mirror of https://github.com/ollama/ollama
354 lines
12 KiB
Go
354 lines
12 KiB
Go
package deepseek2
|
||
|
||
// uses deepseek 2 architecture but written based on deepseek 3 model
|
||
|
||
import (
|
||
"cmp"
|
||
"math"
|
||
|
||
"github.com/ollama/ollama/fs"
|
||
"github.com/ollama/ollama/kvcache"
|
||
"github.com/ollama/ollama/ml"
|
||
"github.com/ollama/ollama/ml/nn"
|
||
"github.com/ollama/ollama/ml/nn/rope"
|
||
"github.com/ollama/ollama/model"
|
||
"github.com/ollama/ollama/model/input"
|
||
)
|
||
|
||
type Options struct {
|
||
isMLA bool
|
||
numExpertsUsed int
|
||
numExperts int
|
||
normTopKProb bool
|
||
routedScalingFactor float32
|
||
|
||
kvLoraRank,
|
||
qkNopeHeadDim,
|
||
qkRopeHeadDim,
|
||
kqNopeHeadDim,
|
||
qkHeadDim int
|
||
qLoraRank int
|
||
vHeadDim int
|
||
|
||
hiddenSize,
|
||
numHeads,
|
||
numKVHeads,
|
||
originalContextLength int
|
||
|
||
eps,
|
||
ropeBase,
|
||
ropeScale float32
|
||
kqScale float64
|
||
}
|
||
|
||
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
|
||
return nn.RoPE(ctx, t, p, o.qkRopeHeadDim, o.ropeBase, 1./o.ropeScale,
|
||
rope.WithOriginalContextLength(o.originalContextLength),
|
||
rope.WithExtrapolationFactor(1.),
|
||
rope.WithAttentionFactor(float32(1.0/(1.0+0.1*math.Log(float64(o.ropeScale))))),
|
||
)
|
||
}
|
||
|
||
type Attention struct {
|
||
Q *nn.Linear `gguf:"attn_q"`
|
||
|
||
QA *nn.Linear `gguf:"attn_q_a"`
|
||
QANorm *nn.RMSNorm `gguf:"attn_q_a_norm"`
|
||
QB *nn.Linear `gguf:"attn_q_b"`
|
||
|
||
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
|
||
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
|
||
KVB *nn.Linear `gguf:"attn_kv_b"`
|
||
|
||
KB *nn.Linear `gguf:"attn_k_b"`
|
||
VB *nn.Linear `gguf:"attn_v_b"`
|
||
|
||
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
|
||
}
|
||
|
||
func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||
seqLength := hiddenStates.Dim(1)
|
||
|
||
var query ml.Tensor
|
||
if opts.qLoraRank == 0 {
|
||
query = attn.Q.Forward(ctx, hiddenStates)
|
||
} else {
|
||
query = attn.QA.Forward(ctx, hiddenStates)
|
||
query = attn.QANorm.Forward(ctx, query, opts.eps)
|
||
query = attn.QB.Forward(ctx, query)
|
||
}
|
||
|
||
query = query.Reshape(ctx, query.Dim(0)/opts.numHeads, opts.numHeads, seqLength)
|
||
queryChunks := query.ChunkSections(ctx, 0, opts.qkNopeHeadDim, opts.qkRopeHeadDim)
|
||
|
||
compressedKV := attn.KVA.Forward(ctx, hiddenStates)
|
||
kPass := compressedKV.Slice(ctx, 0, 0, opts.kvLoraRank, 1)
|
||
kRot := compressedKV.View(ctx,
|
||
opts.kvLoraRank*compressedKV.Stride(0), opts.qkRopeHeadDim,
|
||
compressedKV.Stride(1), 1,
|
||
compressedKV.Stride(1), compressedKV.Dim(1),
|
||
)
|
||
|
||
qRot := opts.applyRotaryPositionEmbeddings(ctx, queryChunks[1], positions)
|
||
kRot = opts.applyRotaryPositionEmbeddings(ctx, kRot, positions)
|
||
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
|
||
|
||
var attention ml.Tensor
|
||
|
||
if !opts.isMLA { // v3
|
||
kPass = attn.KVB.Forward(ctx, kPass)
|
||
|
||
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
|
||
kvChunks := kv.ChunkSections(ctx, 0, opts.kqNopeHeadDim, opts.vHeadDim)
|
||
|
||
kRot = kRot.Repeat(ctx, 1, queryChunks[0].Dim(1))
|
||
query = qRot.Concat(ctx, queryChunks[0], 0)
|
||
key := kRot.Concat(ctx, kvChunks[0], 0)
|
||
attention = nn.Attention(ctx, query, key, kvChunks[1], opts.kqScale, cache)
|
||
} else { // v3.1
|
||
qPass := queryChunks[0].Permute(ctx, 0, 2, 1, 3)
|
||
qPassAbsorb := attn.KB.Forward(ctx, qPass)
|
||
qPassAbsorb = qPassAbsorb.Permute(ctx, 0, 2, 1, 3)
|
||
|
||
query = qRot.Concat(ctx, qPassAbsorb, 0)
|
||
kPass = kPass.Reshape(ctx, opts.kvLoraRank, 1, seqLength)
|
||
key := kRot.Concat(ctx, kPass, 0)
|
||
value := kPass
|
||
|
||
