n", "NYC", "\n", "</parameter>", "\n", "</function>", "\n", "</tool_call>"},
thinkValue: nil,
expectedContent: "Let me check the weather.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "NYC"},
},
},
},
},
{
name: "tool call tag split character by character",
chunks: []string{"<", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">", "\n", "<", "f", "u", "n", "c", "t", "i", "o", "n", "=", "t", "e", "s", "t", ">", "\n", "<", "/", "f", "u", "n", "c", "t", "i", "o", "n", ">", "\n", "<", "/", "t", "o", "o", "l", "_", "c", "a", "l", "l", ">"},
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: map[string]any{},
},
},
},
},
{
name: "thinking close tag split character by character",
chunks: []string{"I", "'", "m", " ", "t", "h", "i", "n", "k", "i", "n", "g", ".", ".", ".", "<", "/", "t", "h", "i", "n", "k", ">", "\n", "D", "o", "n", "e", "!"},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "I'm thinking...",
expectedContent: "Done!",
},
{
name: "multiple whitespace after think tag - separate chunks",
chunks: []string{"Thinking...", "</think>", "\n", "\n", " ", "Content here."},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Thinking...",
expectedContent: "Content here.",
},
{
name: "tool call with multiple parameters - streaming",
chunks: []string{"<tool_", "call>\n", "<function", "=book_", "flight>", "\n<para", "meter=", "from>\n", "SFO\n", "</param", "eter>", "\n<param", "eter=to", ">\nNYC", "\n</para", "meter>", "\n</func", "tion>\n", "</tool_", "call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "book_flight",
Arguments: map[string]any{
"from": "SFO",
"to": "NYC",
},
},
},
},
},
{
name: "thinking then content then tool call - streaming",
chunks: []string{"Ana", "lyzing", " your", " request", "...", "</", "think", ">\n", "I'll", " check", " that", " for", " you", ".", "\n", "<tool", "_call", ">\n", "<function", "=search", ">\n", "<parameter", "=query", ">\n", "test", " query", "\n</", "parameter", ">\n", "</function", ">\n", "</tool", "_call", ">"},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Analyzing your request...",
expectedContent: "I'll check that for you.",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "search",
Arguments: map[string]any{"query": "test query"},
},
},
},
},
{
name: "multiple tool calls - streaming",
chunks: []string{
"<tool_call>", "\n", "<function=", "get_weather>", "\n",
"<parameter=", "city>\n", "San Fran", "cisco\n", "</parameter>", "\n",
"</function>", "\n", "</tool_call>", "\n",
"<tool_", "call>\n", "<function", "=get_weather", ">\n",
"<param", "eter=city", ">\nNew", " York\n", "</parameter>\n",
"</function>\n", "</tool_call>",
},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "San Francisco"},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "New York"},
},
},
},
},
{
name: "tool call with multiline parameter - streaming",
chunks: []string{"<tool_call>\n", "<function=", "create_note>\n", "<parameter=", "content>\n", "Line 1", "\nLine", " 2\n", "Line 3", "\n</parameter>\n", "</function>\n", "</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "create_note",
Arguments: map[string]any{"content": "Line 1\nLine 2\nLine 3"},
},
},
},
},
{
name: "empty thinking block",
chunks: []string{"</think>", "\n", "Just content."},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "",
expectedContent: "Just content.",
},
{
name: "empty input chunks interspersed",
chunks: []string{"Hello", "", " ", "", "world", "", "!"},
thinkValue: nil,
expectedContent: "Hello world!",
},
{
name: "tool call immediately after think close - no content",
chunks: []string{"Analyzing...", "</think>", "\n", "<tool_call>", "\n<function=test>\n</function>\n", "</tool_call>"},
thinkValue: &api.ThinkValue{Value: true},
expectedThinking: "Analyzing...",
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: map[string]any{},
},
},
},
},
{
name: "tool call with empty parameter value",
chunks: []string{"<tool_call>\n<function=test>\n<parameter=name>\n", "\n</parameter>\n</function>\n</tool_call>"},
thinkValue: nil,
expectedCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "test",
Arguments: map[string]any{"name": ""},
},
},
},
},
{
name: "partial tool call tag at end - buffered",
chunks: []string{"Here's some content", "<tool"},
thinkValue: nil,
expectedContent: "Here's some content",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: tt.thinkValue != nil && tt.thinkValue.Bool()}
p.Init(nil, nil, tt.thinkValue)
var allContent string
var allThinking string
var allCalls []api.ToolCall
for _, chunk := range tt.chunks {
content, thinking, calls, err := p.Add(chunk, false)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
}
// Drain
content, thinking, calls, err := p.Add("", true)
if err != nil {
t.Fatalf("unexpected error on done: %v", err)
}
allContent += content
allThinking += thinking
allCalls = append(allCalls, calls...)
