sync : llama.cpp

This commit is contained in:
Georgi Gerganov 2025-11-09 22:01:21 +02:00
parent e67dfbc51b
commit a1867e0dad
122 changed files with 14142 additions and 13202 deletions

View File

@ -2,6 +2,8 @@ if (WHISPER_SDL2)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
file(GLOB SRC_MODELS models/*.cpp)
set(TARGET whisper-talk-llama)
add_executable(${TARGET} talk-llama.cpp
llama.cpp
@ -29,7 +31,8 @@ if (WHISPER_SDL2)
llama-sampling.cpp
llama-vocab.cpp
unicode.cpp
unicode-data.cpp)
unicode-data.cpp
${SRC_MODELS})
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
target_link_libraries(${TARGET} PRIVATE common common-sdl whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})

View File

@ -32,6 +32,8 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_QWEN2VL, "qwen2vl" },
{ LLM_ARCH_QWEN3, "qwen3" },
{ LLM_ARCH_QWEN3MOE, "qwen3moe" },
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
{ LLM_ARCH_PHI2, "phi2" },
{ LLM_ARCH_PHI3, "phi3" },
{ LLM_ARCH_PHIMOE, "phimoe" },
@ -103,6 +105,9 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_SEED_OSS, "seed_oss" },
{ LLM_ARCH_GROVEMOE, "grovemoe" },
{ LLM_ARCH_APERTUS, "apertus" },
{ LLM_ARCH_MINIMAX_M2, "minimax-m2" },
{ LLM_ARCH_COGVLM, "cogvlm" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -145,6 +150,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERTS_PER_GROUP, "%s.experts_per_group" },
{ LLM_KV_MOE_EVERY_N_LAYERS, "%s.moe_every_n_layers" },
{ LLM_KV_NEXTN_PREDICT_LAYERS, "%s.nextn_predict_layers" },
{ LLM_KV_NUM_DEEPSTACK_LAYERS, "%s.n_deepstack_layers" },
{ LLM_KV_POOLING_TYPE, "%s.pooling_type" },
{ LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
@ -779,6 +785,45 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_QWEN3VL,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_QWEN3VLMOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_PHI2,
{
@ -2312,6 +2357,64 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_CHEXPS, "blk.%d.ffn_up_chexps" },
},
},
{
LLM_ARCH_MINIMAX_M2,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_PANGU_EMBED,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_COGVLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_VISEXP_ATTN_QKV, "blk.%d.vis_attn_qkv" },
{ LLM_TENSOR_VISEXP_ATTN_OUT, "blk.%d.vis_attn_output" },
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@ -2488,6 +2591,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SHORTCONV_CONV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
{LLM_TENSOR_SHORTCONV_INPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SHORTCONV_OUTPROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},

View File

@ -36,6 +36,8 @@ enum llm_arch {
LLM_ARCH_QWEN2VL,
LLM_ARCH_QWEN3,
LLM_ARCH_QWEN3MOE,
LLM_ARCH_QWEN3VL,
LLM_ARCH_QWEN3VLMOE,
LLM_ARCH_PHI2,
LLM_ARCH_PHI3,
LLM_ARCH_PHIMOE,
@ -107,6 +109,9 @@ enum llm_arch {
LLM_ARCH_SEED_OSS,
LLM_ARCH_GROVEMOE,
LLM_ARCH_APERTUS,
LLM_ARCH_MINIMAX_M2,
LLM_ARCH_COGVLM,
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_UNKNOWN,
};
@ -149,6 +154,7 @@ enum llm_kv {
LLM_KV_EXPERTS_PER_GROUP,
LLM_KV_MOE_EVERY_N_LAYERS,
LLM_KV_NEXTN_PREDICT_LAYERS,
LLM_KV_NUM_DEEPSTACK_LAYERS,
LLM_KV_POOLING_TYPE,
LLM_KV_LOGIT_SCALE,
LLM_KV_DECODER_START_TOKEN_ID,
@ -455,6 +461,11 @@ enum llm_tensor {
LLM_TENSOR_SHORTCONV_CONV,
LLM_TENSOR_SHORTCONV_INPROJ,
LLM_TENSOR_SHORTCONV_OUTPROJ,
LLM_TENSOR_VISEXP_ATTN_QKV,
LLM_TENSOR_VISEXP_ATTN_OUT,
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,

