mirror of https://github.com/ollama/ollama
model: add olmo3 and olmo3.1 (#13415)
This commit is contained in:
parent
2c639431b1
commit
ffbe8e076d
|
|
@ -202,6 +202,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||||
conv = &qwen25VLModel{}
|
conv = &qwen25VLModel{}
|
||||||
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
|
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
|
||||||
conv = &qwen3VLModel{}
|
conv = &qwen3VLModel{}
|
||||||
|
case "Olmo3ForCausalLM":
|
||||||
|
conv = &olmoModel{}
|
||||||
case "BertModel":
|
case "BertModel":
|
||||||
conv = &bertModel{}
|
conv = &bertModel{}
|
||||||
case "NomicBertModel", "NomicBertMoEModel":
|
case "NomicBertModel", "NomicBertMoEModel":
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,117 @@
|
||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type ropeScaling struct {
|
||||||
|
Factor float32 `json:"factor"`
|
||||||
|
OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"`
|
||||||
|
AttentionFactor float32 `json:"attention_factor"`
|
||||||
|
BetaFast float32 `json:"beta_fast"`
|
||||||
|
BetaSlow float32 `json:"beta_slow"`
|
||||||
|
RopeType string `json:"rope_type"`
|
||||||
|
ExtrapolationFactor float32 `json:"extrapolation_factor"`
|
||||||
|
}
|
||||||
|
|
||||||
|
type olmoModel struct {
|
||||||
|
ModelParameters
|
||||||
|
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RopeScaling *ropeScaling `json:"rope_scaling"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
LayerTypes []string `json:"layer_types"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*olmoModel)(nil)
|
||||||
|
|
||||||
|
func (p *olmoModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "olmo3"
|
||||||
|
kv["olmo3.block_count"] = p.NumHiddenLayers
|
||||||
|
kv["olmo3.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["olmo3.embedding_length"] = p.HiddenSize
|
||||||
|
kv["olmo3.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["olmo3.attention.head_count"] = p.NumAttentionHeads
|
||||||
|
kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||||
|
|
||||||
|
if p.RopeTheta > 0 {
|
||||||
|
kv["olmo3.rope.freq_base"] = p.RopeTheta
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RopeScaling != nil {
|
||||||
|
if p.RopeScaling.Factor > 0 {
|
||||||
|
kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor
|
||||||
|
}
|
||||||
|
if p.RopeScaling.OriginalMaxPositionEmbeds > 0 {
|
||||||
|
kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds
|
||||||
|
}
|
||||||
|
if p.RopeScaling.AttentionFactor > 0 {
|
||||||
|
kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor
|
||||||
|
}
|
||||||
|
if p.RopeScaling.RopeType != "" {
|
||||||
|
kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.RMSNormEPS > 0 {
|
||||||
|
kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.SlidingWindow > 0 {
|
||||||
|
kv["olmo3.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(p.LayerTypes) > 0 {
|
||||||
|
slidingPattern := make([]bool, len(p.LayerTypes))
|
||||||
|
for i, layerType := range p.LayerTypes {
|
||||||
|
slidingPattern[i] = (layerType == "sliding_attention")
|
||||||
|
}
|
||||||
|
kv["olmo3.attention.sliding_window_pattern"] = slidingPattern
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
out := make([]*ggml.Tensor, 0, len(ts))
|
||||||
|
for _, t := range ts {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *olmoModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"self_attn.q_norm", "attn_q_norm",
|
||||||
|
"self_attn.k_norm", "attn_k_norm",
|
||||||
|
"post_attention_layernorm", "post_attention_norm",
|
||||||
|
"post_feedforward_layernorm", "post_ffw_norm",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
@ -253,6 +253,7 @@ func (kv KV) OllamaEngineRequired() bool {
|
||||||
"deepseekocr",
|
"deepseekocr",
|
||||||
"deepseek2",
|
"deepseek2",
|
||||||
"nomic-bert",
|
"nomic-bert",
|
||||||
|
"olmo3",
|
||||||
}, kv.Architecture())
|
}, kv.Architecture())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -841,6 +842,7 @@ func (f GGML) FlashAttention() bool {
|
||||||
"gemma3",
|
"gemma3",
|
||||||
"gptoss", "gpt-oss",
|
"gptoss", "gpt-oss",
|
||||||
"mistral3",
|
"mistral3",
|
||||||
|
"olmo3",
|
||||||
"qwen3", "qwen3moe",
|
"qwen3", "qwen3moe",
|
||||||
"qwen3vl", "qwen3vlmoe",
|
"qwen3vl", "qwen3vlmoe",
|
||||||
}, f.KV().String("general.architecture"))