if diff := cmp.Diff(allContent, tt.expectedContent); diff != "" {
t.Errorf("content mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(allThinking, tt.expectedThinking); diff != "" {
t.Errorf("thinking mismatch (-got +want):\n%s", diff)
}
if diff := cmp.Diff(allCalls, tt.expectedCalls); diff != "" {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
})
}
}
func TestNemotron3NanoParser_HasToolSupport(t *testing.T) {
p := &Nemotron3NanoParser{}
if !p.HasToolSupport() {
t.Error("expected HasToolSupport to return true")
}
}
func TestNemotron3NanoParser_HasThinkingSupport(t *testing.T) {
t.Run("with thinking enabled", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: true}
if !p.HasThinkingSupport() {
t.Error("expected HasThinkingSupport to return true")
}
})
t.Run("with thinking disabled", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: false}
if p.HasThinkingSupport() {
t.Error("expected HasThinkingSupport to return false")
}
})
}
func TestNemotron3NanoParser_Init(t *testing.T) {
t.Run("starts in thinking state when enabled", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: true}
p.Init(nil, nil, &api.ThinkValue{Value: true})
if p.state != Nemotron3NanoCollectingThinking {
t.Errorf("expected state Nemotron3NanoCollectingThinking, got %v", p.state)
}
})
t.Run("starts in content state when thinking disabled", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: true}
p.Init(nil, nil, &api.ThinkValue{Value: false})
if p.state != Nemotron3NanoCollectingContent {
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
}
})
t.Run("starts in content state when nil thinkValue", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: true}
p.Init(nil, nil, nil)
if p.state != Nemotron3NanoCollectingContent {
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
}
})
t.Run("starts in content state with assistant prefill", func(t *testing.T) {
p := &Nemotron3NanoParser{HasThinking: true}
prefill := &api.Message{Role: "assistant", Content: "Starting..."}
p.Init(nil, prefill, &api.ThinkValue{Value: true})
if p.state != Nemotron3NanoCollectingContent {
t.Errorf("expected state Nemotron3NanoCollectingContent, got %v", p.state)
}
})
}
func TestNemotron3NanoParser_WithTools(t *testing.T) {
tools := []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}},
},
},
},
},
}
p := &Nemotron3NanoParser{}
returnedTools := p.Init(tools, nil, nil)
if diff := cmp.Diff(returnedTools, tools); diff != "" {
t.Errorf("tools mismatch (-got +want):\n%s", diff)
}
// Parse a tool call
input := "<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>"
_, _, calls, err := p.Add(input, true)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
expectedCalls := []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
}
if diff := cmp.Diff(calls, expectedCalls); diff != "" {
t.Errorf("calls mismatch (-got +want):\n%s", diff)
}
}

View File

@ -62,6 +62,10 @@ func ParserForName(name string) Parser {
return &Olmo3Parser{}
case "olmo3-think":
return &Olmo3ThinkParser{}
case "nemotron-3-nano":
return &Nemotron3NanoParser{HasThinking: false}
case "nemotron-3-nano-thinking":
return &Nemotron3NanoParser{HasThinking: true}
default:
return nil
}

View File

@ -0,0 +1,222 @@
package renderers
import (
"encoding/json"
"fmt"
"strings"
"github.com/ollama/ollama/api"
)
type Nemotron3NanoRenderer struct {
IsThinking bool
}
func (r *Nemotron3NanoRenderer) Render(messages []api.Message, tools []api.Tool, thinkValue *api.ThinkValue) (string, error) {
var sb strings.Builder
// thinking is enabled: model must support it AND user must request it
enableThinking := r.IsThinking && (thinkValue != nil && thinkValue.Bool())
// Extract system message if present
var systemMessage string
var loopMessages []api.Message
if len(messages) > 0 && messages[0].Role == "system" {
systemMessage = messages[0].Content
loopMessages = messages[1:]
} else {
loopMessages = messages
}
// Find last user message index for thinking truncation
lastUserIdx := -1
for i, msg := range loopMessages {
if msg.Role == "user" {
lastUserIdx = i
}
}
sb.WriteString("<|im_start|>system\n")
if systemMessage != "" {
sb.WriteString(systemMessage)
}
if len(tools) > 0 {
if systemMessage != "" {
sb.WriteString("\n\n")
}
sb.WriteString(r.renderTools(tools))
}
sb.WriteString("<|im_end|>\n")
for i, message := range loopMessages {
switch message.Role {
case "assistant":
// Build content with thinking tags
content := r.buildContent(message)
shouldTruncate := i < lastUserIdx