View File

@ -215,6 +215,7 @@ bool llama_batch_allocr::init(
/*.n_seq_tokens =*/ (uint32_t) 1,
/*.n_seqs =*/ (uint32_t) batch.n_tokens,
/*.n_seqs_unq =*/ (uint32_t) this->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token,
/*.embd =*/ batch.embd,
/*.pos =*/ batch.pos,
@ -251,46 +252,72 @@ bool llama_batch_allocr::init(
// consistency checks
//
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
if (n_pos_per_embd > 1) {
// M-RoPE case: allow position to "jump" forward only (non-continuous positions are allowed)
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (batch.token) {
if (p0 >= 0 && p0 >= seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X < Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
} else {
// embedding inputs can have overlapping positions
if (p0 >= 0 && p0 > seq_pos_min(s)) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" for M-RoPE, it is required that the position satisfies: X <= Y\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
}
} else {
for (uint32_t s = 0; s < n_seq_max; ++s) {
if (seq_pos[s].empty()) {
continue;
}
const llama_pos p0 = memory ? memory->seq_pos_max(s) : -1;
if (p0 >= 0) {
bool ok = true;
if (seq_pos_min(s) != p0 + 1) {
ok = false;
}
} else {
assert(batch.embd);
// for embeddings (typically used as vision input), we allow them to have repeating positions
// ref: https://github.com/ggml-org/llama.cpp/issues/13694#issuecomment-2983871762
if (seq_pos_min(s) != p0 && seq_pos_min(s) != p0 + 1) {
ok = false;
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
return false;
}
}
if (!ok) {
LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s));
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
return false;
}
}
if (memory) {
@ -389,6 +416,7 @@ llama_ubatch llama_batch_allocr::ubatch_reserve(uint32_t n_seq_tokens, uint32_t
/*.n_seq_tokens =*/ n_seq_tokens,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ n_seqs,
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ udata->token.data(),
/*.embd =*/ nullptr,
@ -655,10 +683,8 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
auto udata = std::make_shared<llama_ubatch::data_t>();
const int32_t n_pos_cur = batch.embd ? n_pos_per_embd : 1;
const int64_t n_embd_all = batch.embd ? (int64_t) n_tokens*n_embd : 0;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_cur;
const int64_t n_pos_all = (int64_t) n_tokens*n_pos_per_embd;
udata->token .resize(n_tokens);
udata->embd .resize(n_embd_all);
@ -680,8 +706,13 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
memcpy(udata->embd.data() + i*n_embd, batch.embd + (int64_t) idxs[i]*n_embd, n_embd*sizeof(float));
}
for (int j = 0; j < n_pos_cur; ++j) {
udata->pos[j*n_tokens + i] = batch.pos[j*batch.n_tokens + idxs[i]];
for (size_t j = 0; j < (size_t)n_pos_per_embd; ++j) {
// if we are using M-RoPE
// if the current batch is text, we need to broadcast the same position across all RoPE sections
// otherwise, the input batch is image embeddings, we copy the positions as-is
// if we are not using M-RoPE, there is only one position per token (this loop runs only once)
size_t src_off = batch.token ? 0 : j*batch.n_tokens;
udata->pos[j*n_tokens + i] = batch.pos[src_off + idxs[i]];
}
udata->n_seq_id[i] = batch.n_seq_id[idxs[i]];
@ -710,6 +741,7 @@ llama_ubatch llama_batch_allocr::ubatch_add(const std::vector<int32_t> & idxs, u
/*.n_seq_tokens =*/ n_tokens/n_seqs,
/*.n_seqs =*/ n_seqs,
/*.n_seqs_unq =*/ (uint32_t) udata->seq_id_unq.size(),
/*.n_pos =*/ n_pos_per_embd,
/*.token =*/ batch.token ? udata->token.data() : nullptr,
/*.embd =*/ batch.embd ? udata->embd.data() : nullptr,