|
}, f.KV().String("general.architecture"))
|
||||||
|
|
|
||||||
|
|
@ -13,6 +13,7 @@ import (
|
||||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||||
_ "github.com/ollama/ollama/model/models/mllama"
|
_ "github.com/ollama/ollama/model/models/mllama"
|
||||||
_ "github.com/ollama/ollama/model/models/nomicbert"
|
_ "github.com/ollama/ollama/model/models/nomicbert"
|
||||||
|
_ "github.com/ollama/ollama/model/models/olmo3"
|
||||||
_ "github.com/ollama/ollama/model/models/qwen2"
|
_ "github.com/ollama/ollama/model/models/qwen2"
|
||||||
_ "github.com/ollama/ollama/model/models/qwen25vl"
|
_ "github.com/ollama/ollama/model/models/qwen25vl"
|
||||||
_ "github.com/ollama/ollama/model/models/qwen3"
|
_ "github.com/ollama/ollama/model/models/qwen3"
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,223 @@
|
||||||
|
package olmo3
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs"
|
||||||
|
"github.com/ollama/ollama/kvcache"
|
||||||
|
"github.com/ollama/ollama/ml"
|
||||||
|
"github.com/ollama/ollama/ml/nn"
|
||||||
|
"github.com/ollama/ollama/ml/nn/rope"
|
||||||
|
"github.com/ollama/ollama/model"
|
||||||
|
"github.com/ollama/ollama/model/input"
|
||||||
|
)
|
||||||
|
|
||||||
|
const (
|
||||||
|
cacheTypeSWA = 0
|
||||||
|
cacheTypeCausal = 1
|
||||||
|
)
|
||||||
|
|
||||||
|
type Options struct {
|
||||||
|
hiddenSize, numHeads, numKVHeads int
|
||||||
|
eps, ropeBase, ropeScale float32
|
||||||
|
|
||||||
|
originalContextLength int
|
||||||
|
attnFactor float32
|
||||||
|
|
||||||
|
ropeType string
|
||||||
|
ropeExtrapolation float32
|
||||||
|
|
||||||
|
slidingWindowPattern []bool
|
||||||
|
}
|
||||||
|
|
||||||
|
type Model struct {
|
||||||
|
model.Base
|
||||||
|
model.TextProcessor
|
||||||
|
|
||||||
|
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||||
|
Layers []Layer `gguf:"blk"`
|
||||||
|
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||||
|
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||||
|
|
||||||
|
Options
|
||||||
|
}
|
||||||
|
|
||||||
|
func New(c fs.Config) (model.Model, error) {
|
||||||
|
vocabulary := model.Vocabulary{
|
||||||
|
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||||
|
Scores: c.Floats("tokenizer.ggml.scores"),
|
||||||
|
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||||
|
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||||
|
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
||||||
|
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||||
|
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||||
|
EOS: append(
|
||||||
|
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||||||
|
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
processor := model.NewBytePairEncoding(
|
||||||
|
&vocabulary,
|
||||||
|
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||||
|
)
|
||||||
|
|
||||||
|
m := Model{
|
||||||
|
TextProcessor: processor,
|
||||||
|
Layers: make([]Layer, c.Uint("block_count")),
|
||||||
|
Options: Options{
|
||||||
|
hiddenSize: int(c.Uint("embedding_length")),
|
||||||
|
numHeads: int(c.Uint("attention.head_count")),
|
||||||
|
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||||
|
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||||
|
ropeBase: c.Float("rope.freq_base", 1e4),
|
||||||
|
ropeScale: c.Float("rope.scaling.factor", 1),
|
||||||
|
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
||||||
|
attnFactor: c.Float("rope.scaling.attn_factor", 1),
|
||||||
|
ropeType: c.String("rope.scaling.type"),
|
||||||
|
ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1.0),
|
||||||
|
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
m.Cache = kvcache.NewWrapperCache(
|
||||||
|
kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
|
||||||
|
kvcache.NewCausalCache(m.Shift),
|
||||||
|
)
|
||||||
|
|
||||||
|
return &m, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type SelfAttention struct {
|
||||||
|
Query *nn.Linear `gguf:"attn_q"`
|
||||||
|
Key *nn.Linear `gguf:"attn_k"`
|
||||||
|
Value *nn.Linear `gguf:"attn_v"`
|
||||||
|
Output *nn.Linear `gguf:"attn_output"`
|
||||||
|
QNorm *nn.RMSNorm `gguf:"attn_q_norm"`
|
||||||
|
KNorm *nn.RMSNorm `gguf:"attn_k_norm"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, isSWA bool) ml.Tensor {
|
||||||
|
freqScale := float32(1.0)
|
