ollama/model/models/qwen25vl/model_vision.go

326 lines
11 KiB
Go

package qwen25vl
import (
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/rope"
)
func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int) ml.Tensor {
// Initialize a 2D mask with -Inf
s := make([][]float32, seqLength)
for i := range s {
s[i] = slices.Repeat([]float32{float32(math.Inf(-1))}, seqLength)
}
// Fill in the mask with zeros for tokens that CAN attend to each other
for i := 1; i < len(bounds); i++ {
start, end := bounds[i-1], bounds[i]
// Enable attention within this sequence block
for row := start; row < end; row++ {
for col := start; col < end; col++ {
s[row][col] = 0.0
}
}
}
return ctx.Input().FromFloats(slices.Concat(s...), seqLength, seqLength)
}
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1))
key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1))
value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1))
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
// Scale factor for scaled dot-product attention
scale := 1.0 / math.Sqrt(float64(opts.headDim))
// Scaled dot-product attention
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := key.MulmatFullPrec(ctx, query)
kq = kq.Scale(ctx, scale)
if mask != nil {
kq = kq.Add(ctx, mask)
}
kq = kq.Softmax(ctx)
kqv := value.Mulmat(ctx, kq)
attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2))
return sa.Output.Forward(ctx, attention)
}
// VisionMLP implements the multi-layer perceptron
type VisionMLP struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type VisionEncoderLayer struct {
Norm1 *nn.RMSNorm `gguf:"ln1"`
SelfAttention *VisionSelfAttention
Norm2 *nn.RMSNorm `gguf:"ln2"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, positions, mask, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
// VisionModelOptions contains configuration options
type VisionModelOptions struct {
hiddenSize int
numHeads int
headDim int
patchSize int
numChannels int
eps float32
ropeTheta float32
spatialMergeSize int
windowSize int
fullAttnBlocks []int32
temporalPatchSize int
}
func (o VisionModelOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
return nn.RoPE(ctx, states, positions, o.headDim/2, o.ropeTheta, 1,
rope.WithVision([]int{
o.headDim / 4,
o.headDim / 4,
o.headDim / 4,
o.headDim / 4,
}),
)
}
type PatchEmbedding struct {
PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"`
PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"`
}
func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor {
numPatches := pixelValues.Shape()[1]
// Reshape the input tensor to match the expected dimensions
pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches)
// Permute the tensor to bring the temporal dimension to the front
pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
// Split the tensor into parts for the temporal convolutions
in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx)
in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches)
s0, s1 := opts.patchSize, opts.patchSize // Use full stride
p0, p1 := 0, 0 // padding
d0, d1 := 1, 1 // dilation
out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1)
out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1)
// Add the outputs from the two temporal convolutions
out := out0.Add(ctx, out1)
// Reshape the output tensor to match the expected dimensions
return out.Reshape(ctx, opts.hiddenSize, numPatches)
}
// VisionPatchMerger implements patch merging for the Qwen vision model
type VisionPatchMerger struct {
LNQ *nn.RMSNorm `gguf:"ln_q"`
MLP0 *nn.Linear `gguf:"mlp.0"`
MLP2 *nn.Linear `gguf:"mlp.2"`
}
// Forward computes patch merging for the vision model
func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps)
hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize)
// Reshape the normalized output to view the hidden size dimension
reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize))
hidden := pm.MLP0.Forward(ctx, reshaped)
activated := hidden.GELU(ctx)
output := pm.MLP2.Forward(ctx, activated)
return output
}
// VisionModel implements the Qwen vision model
type VisionModel struct {
PatchEmbedding *PatchEmbedding
Layers []VisionEncoderLayer `gguf:"blk"`
PatchMerger *VisionPatchMerger `gguf:"merger"`
*VisionModelOptions
}
// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor {
// Extract patch embeddings
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions)
index, bounds := m.windowIndex(grid)
spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize
windowIndex := ctx.Input().FromInts(index, len(index))
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit)
hiddenStates = hiddenStates.Rows(ctx, windowIndex.Argsort(ctx))
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit)
positions := ctx.Input().FromInts(func() []int32 {
s := [][]int32{
make([]int32, grid.Height*grid.Width),
make([]int32, grid.Height*grid.Width),
make([]int32, grid.Height*grid.Width),
make([]int32, grid.Height*grid.Width),
}
var cur int
for y := 0; y < grid.Height; y += m.spatialMergeSize {
for x := 0; x < grid.Width; x += m.spatialMergeSize {
for dy := range 2 {
for dx := range 2 {
i := int(index[cur/spatialMergeUnit]) * spatialMergeUnit
i += cur % spatialMergeUnit
s[0][i] = int32(y + dy)
s[1][i] = int32(x + dx)
s[2][i] = int32(y + dy)
s[3][i] = int32(x + dx)
cur++
}
}
}
}
return slices.Concat(s...)
}(), grid.Height*grid.Width*4)
mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds)
// Apply encoder layers
for i, layer := range m.Layers {
if slices.Contains(m.fullAttnBlocks, int32(i)) {
hiddenStates = layer.Forward(ctx, hiddenStates, positions, nil, m.VisionModelOptions)
} else {
hiddenStates = layer.Forward(
ctx,
hiddenStates,
positions,
mask,
m.VisionModelOptions,
)
}
}
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions)
return hiddenStates.Rows(ctx, windowIndex)
}
// windowIndex divides the grid into windows and returns:
// 1. A slice of grid point indices organized by windows
// 2. A slice of boundaries that mark where each window's data begins and ends
// in the flattened representation, scaled by spatialMergeSize squared
//
// The boundaries slice always starts with 0 and contains cumulative ending
// positions for each window, allowing downstream processing to identify
// window boundaries in the tensor data.
func (m *VisionModel) windowIndex(grid *Grid) (index []int32, bounds []int) {
height := grid.Height / m.spatialMergeSize
width := grid.Width / m.spatialMergeSize
window := m.windowSize / m.patchSize / m.spatialMergeSize
index = make([]int32, height*width)
bounds = make([]int, 0, ((height+window-1)/window)*((width+window-1)/window)+1)
bounds = append(bounds, 0)
var cur int32
for y := 0; y < height; y += window {
for x := 0; x < width; x += window {
h1 := min(window, height-y)
w1 := min(window, width-x)
for dy := range h1 {
for dx := range w1 {
win := (y+dy)*width + (x + dx)
index[win] = cur
cur++
}
}
bounds = append(bounds, int(cur)*window)
}
}
return index, bounds
}
// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
patchSize := int(c.Uint("vision.patch_size", 14))
hiddenSize := int(c.Uint("vision.embedding_length", 1280))
numHeads := int(c.Uint("vision.attention.head_count", 16))
numChannels := int(c.Uint("vision.num_channels", 3))
eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6)
ropeTheta := c.Float("vision.rope.freq_base", 10000.0)
spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2))
windowSize := int(c.Uint("vision.window_size", 112))
fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31})
temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2))
model := &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
VisionModelOptions: &VisionModelOptions{
hiddenSize: hiddenSize,
numHeads: numHeads,
headDim: hiddenSize / numHeads,
patchSize: patchSize,
numChannels: numChannels,
eps: eps,
ropeTheta: ropeTheta,
spatialMergeSize: spatialMergeSize,
windowSize: windowSize,
temporalPatchSize: temporalPatchSize,
fullAttnBlocks: fullAttnBlocks,
},
}
return model
}