View File

@ -17,6 +17,16 @@ struct llama_ubatch {
return b_equal_seqs != 0;
}
// typical for M-RoPE cases:
// 0 - sequantial position of the tokens/embeddings in the sequence
// 1 - y position in the image
// 2 - x position in the image
// 3 - other
bool is_pos_2d() const {
// TODO @ngxson : we may need to check for model arch when more models use >1 positions
return n_pos >= 3;
}
uint32_t b_equal_seqs; // note: this is a boolean, but we use an int32_t for alignment
// otherwise address sanitizer complains
// TODO: whole_seqs for embeddings?
@ -25,6 +35,7 @@ struct llama_ubatch {
uint32_t n_seq_tokens; // tokens per sequence set
uint32_t n_seqs; // sequence sets in the ubatch
uint32_t n_seqs_unq; // unique sequence ids in the ubatch
uint32_t n_pos; // number of position inputs for each token/embedding
// seq_id_unq: unique sequence ids in the ubatch
// seq_idx: indices of the unique sequence ids in the ubatch in [0, n_seqs_unq)
@ -33,7 +44,7 @@ struct llama_ubatch {
// // size | idx | val
llama_token * token; // [n_tokens] | i | id, token
float * embd; // [n_embd, n_tokens] | i | embd
llama_pos * pos; // [n_tokens] | i | pos
llama_pos * pos; // [n_tokens*n_pos] | i | pos
int32_t * n_seq_id; // [n_tokens] | i | -
llama_seq_id ** seq_id; // [n_tokens] | s | s0, s1, seq_id
llama_seq_id * seq_id_unq; // [n_seqs_unq] | s | seq_id

View File

@ -73,6 +73,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "kimi-k2", LLM_CHAT_TEMPLATE_KIMI_K2 },
{ "seed_oss", LLM_CHAT_TEMPLATE_SEED_OSS },
{ "grok-2", LLM_CHAT_TEMPLATE_GROK_2 },
{ "pangu-embedded", LLM_CHAT_TEMPLATE_PANGU_EMBED },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@ -213,6 +214,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_SEED_OSS;
} else if (tmpl_contains("'Assistant: ' + message['content'] + '<|separator|>")) {
return LLM_CHAT_TEMPLATE_GROK_2;
} else if (tmpl_contains(LU8("[unused9]系统:[unused10]"))) {
return LLM_CHAT_TEMPLATE_PANGU_EMBED;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@ -813,6 +816,35 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "Assistant:";
}
}else if (tmpl == LLM_CHAT_TEMPLATE_PANGU_EMBED) {
// [unused9]系统xxx[unused10]
// [unused9]用户xxx[unused10]
// [unused9]助手xxx[unused10]
// ...
for (size_t i = 0; i < chat.size(); ++i) {
const auto & msg = chat[i];
const std::string & role = msg->role;
const std::string & content = msg->content;
if (i == 0 && role != "system") {
ss << "[unused9]系统:[unused10]";
}
if (role == "system") {
ss << "[unused9]系统:" << content << "[unused10]";
} else if (role == "user") {
ss << "[unused9]用户:" << content << "[unused10]";
} else if (role == "assistant") {
ss << "[unused9]助手:" << content << "[unused10]";
} else if (role == "tool") {
ss << "[unused9]工具:" << content << "[unused10]";
} else if (role == "function") {
ss << "[unused9]方法:" << content << "[unused10]";
}
}
if (add_ass) {
ss << "[unused9]助手:";
}
} else {
// template not supported
return -1;

View File

@ -53,6 +53,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_KIMI_K2,
LLM_CHAT_TEMPLATE_SEED_OSS,
LLM_CHAT_TEMPLATE_GROK_2,
LLM_CHAT_TEMPLATE_PANGU_EMBED,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

View File

@ -21,6 +21,8 @@ llama_context::llama_context(
llama_context_params params) :
model(model),
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
// may need to be backend-dependent
LLAMA_LOG_INFO("%s: constructing llama_context\n", __func__);
t_start_us = model.t_start_us;
@ -112,11 +114,28 @@ llama_context::llama_context(
}
}
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256);
if (cparams.kv_unified) {
cparams.n_ctx_seq = cparams.n_ctx;
} else {
cparams.n_ctx_seq = cparams.n_ctx / cparams.n_seq_max;
cparams.n_ctx_seq = GGML_PAD(cparams.n_ctx_seq, 256);
if (cparams.n_ctx_seq == 0) {
throw std::runtime_error("n_ctx_seq == 0");
}
if (cparams.n_ctx != cparams.n_ctx_seq * cparams.n_seq_max) {
cparams.n_ctx = cparams.n_ctx_seq * cparams.n_seq_max;
LLAMA_LOG_WARN("%s: n_ctx is not divisible by n_seq_max - rounding down to %u\n", __func__, cparams.n_ctx);
}
}
LLAMA_LOG_INFO("%s: n_seq_max = %u\n", __func__, cparams.n_seq_max);
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
LLAMA_LOG_INFO("%s: n_ctx_per_seq = %u\n", __func__, n_ctx_per_seq);
LLAMA_LOG_INFO("%s: n_ctx_seq = %u\n", __func__, cparams.n_ctx_seq);
LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
LLAMA_LOG_INFO("%s: causal_attn = %d\n", __func__, cparams.causal_attn);
@ -125,14 +144,14 @@ llama_context::llama_context(
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
if (n_ctx_per_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq < hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) < n_ctx_train (%u) -- the full capacity of the model will not be utilized\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (n_ctx_per_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_per_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, n_ctx_per_seq, hparams.n_ctx_train);
if (cparams.n_ctx_seq > hparams.n_ctx_train) {
LLAMA_LOG_WARN("%s: n_ctx_seq (%u) > n_ctx_train (%u) -- possible training context overflow\n",
__func__, cparams.n_ctx_seq, hparams.n_ctx_train);
}
if (!hparams.vocab_only) {
@ -268,9 +287,7 @@ llama_context::llama_context(
if (pipeline_parallel) {
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
}
}
if (!hparams.vocab_only) {
llama_memory_context_ptr mctx;
if (memory) {
LLAMA_LOG_DEBUG("%s: reserving full memory module\n", __func__);
@ -343,7 +360,14 @@ llama_context::llama_context(
{
auto * gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
if (pipeline_parallel) {
LLAMA_LOG_WARN("%s: compute buffer allocation failed, retrying without pipeline parallelism\n", __func__);
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, false, cparams.op_offload));
gf = graph_reserve(n_tokens, n_seqs, n_tokens, mctx.get());
}
if (!gf) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
}
n_splits_pp = ggml_backend_sched_get_n_splits(sched.get());
@ -448,8 +472,8 @@ uint32_t llama_context::n_ctx() const {
return cparams.n_ctx;
}
uint32_t llama_context::n_ctx_per_seq() const {
return cparams.n_ctx / cparams.n_seq_max;
uint32_t llama_context::n_ctx_seq() const {
return cparams.n_ctx_seq;
}
uint32_t llama_context::n_batch() const {
@ -803,7 +827,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
const int64_t n_vocab = model.vocab.n_tokens();
// note: during encode, we always pass the full sequence starting from pos = 0
@ -972,7 +996,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
const auto & hparams = model.hparams;
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
// when computing embeddings, all tokens are output
const bool output_all = cparams.embeddings;
@ -2130,7 +2154,7 @@ void llama_context::opt_epoch_iter(
batch.logits [pos_batch] = true;
}
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
if (!balloc->init(batch, model.vocab, nullptr, model.hparams.n_embd_inp(), cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, true)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return;
}
@ -2378,6 +2402,10 @@ uint32_t llama_n_ctx(const llama_context * ctx) {
return ctx->n_ctx();
}
uint32_t llama_n_ctx_seq(const llama_context * ctx) {
return ctx->n_ctx_seq();
}
uint32_t llama_n_batch(const llama_context * ctx) {
return ctx->n_batch();
}

View File

@ -43,11 +43,11 @@ struct llama_context {
ggml_backend_sched_t get_sched() const;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_ctx() const;
uint32_t n_ctx_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
uint32_t n_threads() const;
uint32_t n_threads_batch() const;