||||||
|
ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()}
|
||||||
|
|
||||||
|
if !isSWA {
|
||||||
|
freqScale = 1. / o.ropeScale
|
||||||
|
if o.originalContextLength > 0 {
|
||||||
|
ropeOpts = append(ropeOpts,
|
||||||
|
rope.WithOriginalContextLength(o.originalContextLength),
|
||||||
|
rope.WithExtrapolationFactor(o.ropeExtrapolation),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return nn.RoPE(ctx, states, positions, o.hiddenSize/o.numHeads, o.ropeBase, freqScale, ropeOpts...)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
||||||
|
batchSize := hiddenState.Dim(1)
|
||||||
|
headDim := m.hiddenSize / m.numHeads
|
||||||
|
|
||||||
|
query := sa.Query.Forward(ctx, hiddenState)
|
||||||
|
query = sa.QNorm.Forward(ctx, query, m.eps)
|
||||||
|
query = query.Reshape(ctx, headDim, m.numHeads, batchSize)
|
||||||
|
query = m.Options.applyRotaryPositionEmbeddings(ctx, query, positions, isSWA)
|
||||||
|
|
||||||
|
key := sa.Key.Forward(ctx, hiddenState)
|
||||||
|
key = sa.KNorm.Forward(ctx, key, m.eps)
|
||||||
|
key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
||||||
|
key = m.Options.applyRotaryPositionEmbeddings(ctx, key, positions, isSWA)
|
||||||
|
|
||||||
|
value := sa.Value.Forward(ctx, hiddenState)
|
||||||
|
value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize)
|
||||||
|
|
||||||
|
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
|
||||||
|
attention = attention.Reshape(ctx, m.hiddenSize, batchSize)
|
||||||
|
|
||||||
|
return sa.Output.Forward(ctx, attention)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||||
|
isSWA := m.isSWALayer(layer)
|
||||||
|
return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift, isSWA), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
type MLP struct {
|
||||||
|
Up *nn.Linear `gguf:"ffn_up"`
|
||||||
|
Down *nn.Linear `gguf:"ffn_down"`
|
||||||
|
Gate *nn.Linear `gguf:"ffn_gate"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor {
|
||||||
|
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
|
||||||
|
return mlp.Down.Forward(ctx, hiddenState)
|
||||||
|
}
|
||||||
|
|
||||||
|
type Layer struct {
|
||||||
|
SelfAttention *SelfAttention
|
||||||
|
PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
|
||||||
|
MLP *MLP
|
||||||
|
PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor {
|
||||||
|
residual := hiddenState
|
||||||
|
|
||||||
|
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA)
|
||||||
|
|
||||||
|
if outputs != nil {
|
||||||
|
hiddenState = hiddenState.Rows(ctx, outputs)
|
||||||
|
residual = residual.Rows(ctx, outputs)
|
||||||
|
}
|
||||||
|
hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps)
|
||||||
|
|
||||||
|
hiddenState = hiddenState.Add(ctx, residual)
|
||||||
|
residual = hiddenState
|
||||||
|
|
||||||
|
hiddenState = l.MLP.Forward(ctx, hiddenState, m)
|
||||||
|
hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps)
|
||||||
|
|
||||||
|
return hiddenState.Add(ctx, residual)
|
||||||
|
}
|
||||||
|
|
||||||
|
// OLMo3 has Sliding Window Attention (SWA) for 3 out of every 4 layers.
|
||||||
|
func (m *Model) isSWALayer(layerIdx int) bool {
|
||||||
|
return m.Options.slidingWindowPattern[layerIdx]
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||||
|
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||||||
|
|
||||||
|
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||||
|
|
||||||
|
for i, layer := range m.Layers {
|
||||||
|
m.Cache.SetLayer(i)
|
||||||
|
cacheType := cacheTypeSWA
|
||||||
|
|
||||||
|
isSWA := m.isSWALayer(i)
|
||||||
|
if !isSWA {
|
||||||
|
cacheType = cacheTypeCausal
|
||||||
|
}
|
||||||
|
|
||||||
|
wc, ok := m.Cache.(*kvcache.WrapperCache)
|
||||||
|
if !ok {
|
||||||
|
return nil, fmt.Errorf("expected *kvcache.WrapperCache, got %T", m.Cache)
|
||||||
|
}
|
||||||
|
wc.SetLayerType(cacheType)
|
||||||
|
|
||||||
|
var outputs ml.Tensor
|
||||||
|
if i == len(m.Layers)-1 {
|
||||||
|
outputs = batch.Outputs
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA)
|
||||||
|
}
|
||||||
|
|
||||||
|
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
||||||
|
return m.Output.Forward(ctx, hiddenState), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func init() {
|
||||||
|
model.Register("olmo3", New)
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue