Commit Graph

30 Commits

Author SHA1 Message Date
nicole pardal 3475d915cb
embeddings: modified batch size (#13429)
This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938 #13054

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-12-11 15:36:31 -08:00
nicole pardal e082d60a24
truncation: fixed runner truncation logic + removed server truncation (#12839)
This PR consolidates all embedding prompt-length checking, truncation, and prompt token counting into the runner to ensure a single source of truth.
2025-12-08 11:20:28 -08:00
Jesse Gross 4372d0bfef llamarunner: Respect device ordering for offloaded layers
We used to control the way that llama.cpp saw devices using
CUDA_VISIBLE_DEVICES or similar. This would ensure that the layers
offloaded to a device were actually the ones intended. This is
particularly important because we might reorder devices based on
free memory or performance.

When we started explicitly scheduling layers, this logic went
away but the llamarunner didn't have any way to set the correct
order of devices. This meant that the correct number of layers
would be assigned to a device but not necessarily the layers
that were expected. This change sets up the devices correctly
based on the offload information.
2025-11-11 13:11:08 -08:00
Baptiste Jamin 59241c5bee
server: add logprobs and top_logprobs support to Ollama's API (#12899)
Adds logprobs support to Ollama's API including support for Ollama's
OpenAI-compatible API. By specifying the new 'logprobs' boolean parameter
in the API, Ollama will return the log probabilities for each token generated.
'top_logprobs', an integer value can also be specified up to the value 20.
When specified, the API will also provide the number of most likely tokens to
return at each token position

Co-authored-by: Baptiste Jamin <baptiste@crisp.chat>
2025-11-11 08:49:50 -08:00
Patrick Devine 29f63f37c8
Revert "server: Consolidate embedding truncation in runner (#12730)" (#12810)
This reverts commit 5d347f6d6f.
2025-10-28 14:49:14 -07:00
nicole pardal 5d347f6d6f
server: Consolidate embedding truncation in runner (#12730)
Currently, checking the length of prompts for embeddings to ensure
they fit in the context window (and possible truncation) occurs in
two places - the Ollama server and runner. This can lead to
inconsistencies in both the checks and reported number of tokens
processed. Since we have to do this processing in the runner, this
consolidates all of the logic there.
2025-10-27 11:59:12 -07:00
Jesse Gross a8d9c2648e llamarunner: Record the time for all batches during prompt processing
Currently, we only record the time for the last batch when processing
the prompt. This results in unrealistically high numbers for the
old llama runner.

Before:
total duration:       31.273112939s
load duration:        4.97054657s
prompt eval count:    32768 token(s)
prompt eval duration: 235.137439ms
prompt eval rate:     139356.80 tokens/s
eval count:           1873 token(s)
eval duration:        18.173182374s
eval rate:            103.06 tokens/s

After:
total duration:       30.024798033s
load duration:        4.758588663s
prompt eval count:    32768 token(s)
prompt eval duration: 7.779621548s
prompt eval rate:     4212.03 tokens/s
eval count:           1769 token(s)
eval duration:        17.148014223s
eval rate:            103.16 tokens/s
2025-10-22 13:52:58 -07:00
Jeffrey Morgan 5fe7ba1b9b
runner: always truncate embeddings requests (#12714) 2025-10-20 16:47:05 -07:00
Gabe Goodhart 4987f13d34
Llama cpp bump (df1b612): granite docling / mamba2 optimizations / multimodal encoding fixes (#12552)
* feat: Bump llama.cpp to df1b612

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(mtmd): Correctly encode text chunks during mtmd tokenization

There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Use MtmdChunk in image_test

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix unnecessary conversion linting

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(ggml): Revert changes to ggml_hip.cpp

These changes were done largely by our code assistant and are likely wrong

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Revert changes in mem_nvml.cpp

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update sync point to 1deee0

This brings in several more optimization commits and model support for
EmbeddingGemma