View File

@ -8,6 +8,7 @@
struct llama_cparams {
uint32_t n_ctx; // context size used during inference
uint32_t n_ctx_seq; // context for a single sequence
uint32_t n_batch;
uint32_t n_ubatch;
uint32_t n_seq_max;

View File

@ -810,6 +810,9 @@ ggml_tensor * llm_graph_context::build_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
@ -1006,10 +1009,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
if (arch == LLM_ARCH_BAILINGMOE2) {
weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
cb(weights_sum, "ffn_moe_weights_sum_biased", il);
}
// Avoid division by zero, clamp to smallest number representable by F16
weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY);
cb(weights_sum, "ffn_moe_weights_sum_clamped", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
@ -1091,6 +1093,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
@ -1137,7 +1142,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd;
const int64_t n_embd = hparams.n_embd_inp();
auto inp = std::make_unique<llm_graph_input_embd>();
@ -1274,7 +1279,7 @@ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
// return cur;
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd_inp();
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
@ -2030,7 +2035,7 @@ int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buck
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
relative_position = std::abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}

View File

@ -60,6 +60,16 @@ uint32_t llama_hparams::n_gqa(uint32_t il) const {
return n_head/n_head_kv;
}
uint32_t llama_hparams::n_embd_inp() const {
uint32_t n_embd_inp = n_embd;
if (n_deepstack_layers > 0) {
n_embd_inp += n_embd * n_deepstack_layers;
}
return n_embd_inp;
}
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
const uint32_t n_head_kv = this->n_head_kv(il);
@ -148,7 +158,7 @@ bool llama_hparams::is_recurrent(uint32_t il) const {
}
uint32_t llama_hparams::n_pos_per_embd() const {
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
}
bool llama_hparams::is_swa(uint32_t il) const {

View File

@ -183,6 +183,9 @@ struct llama_hparams {
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
@ -224,6 +227,9 @@ struct llama_hparams {
uint32_t n_gqa(uint32_t il = 0) const;
// dimension of main + auxiliary input embeddings
uint32_t n_embd_inp() const;
// dimension of key embeddings across all k-v heads
uint32_t n_embd_k_gqa(uint32_t il = 0) const;

View File

@ -45,7 +45,9 @@ llama_kv_cache_iswa::llama_kv_cache_iswa(
const uint32_t size_base = kv_size;
uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*(unified ? n_seq_max : 1) + n_ubatch, n_pad));
// note: the SWA cache is always padded to 256 for performance
// https://github.com/ggml-org/llama.cpp/issues/17037
uint32_t size_swa = GGML_PAD(std::min(size_base, hparams.n_swa*(unified ? n_seq_max : 1) + n_ubatch), 256);
// when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size
if (swa_full) {