if len(message.ToolCalls) > 0 {
sb.WriteString("<|im_start|>assistant\n")
sb.WriteString(r.formatContent(content, shouldTruncate, true))
r.writeToolCalls(&sb, message.ToolCalls)
sb.WriteString("<|im_end|>\n")
} else {
formatted := r.formatContent(content, shouldTruncate, false)
sb.WriteString("<|im_start|>assistant\n" + formatted + "<|im_end|>\n")
}
case "user", "system":
sb.WriteString("<|im_start|>" + message.Role + "\n")
sb.WriteString(message.Content)
sb.WriteString("<|im_end|>\n")
case "tool":
// Check if previous message was also a tool message
prevWasTool := i > 0 && loopMessages[i-1].Role == "tool"
nextIsTool := i+1 < len(loopMessages) && loopMessages[i+1].Role == "tool"
if !prevWasTool {
sb.WriteString("<|im_start|>user\n")
}
sb.WriteString("<tool_response>\n")
sb.WriteString(message.Content)
sb.WriteString("\n</tool_response>\n")
if !nextIsTool {
sb.WriteString("<|im_end|>\n")
}
default:
sb.WriteString("<|im_start|>" + message.Role + "\n" + message.Content + "<|im_end|>\n")
}
}
// Add generation prompt
if enableThinking {
sb.WriteString("<|im_start|>assistant\n<think>\n")
} else {
sb.WriteString("<|im_start|>assistant\n<think></think>")
}
return sb.String(), nil
}
func (r *Nemotron3NanoRenderer) renderTools(tools []api.Tool) string {
var sb strings.Builder
sb.WriteString("# Tools\n\nYou have access to the following functions:\n\n<tools>")
for _, tool := range tools {
fn := tool.Function
sb.WriteString("\n<function>\n<name>" + fn.Name + "</name>")
if fn.Description != "" {
sb.WriteString("\n<description>" + strings.TrimSpace(fn.Description) + "</description>")
}
sb.WriteString("\n<parameters>")
if fn.Parameters.Properties != nil {
for paramName, paramFields := range fn.Parameters.Properties {
sb.WriteString("\n<parameter>")
sb.WriteString("\n<name>" + paramName + "</name>")
if len(paramFields.Type) > 0 {
sb.WriteString("\n<type>" + strings.Join(paramFields.Type, ", ") + "</type>")
}
if paramFields.Description != "" {
sb.WriteString("\n<description>" + strings.TrimSpace(paramFields.Description) + "</description>")
}
if len(paramFields.Enum) > 0 {
enumJSON, _ := json.Marshal(paramFields.Enum)
sb.WriteString("\n<enum>" + string(enumJSON) + "</enum>")
}
sb.WriteString("\n</parameter>")
}
}
if len(fn.Parameters.Required) > 0 {
reqJSON, _ := json.Marshal(fn.Parameters.Required)
sb.WriteString("\n<required>" + string(reqJSON) + "</required>")
}
sb.WriteString("\n</parameters>")
sb.WriteString("\n</function>")
}
sb.WriteString("\n</tools>")
sb.WriteString("\n\nIf you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n</IMPORTANT>")
return sb.String()
}
func (r *Nemotron3NanoRenderer) buildContent(message api.Message) string {
// The parser always extracts thinking into the Thinking field,
// so Content will never have <think> tags embedded
if message.Thinking != "" {
return "<think>\n" + message.Thinking + "\n</think>\n" + message.Content
}
return "<think></think>" + message.Content
}
func (r *Nemotron3NanoRenderer) formatContent(content string, truncate bool, addNewline bool) string {
if content == "" {
return "<think></think>"
}
if !truncate {
if addNewline {
return strings.TrimSpace(content) + "\n"
}
return strings.TrimSpace(content)
}
// Truncate thinking - keep only content after </think>
c := content
if strings.Contains(c, "</think>") {
parts := strings.Split(c, "</think>")
c = parts[len(parts)-1]
} else if strings.Contains(c, "<think>") {
parts := strings.Split(c, "<think>")
c = parts[0]
}
c = "<think></think>" + strings.TrimSpace(c)
if addNewline && len(c) > len("<think></think>") {
return c + "\n"
}
if c == "<think></think>" {
return c
}
return strings.TrimSpace(c)
}
func (r *Nemotron3NanoRenderer) writeToolCalls(sb *strings.Builder, toolCalls []api.ToolCall) {
for _, tc := range toolCalls {
sb.WriteString("<tool_call>\n<function=" + tc.Function.Name + ">\n")
for name, value := range tc.Function.Arguments {
sb.WriteString("<parameter=" + name + ">\n" + r.formatArgValue(value) + "\n</parameter>\n")
}
sb.WriteString("</function>\n</tool_call>\n")
}
}
func (r *Nemotron3NanoRenderer) formatArgValue(value any) string {
switch v := value.(type) {
case map[string]any, []any:
jsonBytes, _ := json.Marshal(v)
return string(jsonBytes)
default:
return fmt.Sprintf("%v", v)
}
}

View File

@ -0,0 +1,585 @@
package renderers
import (
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestNemotron3NanoRenderer(t *testing.T) {
tests := []struct {
name string
