mirror of https://github.com/ollama/ollama
214 lines
5.0 KiB
Go
214 lines
5.0 KiB
Go
package convert
|
|
|
|
import (
|
|
"cmp"
|
|
"encoding/json"
|
|
"io/fs"
|
|
"path/filepath"
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs/ggml"
|
|
)
|
|
|
|
type nomicbertModel struct {
|
|
ModelParameters
|
|
NLayers uint32 `json:"n_layers"`
|
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
HiddenSize uint32 `json:"hidden_size"`
|
|
IntermediateSize uint32 `json:"intermediate_size"`
|
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
|
RopeFreqBase float32 `json:"rope_theta"`
|
|
normalizeEmbeddings bool
|
|
PoolingType uint32
|
|
|
|
// MoE parameters (only present in v2 models)
|
|
NumExperts uint32 `json:"num_local_experts"`
|
|
NumExpertsUsed uint32 `json:"num_experts_per_tok"`
|
|
MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
|
|
}
|
|
|
|
var (
|
|
_ ModelConverter = (*nomicbertModel)(nil)
|
|
_ moreParser = (*nomicbertModel)(nil)
|
|
)
|
|
|
|
func (p *nomicbertModel) parseMore(fsys fs.FS) error {
|
|
bts, err := fs.ReadFile(fsys, "modules.json")
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var modules []struct {
|
|
Type string `json:"type"`
|
|
Path string `json:"path"`
|
|
}
|
|
|
|
if err := json.Unmarshal(bts, &modules); err != nil {
|
|
return err
|
|
}
|
|
|
|
var pooling string
|
|
for _, m := range modules {
|
|
switch m.Type {
|
|
case "sentence_transformers.models.Pooling":
|
|
pooling = m.Path
|
|
case "sentence_transformers.models.Normalize":
|
|
p.normalizeEmbeddings = true
|
|
}
|
|
}
|
|
|
|
if pooling != "" {
|
|
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var pc struct {
|
|
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
|
|
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
|
|
}
|
|
|
|
if err := json.Unmarshal(bts, &pc); err != nil {
|
|
return err
|
|
}
|
|
|
|
if pc.PoolingModeMeanTokens {
|
|
p.PoolingType = 1
|
|
} else if pc.PoolingModeCLSToken {
|
|
p.PoolingType = 2
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
|
|
kv := p.ModelParameters.KV(t)
|
|
|
|
// Determine architecture based on MoE parameters (following qwen3 pattern)
|
|
arch := "nomic-bert"
|
|
if p.MoEEveryNLayers > 0 {
|
|
arch += "-moe"
|
|
}
|
|
|
|
kv["general.architecture"] = arch
|
|
kv["attention.causal"] = false
|
|
kv["pooling_type"] = p.PoolingType
|
|
kv["normalize_embeddings"] = p.normalizeEmbeddings
|
|
|
|
kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)
|
|
|
|
if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
|
|
kv["context_length"] = contextLength
|
|
}
|
|
|
|
if embeddingLength := p.HiddenSize; embeddingLength > 0 {
|
|
kv["embedding_length"] = p.HiddenSize
|
|
}
|
|
|
|
if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
|
|
kv["feed_forward_length"] = p.IntermediateSize
|
|
}
|
|
|
|
if headCount := p.NumAttentionHeads; headCount > 0 {
|
|
kv["attention.head_count"] = p.NumAttentionHeads
|
|
}
|
|
|
|
if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
|
|
kv["attention.head_count_kv"] = p.NumKeyValueHeads
|
|
}
|
|
|
|
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
|
|
kv["attention.layer_norm_epsilon"] = layerNormEpsilon
|
|
}
|
|
|
|
if p.RopeFreqBase > 0 {
|
|
kv["rope.freq_base"] = p.RopeFreqBase
|
|
}
|
|
|
|
// MoE specific parameters (only if MoE is enabled)
|
|
if p.NumExperts > 0 {
|
|
kv["expert_count"] = p.NumExperts
|
|
}
|
|
|
|
if p.NumExpertsUsed > 0 {
|
|
kv["expert_used_count"] = p.NumExpertsUsed
|
|
}
|
|
|
|
if p.MoEEveryNLayers > 0 {
|
|
kv["moe_every_n_layers"] = p.MoEEveryNLayers
|
|
}
|
|
|
|
kv["tokenizer.ggml.model"] = "bert"
|
|
kv["tokenizer.ggml.token_type_count"] = uint32(2)
|
|
|
|
// convert to phantom space tokens
|
|
for i, e := range t.Tokens {
|
|
switch {
|
|
case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
|
|
// noop - keep special tokens as-is
|
|
case strings.HasPrefix(e, "##"):
|
|
t.Tokens[i] = e[2:]
|
|
default:
|
|
t.Tokens[i] = "\u2581" + e
|
|
}
|
|
}
|
|
|
|
kv["tokenizer.ggml.tokens"] = t.Tokens
|
|
|
|
return kv
|
|
}
|
|
|
|
func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
|
out := make([]*ggml.Tensor, 0, len(ts))
|
|
for _, t := range ts {
|
|
if slices.Contains([]string{
|
|
"embeddings.position_ids",
|
|
"pooler.dense.weight",
|
|
"pooler.dense.bias",
|
|
}, t.Name()) {
|
|
continue
|
|
}
|
|
|
|
out = append(out, &ggml.Tensor{
|
|
Name: t.Name(),
|
|
Kind: t.Kind(),
|
|
Shape: t.Shape(),
|
|
WriterTo: t,
|
|
})
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (nomicbertModel) Replacements() []string {
|
|
return []string{
|
|
"encoder.layer", "blk",
|
|
"encoder.layers", "blk",
|
|
"embeddings.word_embeddings", "token_embd",
|
|
"embeddings.token_type_embeddings", "token_types",
|
|
"embeddings.LayerNorm", "token_embd_norm",
|
|
|
|
"attention.self.qkv", "attn_qkv",
|
|
|
|
"attention.output.dense", "attn_output",
|
|
"attention.output.LayerNorm", "attn_output_norm",
|
|
|
|
"mlp.up", "ffn_up",
|
|
"mlp.down", "ffn_down",
|
|
|
|
"mlp.router", "ffn_gate_inp",
|
|
"mlp.experts.up", "ffn_up_exps",
|
|
"mlp.experts.down", "ffn_down_exps",
|
|
|
|
"intermediate.dense", "ffn_up",
|
|
"output.dense", "ffn_down",
|
|
"output.LayerNorm", "layer_output_norm",
|
|
}
|
|
}
|