View File

@ -8,6 +8,7 @@
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring>
#include <limits>
#include <map>
#include <stdexcept>
@ -37,8 +38,15 @@ llama_kv_cache::llama_kv_cache(
const uint32_t n_layer_kv = hparams.n_layer_kv();
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
struct ggml_backend_buft_comparator {
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
}
};
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
@ -53,13 +61,12 @@ llama_kv_cache::llama_kv_cache(
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
ctx_map.emplace(buft, ctx);
return ctx;
}
return it->second;
return it->second.get();
};
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
@ -167,11 +174,8 @@ llama_kv_cache::llama_kv_cache(
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
for (auto & [buft, ctx] : ctx_map) {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
@ -179,7 +183,7 @@ llama_kv_cache::llama_kv_cache(
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
ctxs_bufs.emplace_back(std::move(ctx), buf);
}
{
@ -203,7 +207,7 @@ void llama_kv_cache::clear(bool data) {
}
if (data) {
for (auto & buf : bufs) {
for (auto & [_, buf] : ctxs_bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
@ -334,6 +338,8 @@ void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, ll
llama_pos pos = v_cells[s0].pos_get(i);
llama_pos shift = v_cells[s0].get_shift(i);
llama_kv_cell_ext ext = v_cells[s0].ext_get(i);
if (shift != 0) {
pos -= shift;
assert(pos >= 0);
@ -345,6 +351,8 @@ void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, ll
if (shift != 0) {
v_cells[s1].pos_add(i, shift);
}
v_cells[s1].ext_set(i, ext);
}
}
@ -379,6 +387,7 @@ void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1");
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
@ -423,6 +432,7 @@ void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, ll
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1");
auto & cells = v_cells[seq_to_stream[seq_id]];
@ -472,8 +482,8 @@ llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
for (const auto & [_, buf] : ctxs_bufs) {
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
}
return ret;
}
@ -896,6 +906,14 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch &
cells.pos_set(idx, ubatch.pos[i]);
if (ubatch.is_pos_2d()) {
llama_kv_cell_ext ext {
/*.x =*/ ubatch.pos[i + ubatch.n_tokens*2],
/*.y =*/ ubatch.pos[i + ubatch.n_tokens],
};
cells.ext_set(idx, ext);
}
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
@ -957,10 +975,14 @@ bool llama_kv_cache::get_has_shift() const {
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
uint32_t result = 0;
// pad the n_kv value so that the graph remains constant across batches and can be reused
// note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
const uint32_t n_pad_cur = std::max(n_pad, 256u);
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const auto & cells = v_cells[sinfo.strm[s]];
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
}
return result;
@ -1239,6 +1261,11 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
const llama_pos p1 = ubatch->pos[i];
// for M-RoPE
const bool is_2d = ubatch->is_pos_2d();
const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0;
const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
@ -1258,6 +1285,14 @@ void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * u
continue;
}
// M-RoPE causal mask
if (causal_attn && is_2d && p0 == p1) {
const auto & p0_ext = cells.ext_get(j);
if (p0_ext.is_2d_gt(p1_x, p1_y)) {
continue;
}
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
@ -1298,7 +1333,7 @@ void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch
size_t llama_kv_cache::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
for (const auto & [_, buf] : ctxs_bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
@ -1340,7 +1375,7 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering
@ -1551,6 +1586,9 @@ void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
// TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it
// see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
@ -1696,6 +1734,8 @@ bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32
return false;
}
// TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet
// see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
@ -2010,8 +2050,3 @@ void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ub
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch);
}
uint32_t llama_kv_cache::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}

View File

@ -19,8 +19,6 @@ struct llama_context;
class llama_kv_cache : public llama_memory_i {
public:
static uint32_t get_padding(const llama_cparams & cparams);
struct stream_copy_info {
bool empty() const {
assert(ssrc.size() == sdst.size());
@ -217,8 +215,8 @@ private:
// this is the SWA type of the cache - not to be confused with the model SWA type
const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// ggml contexts for the KV cache along with the allocated backend buffers:
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
// the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
// note: this is not part of the KV state and it's only used to speed-up the find_slot() method