msgs []api.Message
tools []api.Tool
thinkValue *api.ThinkValue
isThinking bool
expected string
}{
{
name: "basic user message - thinking mode",
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHello!<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "basic user message - no thinking",
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
isThinking: false,
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHello!<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>",
},
{
name: "with system message",
msgs: []api.Message{
{Role: "system", Content: "You are a helpful assistant."},
{Role: "user", Content: "Hello!"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" +
"<|im_start|>user\nHello!<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "multi-turn conversation",
msgs: []api.Message{
{Role: "user", Content: "Hi"},
{Role: "assistant", Content: "Hello! How can I help?"},
{Role: "user", Content: "Tell me a joke"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHi<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>Hello! How can I help?<|im_end|>\n" +
"<|im_start|>user\nTell me a joke<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "with tools",
msgs: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"city"},
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}, Description: "The city name"},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_weather</name>\n" +
"<description>Get the current weather</description>\n" +
"<parameters>\n" +
"<parameter>\n<name>city</name>\n<type>string</type>\n<description>The city name</description>\n</parameter>\n" +
"<required>[\"city\"]</required>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nWhat's the weather in Paris?<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "tool call with response",
msgs: []api.Message{
{Role: "user", Content: "What's the weather in Paris?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
},
},
{Role: "tool", Content: "Sunny, 72F"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Description: "Get the current weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Required: []string{"city"},
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}, Description: "The city name"},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_weather</name>\n" +
"<description>Get the current weather</description>\n" +
"<parameters>\n" +
"<parameter>\n<name>city</name>\n<type>string</type>\n<description>The city name</description>\n</parameter>\n" +
"<required>[\"city\"]</required>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nWhat's the weather in Paris?<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nSunny, 72F\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "assistant with content and tool call",
msgs: []api.Message{
{Role: "user", Content: "What's the weather?"},
{
Role: "assistant",
Content: "Let me check that for you.",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
},
},
{Role: "tool", Content: "Sunny"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_weather</name>\n" +
"<parameters>\n" +
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nWhat's the weather?<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>Let me check that for you.\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nSunny\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "thinking in history is truncated",
msgs: []api.Message{
{Role: "user", Content: "Hi"},
{Role: "assistant", Content: "Hello!", Thinking: "Let me think about this..."},
{Role: "user", Content: "How are you?"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHi<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>Hello!<|im_end|>\n" +
"<|im_start|>user\nHow are you?<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "parallel tool calls",
msgs: []api.Message{
{Role: "user", Content: "Weather in Paris and London?"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "Paris"},
},
},
{
Function: api.ToolCallFunction{
Name: "get_weather",
Arguments: map[string]any{"city": "London"},
},
},
},
},
{Role: "tool", Content: "Sunny"},
{Role: "tool", Content: "Rainy"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_weather</name>\n" +
"<parameters>\n" +
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nWeather in Paris and London?<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nLondon\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nSunny\n</tool_response>\n<tool_response>\nRainy\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "thinking disabled even when model supports it",