attention = nn.AttentionWithVMLA(ctx, query, key, value, nil, attn.VB.Weight, opts.kqScale, cache)
|
||
}
|
||
|
||
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
|
||
return attn.Output.Forward(ctx, attention)
|
||
}
|
||
|
||
type MLP interface {
|
||
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
|
||
}
|
||
|
||
type sparse struct {
|
||
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
||
Gate *nn.Linear `gguf:"ffn_gate_exps"`
|
||
Up *nn.Linear `gguf:"ffn_up_exps"`
|
||
Down *nn.Linear `gguf:"ffn_down_exps"`
|
||
SharedExpert *dense `gguf:",suf:_shexp"`
|
||
ExpProbsBias ml.Tensor `gguf:"exp_probs_b.bias,alt:exp_probs_b"`
|
||
}
|
||
|
||
func (moe *sparse) Moe(ctx ml.Context, hiddenStates, topKIndices, topKWeights ml.Tensor, opts *Options) ml.Tensor {
|
||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
||
|
||
upStates := moe.Up.Weight.MulmatID(ctx, hiddenStates, topKIndices)
|
||
hiddenStates = moe.Gate.Weight.MulmatID(ctx, hiddenStates, topKIndices)
|
||
hiddenStates = hiddenStates.SILU(ctx, upStates)
|
||
|
||
experts := moe.Down.Weight.MulmatID(ctx, hiddenStates, topKIndices)
|
||
experts = experts.Mul(ctx, topKWeights)
|
||
|
||
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
||
for i := 1; i < opts.numExpertsUsed; i++ {
|
||
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
||
}
|
||
return nextStates
|
||
}
|
||
|
||
func (moe *sparse) topKIndices(ctx ml.Context, scores ml.Tensor, opts *Options) ml.Tensor {
|
||
if moe.ExpProbsBias != nil {
|
||
scores = scores.Add(ctx, moe.ExpProbsBias)
|
||
}
|
||
topKIndices := scores.TopK(ctx, opts.numExpertsUsed)
|
||
return topKIndices
|
||
}
|
||
|
||
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
||
residuals := hiddenStates
|
||
|
||
routerLogits := moe.Router.Forward(ctx, hiddenStates)
|
||
scores := routerLogits.Sigmoid(ctx)
|
||
topKIndices := moe.topKIndices(ctx, scores, opts)
|
||
topKWeights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, topKIndices)
|
||
|
||
if opts.normTopKProb {
|
||
topKWeights = topKWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
|
||
topKWeights = topKWeights.Div(ctx, topKWeights.SumRows(ctx))
|
||
topKWeights = topKWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
|
||
}
|
||
|
||
topKWeights = topKWeights.Scale(ctx, float64(opts.routedScalingFactor))
|
||
hiddenStates = moe.Moe(ctx, hiddenStates, topKIndices, topKWeights, opts)
|
||
sharedExpertResult := moe.SharedExpert.Forward(ctx, residuals, opts)
|
||
|
||
hiddenStates = hiddenStates.Add(ctx, sharedExpertResult)
|
||
return hiddenStates
|
||
}
|
||
|
||
type dense struct {
|
||
Gate *nn.Linear `gguf:"ffn_gate"`
|
||
Up *nn.Linear `gguf:"ffn_up"`
|
||
Down *nn.Linear `gguf:"ffn_down"`
|
||
}
|
||
|
||
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
||
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
|
||
return mlp.Down.Forward(ctx, hiddenStates)
|
||
}
|
||
|
||
type Layer struct {
|
||
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
||
Attention *Attention
|
||
|
||
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
||
MLP MLP
|
||
}
|
||
|
||
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||
residual := hiddenStates
|
||
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
|
||
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
||
|
||
if outputs != nil {
|
||
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
||
residual = residual.Rows(ctx, outputs)
|
||
}
|
||
|
||
hiddenStates = hiddenStates.Add(ctx, residual)
|
||
residual = hiddenStates
|
||
|
||
hiddenStates = t.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
|
||
hiddenStates = t.MLP.Forward(ctx, hiddenStates, opts)
|
||
hiddenStates = hiddenStates.Add(ctx, residual)
|
||
return hiddenStates
|
||
}
|
||
|
||
type Model struct {
|
||
model.Base
|
||
model.BytePairEncoding
