mirror of https://github.com/ollama/ollama
182 lines
5.5 KiB
Go
182 lines
5.5 KiB
Go
package convert
|
|
|
|
import (
|
|
"cmp"
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/pdevine/tensor"
|
|
"github.com/pdevine/tensor/native"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
)
|
|
|
|
type mistral3CausalModel struct {
|
|
ModelParameters
|
|
|
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
RopeTheta float32 `json:"rope_theta"`
|
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
|
HeadDim uint32 `json:"head_dim"`
|
|
SlidingWindow *uint32 `json:"sliding_window"`
|
|
HiddenAct string `json:"hidden_act"`
|
|
VocabSize uint32 `json:"vocab_size"`
|
|
RopeParameters struct {
|
|
BetaFast float32 `json:"beta_fast"`
|
|
BetaSlow float32 `json:"beta_slow"`
|
|
Factor float32 `json:"factor"`
|
|
Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"`
|
|
OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
|
RopeType string `json:"rope_type"`
|
|
RopeTheta float32 `json:"rope_theta"`
|
|
Mscale *float32 `json:"mscale"`
|
|
MscaleAllDim *float32 `json:"mscale_all_dim"`
|
|
} `json:"rope_parameters"`
|
|
}
|
|
|
|
func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV {
|
|
kv := p.ModelParameters.KV(t)
|
|
kv["general.architecture"] = "mistral3"
|
|
kv["mistral3.vocab_size"] = p.VocabSize
|
|
|
|
// Text configuration
|
|
kv["mistral3.block_count"] = p.NumHiddenLayers
|
|
kv["mistral3.context_length"] = p.MaxPositionEmbeddings
|
|
kv["mistral3.embedding_length"] = p.HiddenSize
|
|
kv["mistral3.feed_forward_length"] = p.IntermediateSize
|
|
kv["mistral3.attention.head_count"] = p.NumAttentionHeads
|
|
kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
|
kv["mistral3.attention.key_length"] = p.HeadDim
|
|
kv["mistral3.attention.value_length"] = p.HeadDim
|
|
kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads)
|
|
kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta)
|
|
kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor
|
|
kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType
|
|
kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast
|
|
kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow
|
|
|
|
if p.RopeParameters.Mscale != nil {
|
|
kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale
|
|
}
|
|
|
|
if p.RopeParameters.MscaleAllDim != nil {
|
|
kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim
|
|
}
|
|
|
|
if p.RopeParameters.OrigMaxPositionEmbeddings > 0 {
|
|
kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings
|
|
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
|
|
}
|
|
|
|
if p.RopeParameters.Llama4ScalingBeta != nil {
|
|
kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta
|
|
}
|
|
|
|
return kv
|
|
}
|
|
|
|
func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
var out []*ggml.Tensor
|
|
|
|
for _, t := range ts {
|
|
if !strings.HasPrefix(t.Name(), "v.") {
|
|
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
|
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
|
t.SetRepacker(p.repack)
|
|
}
|
|
}
|
|
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (p *mistral3CausalModel) Replacements() []string {
|
|
return []string{
|
|
"model.norm", "output_norm",
|
|
"model.", "",
|
|
"layers", "blk",
|
|
"transformer.layers", "blk",
|
|
"vision_tower", "v",
|
|
"ln_pre", "encoder_norm",
|
|
"input_layernorm", "attn_norm",
|
|
"post_attention_layernorm", "ffn_norm",
|
|
"embed_tokens", "token_embd",
|
|
"self_attn.q_proj", "attn_q",
|
|
"self_attn.k_proj", "attn_k",
|
|
"self_attn.v_proj", "attn_v",
|
|
"self_attn.o_proj", "attn_output",
|
|
"mlp.down_proj", "ffn_down",
|
|
"mlp.gate_proj", "ffn_gate",
|
|
"mlp.up_proj", "ffn_up",
|
|
"attention.q_proj", "attn_q",
|
|
"attention.k_proj", "attn_k",
|
|
"attention.v_proj", "attn_v",
|
|
"attention.o_proj", "attn_output",
|
|
"attention_norm", "attn_norm",
|
|
"feed_forward.gate_proj", "ffn_gate",
|
|
"feed_forward.down_proj", "ffn_down",
|
|
"feed_forward.up_proj", "ffn_up",
|
|
"multi_modal_projector", "mm",
|
|
"ffn_norm", "ffn_norm",
|
|
"lm_head", "output",
|
|
}
|
|
}
|
|
|
|
func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
var dims []int
|
|
for _, dim := range shape {
|
|
dims = append(dims, int(dim))
|
|
}
|
|
|
|
var heads uint32
|
|
if strings.HasSuffix(name, ".attn_q.weight") {
|
|
heads = p.NumAttentionHeads
|
|
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
|
} else {
|
|
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
|
}
|
|
|
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.T(0, 2, 1, 3); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Reshape(dims...); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := n.Transpose(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ts, err := native.SelectF32(n, 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var f32s []float32
|
|
for _, t := range ts {
|
|
f32s = append(f32s, t...)
|
|
}
|
|
|
|
return f32s, nil
|
|
}
|