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches for 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: sync for bump to 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Bad patch updates with errant `+`

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp/ggml to 7049736

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: format-patches after latest bump

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-13 15:26:18 -07:00
Jeffrey Morgan e638f2acb6
runner: fix shifting on llama runner (#12604) 2025-10-13 13:46:33 -07:00
Jeffrey Morgan 6544e14735
Reapply "add truncate and shift parameters" (#12582) 2025-10-11 16:06:14 -07:00
Michael Yang bbbc73d637 llamarunner: update metrics
this change updates how metrics are collected. until now, performance
metrics, specifically initial input processing and subsequent generation
durations, were collected by taking the timestamp when creating a new
sequence, the first token generation, and completing generation. the
processing duration is taken as first token generation sub sequence
creation while generation is taken as completing generation sub first
token generation.

while this approach is an accurate end-to-end metric of processing and
generation, it's not comparable to other tools which only measure the
active, i.e. decode, duration.

this change updates the metrics to only capture decode duration so it
can be more directly compared to other tools
2025-10-09 15:44:04 -07:00
Jeffrey Morgan 7d965258ce
Revert "add truncate and shift parameters (#12519)" (#12545)
This reverts commit 6a62b894c7.
2025-10-08 17:57:57 -07:00
Jeffrey Morgan 6a62b894c7
add truncate and shift parameters (#12519) 2025-10-08 17:05:05 -07:00
Daniel Hiltgen bc8909fb38
Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00
Jesse Gross d5a0d8d904 llm: New memory management
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).

It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
2025-08-14 15:24:01 -07:00
Michael Yang 23125648b8
chore: update mllama to use ollama engine (#10637) 2025-05-13 17:36:02 -07:00
Michael Yang f95a1f2bef
feat: add trace log level (#10650)
reduce prompt log to trace level
2025-05-12 11:43:00 -07:00
Jeffrey Morgan fa9973cd7f
api: remove unused sampling parameters (#10581) 2025-05-08 08:31:08 -07:00
Jeffrey Morgan 3b2d2c8326
api: remove unused or unsupported api options (#10574)
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
2025-05-05 14:54:40 -07:00
Bruce MacDonald e53b3cbd0c
llm: set done reason at server level (#9830)
No functional change. Many different done reasons can be set at the runner
level, so rather than obsuring them we should return them to the server
process and let it choose what to do with the done reason. This separates
the API concerns from the runner.
2025-04-03 10:19:24 -07:00
Bruce MacDonald 66b2539238
runner: clear cache when shift is not possible (#9433)
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
2025-03-31 12:54:45 -07:00
Jesse Gross b2a465296d runner: Release semaphore and improve error messages on failures
If we have an error after creating a new sequence but before
finding a slot for it, we return without releasing the semaphore.
This reduces our parallel sequences and eventually leads to deadlock.

In practice this should never happen because once we have acquired
the semaphore, we should always be able to find a slot. However, the
code is clearly not correct.
2025-03-30 19:21:54 -07:00
Bruce MacDonald 3892c3a703
llm: remove internal subprocess req and resp types (#9324)
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
2025-03-14 15:21:53 -07:00
Michael Yang 05a01fdecb ml/backend/ggml: consolidate system info logging
- output backend system info when initializing the backend. this ensures
  this information is always present without needing to be called
  explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
2025-03-04 15:14:31 -08:00
Michael Yang 31e472baa4 runner: defer context cancel
defer the cancel to guarantee it runs
2025-02-28 22:27:28 +00:00
Michael Yang d6af13efed runner: simplify tensor split parsing 2025-02-27 18:36:46 +00:00
Michael Yang a59f665235 ml/backend/ggml: fix debug logging 2025-02-27 18:30:57 +00:00
Jesse Gross 010313bb63 llamarunner: Init GGML before printing system info
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.

Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24

After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
2025-02-14 11:41:53 -08:00
Jesse Gross ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00