|
||
|
||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||
Layers []Layer `gguf:"blk"`
|
||
|
||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||
|
||
*Options
|
||
}
|
||
|
||
func New(c fs.Config) (model.Model, error) {
|
||
layers := make([]Layer, c.Uint("block_count"))
|
||
|
||
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
|
||
for i := range layers {
|
||
if i < firstDenseLayerIndex {
|
||
layers[i].MLP = &dense{}
|
||
} else {
|
||
layers[i].MLP = &sparse{}
|
||
}
|
||
}
|
||
|
||
mScale := float32(1.0 + float64(c.Float("rope.scaling.yarn_log_multiplier"))*math.Log(float64(c.Float("rope.scaling.factor"))))
|
||
kqScale := float64(mScale) * float64(mScale) / math.Sqrt(float64(c.Uint("attention.key_length")))
|
||
|
||
isMLA := c.Uint("attention.key_length_mla") != 0 && c.Uint("attention.value_length_mla") != 0
|
||
keyLength := int(cmp.Or(c.Uint("attention.key_length_mla"), c.Uint("attention.key_length")))
|
||
valueLength := int(cmp.Or(c.Uint("attention.value_length_mla"), c.Uint("attention.value_length")))
|
||
|
||
var pre []string
|
||
switch c.String("tokenizer.ggml.pre") {
|
||
case "deepseek-v3":
|
||
pre = []string{
|
||
// Split regex into multiple parts (according to DeepSeek3's regex)
|
||
"\\p{N}{1,3}",
|
||
`[一-龥-ゟ゠-ヿ]+`,
|
||
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
|
||
}
|
||
case "deepseek-llm":
|
||
// TODO: these models haven't been vetted so skip for now
|
||
// pre = []string{
|
||
// "[\r\n]",
|
||
// "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
|
||
// "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
|
||
// "\\s+$",
|
||
// "[一-龥ࠀ-一가-]+",
|
||
// "[0-9]",
|
||
// }
|
||
fallthrough
|
||
default:
|
||
return nil, model.ErrUnsupportedTokenizer
|
||
}
|
||
|
||
m := Model{
|
||
BytePairEncoding: model.NewBytePairEncoding(
|
||
&model.Vocabulary{
|
||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||
EOS: append(
|
||
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||
),
|
||
},
|
||
pre...,
|
||
),
|
||
Layers: layers,
|
||
Options: &Options{
|
||
isMLA: isMLA,
|
||
hiddenSize: int(c.Uint("embedding_length")),
|
||
numHeads: int(c.Uint("attention.head_count")),
|
||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||
ropeBase: c.Float("rope.freq_base"),
|
||
ropeScale: c.Float("rope.scaling.factor", 1),
|
||
numExperts: int(c.Uint("expert_count")),
|
||
numExpertsUsed: int(c.Uint("expert_used_count")),
|
||
normTopKProb: c.Bool("expert_weights_norm", true),
|
||
|
||
qLoraRank: int(c.Uint("attention.q_lora_rank")),
|
||
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
|
||
qkHeadDim: keyLength,
|
||
vHeadDim: valueLength,
|
||
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
|
||
qkNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
|
||
kqNopeHeadDim: keyLength - int(c.Uint("rope.dimension_count")),
|
||
|
||
routedScalingFactor: c.Float("expert_weights_scale"),
|
||
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
||
|
||
kqScale: kqScale,
|
||
},
|
||
}
|
||
|
||
m.Cache = kvcache.NewCausalCache(m.Shift)
|
||
return &m, nil
|
||
}
|
||
|
||
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||
return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
|
||
}
|
||
|
||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||
|
||
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||
|
||
for i, layer := range m.Layers {
|
||
m.Cache.SetLayer(i)
|
||
|
||
var outputs ml.Tensor
|
||
if i == len(m.Layers)-1 {
|
||
outputs = batch.Outputs
|
||
}
|
||
|
||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
|
||
}
|
||
|
||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||
return m.Output.Forward(ctx, hiddenStates), nil
|
||
}
|
||
|
||
func init() {
|
||
model.Register("deepseek2", New)
|
||
}
|