msgs: []api.Message{
{Role: "user", Content: "Hello!"},
},
isThinking: true, // model supports thinking
thinkValue: nil, // but user didn't request it
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHello!<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>",
},
{
name: "complex message history with thinking, tools, tool calls, tool results and content",
msgs: []api.Message{
{Role: "user", Content: "What's the weather in Paris and London? Also, what's 2+2?"},
{Role: "assistant", Content: "", Thinking: "I need to check the weather for both cities and calculate 2+2. Let me start with the weather calls.", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "get_weather", Arguments: api.ToolCallFunctionArguments{"city": "Paris"}}},
{Function: api.ToolCallFunction{Name: "get_weather", Arguments: api.ToolCallFunctionArguments{"city": "London"}}},
}},
{Role: "tool", Content: "Sunny, 22°C", ToolCallID: "call1"},
{Role: "tool", Content: "Rainy, 15°C", ToolCallID: "call2"},
{Role: "assistant", Content: "", Thinking: "Now I have the weather data. Let me calculate 2+2.", ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "calculate", Arguments: api.ToolCallFunctionArguments{"expression": "2+2"}}},
}},
{Role: "tool", Content: "4", ToolCallID: "call3"},
{Role: "assistant", Content: "Based on the weather data, Paris is sunny at 22°C and London is rainy at 15°C. Also, 2+2 equals 4.", Thinking: "Perfect! I have all the information needed to provide a complete answer."},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_weather",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"city": {Type: api.PropertyType{"string"}},
},
},
},
},
{
Type: "function",
Function: api.ToolFunction{
Name: "calculate",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"expression": {Type: api.PropertyType{"string"}},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_weather</name>\n" +
"<parameters>\n" +
"<parameter>\n<name>city</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n" +
"<function>\n<name>calculate</name>\n" +
"<parameters>\n" +
"<parameter>\n<name>expression</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nWhat's the weather in Paris and London? Also, what's 2+2?<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>\nI need to check the weather for both cities and calculate 2+2. Let me start with the weather calls.\n</think>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nParis\n</parameter>\n</function>\n</tool_call>\n" +
"<tool_call>\n<function=get_weather>\n<parameter=city>\nLondon\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nSunny, 22°C\n</tool_response>\n<tool_response>\nRainy, 15°C\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>\nNow I have the weather data. Let me calculate 2+2.\n</think>\n" +
"<tool_call>\n<function=calculate>\n<parameter=expression>\n2+2\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\n4\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n" +
"<think>\nPerfect! I have all the information needed to provide a complete answer.\n</think>\n" +
"Based on the weather data, Paris is sunny at 22°C and London is rainy at 15°C. Also, 2+2 equals 4.<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "empty messages list",
msgs: []api.Message{},
isThinking: false,
expected: "<|im_start|>system\n<|im_end|>\n<|im_start|>assistant\n<think></think>",
},
{
name: "tool result with JSON content",
msgs: []api.Message{
{Role: "user", Content: "Get user info"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "get_user", Arguments: map[string]any{"id": "123"}}},
},
},
{Role: "tool", Content: `{"name": "John", "age": 30, "active": true}`},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "get_user",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{"id": {Type: api.PropertyType{"string"}}},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>get_user</name>\n<parameters>\n" +
"<parameter>\n<name>id</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nGet user info<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>\n" +
"<tool_call>\n<function=get_user>\n<parameter=id>\n123\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\n{\"name\": \"John\", \"age\": 30, \"active\": true}\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "assistant message with only thinking no content",
msgs: []api.Message{
{Role: "user", Content: "Think about this"},
{Role: "assistant", Thinking: "Deep thoughts here...", Content: ""},
{Role: "user", Content: "What did you think?"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nThink about this<|im_end|>\n" +
"<|im_start|>assistant\n<think></think><|im_end|>\n" +
"<|im_start|>user\nWhat did you think?<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "tool call with complex nested argument",
msgs: []api.Message{
{Role: "user", Content: "Create data"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{
Name: "create",
Arguments: map[string]any{
"data": map[string]any{"nested": "value", "count": 42},
},
}},
},
},
{Role: "tool", Content: "Created"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "create",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{"data": {Type: api.PropertyType{"object"}}},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>create</name>\n<parameters>\n" +
"<parameter>\n<name>data</name>\n<type>object</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nCreate data<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>\n" +
"<tool_call>\n<function=create>\n<parameter=data>\n{\"count\":42,\"nested\":\"value\"}\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nCreated\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "content explaining the format itself",
msgs: []api.Message{
{Role: "user", Content: "How do I format a tool call?"},
{Role: "assistant", Content: "To call a tool, use <tool_call> tags with <function=name> inside."},
{Role: "user", Content: "Thanks!"},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n<|im_end|>\n" +
"<|im_start|>user\nHow do I format a tool call?<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>To call a tool, use <tool_call> tags with <function=name> inside.<|im_end|>\n" +
"<|im_start|>user\nThanks!<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
{
name: "unicode in content and tool args",
msgs: []api.Message{
{Role: "user", Content: "Translate 你好"},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{Function: api.ToolCallFunction{Name: "translate", Arguments: map[string]any{"text": "你好"}}},
},
},
{Role: "tool", Content: "Hello"},
},
tools: []api.Tool{
{
Type: "function",
Function: api.ToolFunction{
Name: "translate",
Parameters: api.ToolFunctionParameters{
Type: "object",
Properties: map[string]api.ToolProperty{
"text": {Type: api.PropertyType{"string"}},
},
},
},
},
},
isThinking: true,
thinkValue: &api.ThinkValue{Value: true},
expected: "<|im_start|>system\n" +
"# Tools\n\nYou have access to the following functions:\n\n<tools>\n" +
"<function>\n<name>translate</name>\n<parameters>\n" +
"<parameter>\n<name>text</name>\n<type>string</type>\n</parameter>\n" +
"</parameters>\n</function>\n</tools>\n\n" +
"If you choose to call a function ONLY reply in the following format with NO suffix:\n\n" +
"<tool_call>\n<function=example_function_name>\n<parameter=example_parameter_1>\nvalue_1\n</parameter>\n" +
"<parameter=example_parameter_2>\nThis is the value for the second parameter\nthat can span\nmultiple lines\n" +
"</parameter>\n</function>\n</tool_call>\n\n<IMPORTANT>\nReminder:\n" +
"- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\n" +
"- Required parameters MUST be specified\n" +
"- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\n" +
"- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\n" +
"</IMPORTANT><|im_end|>\n" +
"<|im_start|>user\nTranslate 你好<|im_end|>\n" +
"<|im_start|>assistant\n<think></think>\n" +
"<tool_call>\n<function=translate>\n<parameter=text>\n你好\n</parameter>\n</function>\n</tool_call>\n<|im_end|>\n" +
"<|im_start|>user\n<tool_response>\nHello\n</tool_response>\n<|im_end|>\n" +
"<|im_start|>assistant\n<think>\n",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
renderer := &Nemotron3NanoRenderer{IsThinking: tt.isThinking}
rendered, err := renderer.Render(tt.msgs, tt.tools, tt.thinkValue)
if err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(rendered, tt.expected); diff != "" {
t.Errorf("mismatch (-got +want):\n%s", diff)
}
})
}
}

View File

@ -76,6 +76,12 @@ func rendererForName(name string) Renderer {
// Used for Olmo-3-32B-Think
renderer := &Olmo3ThinkRenderer{Variant: Olmo3Think32B}
return renderer
case "nemotron-3-nano":
renderer := &Nemotron3NanoRenderer{IsThinking: false}
return renderer
case "nemotron-3-nano-thinking":
renderer := &Nemotron3NanoRenderer{IsThinking: true}
return renderer
default:
return nil
}