View File

@ -5,9 +5,27 @@
#include <bitset>
#include <cassert>
#include <vector>
#include <set>
#include <cstring>
#include <map>
#include <set>
#include <vector>
struct llama_kv_cell_ext {
// 2D spatial positions, typically used for M-RoPE
llama_pos x = 0;
llama_pos y = 0;
// return true if the current 2D spatial position is greater than other
bool is_2d_gt(llama_pos ox, llama_pos oy) const {
return (y > oy) || (y == oy && x > ox);
}
void reset() {
static_assert(std::is_trivially_copyable_v<llama_kv_cell_ext>);
memset(this, 0, sizeof(*this));
}
};
// meta information about KV cells that can be part of multiple sequences at the same time
// TODO: add unit tests
@ -16,6 +34,7 @@ public:
void reset() {
for (uint32_t i = 0; i < pos.size(); ++i) {
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
seq[i].reset();
}
@ -43,6 +62,7 @@ public:
void resize(uint32_t n) {
pos.resize(n);
ext.resize(n);
shift.resize(n);
seq.resize(n);
@ -108,6 +128,7 @@ public:
const auto idx = i + j;
res.pos[j] = pos[idx];
res.ext[j] = ext[idx];
res.seq[j] = seq[idx];
assert(shift[idx] == 0);
@ -126,6 +147,7 @@ public:
const auto idx = idxs[j];
res.pos[j] = pos[idx];
res.ext[j] = ext[idx];
res.seq[j] = seq[idx];
assert(shift[idx] == 0);
@ -154,6 +176,7 @@ public:
}
pos[idx] = other.pos[j];
ext[idx] = other.ext[j];
seq[idx] = other.seq[j];
if (pos[idx] != -1) {
@ -184,6 +207,7 @@ public:
}
pos[idx] = other.pos[j];
ext[idx] = other.ext[j];
seq[idx] = other.seq[j];
if (pos[idx] != -1) {
@ -203,6 +227,7 @@ public:
seq[i].reset();
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@ -221,6 +246,7 @@ public:
if (seq[i].none()) {
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@ -250,6 +276,7 @@ public:
seq[i].reset();
pos[i] = -1;
ext[i].reset();
shift[i] = 0;
used.erase(i);
@ -340,6 +367,13 @@ public:
return pos[i];
}
const llama_kv_cell_ext & ext_get(uint32_t i) const {
assert(i < pos.size());
assert(pos[i] != -1);
return ext[i];
}
// note: call only if the cell is not empty
llama_pos get_shift(uint32_t i) const {
assert(i < pos.size());
@ -368,6 +402,11 @@ public:
used.insert(i);
}
void ext_set(uint32_t i, llama_kv_cell_ext p) {
assert(i < ext.size());
ext[i] = p;
}
// pos[i] = pos[i] + d
// sets "has_shift" to true
// note: call only if the cell is not empty
@ -424,6 +463,9 @@ private:
std::vector<llama_pos> pos;
// stores extra info per cell
std::vector<llama_kv_cell_ext> ext;
// this array accumulates any applied shifts to the pos array since the last reset_shift() call
// this is used to queue multiple updates to the pos array, which in the end can be applied in one go:
//

View File

@ -7,6 +7,7 @@
#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <map>
#include <stdexcept>
@ -32,8 +33,15 @@ llama_memory_recurrent::llama_memory_recurrent(
cells.clear();
cells.resize(mem_size);
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
struct ggml_backend_buft_comparator {
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
}
};
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
@ -48,13 +56,12 @@ llama_memory_recurrent::llama_memory_recurrent(
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
ctx_map.emplace(buft, ctx);
return ctx;
}
return it->second;
return it->second.get();
};
r_l.resize(n_layer);
@ -93,17 +100,14 @@ llama_memory_recurrent::llama_memory_recurrent(
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
for (auto & [buft, ctx] : ctx_map) {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for rs cache");
}
ggml_backend_buffer_clear(buf, 0);
LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
bufs.emplace_back(buf);
ctxs_bufs.emplace_back(std::move(ctx), buf);
}
{
@ -129,7 +133,7 @@ void llama_memory_recurrent::clear(bool data) {
used = 0;
if (data) {
for (auto & buf : bufs) {
for (auto & [_, buf] : ctxs_bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
@ -364,8 +368,8 @@ llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
for (const auto & [_, buf] : ctxs_bufs) {
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
}
return ret;
}
@ -662,7 +666,7 @@ bool llama_memory_recurrent::get_can_shift() const {
size_t llama_memory_recurrent::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
for (const auto & [_, buf] : ctxs_bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}

View File

@ -109,8 +109,8 @@ private:
const uint32_t n_seq_max = 1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
// ggml contexts for the KV cache along with the allocated backend buffers:
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
size_t total_size() const;

File diff suppressed because it is too large Load Diff

View File

@ -114,6 +114,7 @@ enum llm_type {
LLM_TYPE_30B_A3B,
LLM_TYPE_100B_A6B,
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_355B_A32B, // GLM-4.5
@ -384,6 +385,13 @@ struct llama_layer {
// openai-moe
struct ggml_tensor * attn_sinks = nullptr;
// cogvlm
struct ggml_tensor * visexp_attn_wqkv = nullptr;
struct ggml_tensor * visexp_attn_wo = nullptr;
struct ggml_tensor * visexp_ffn_gate = nullptr;
struct ggml_tensor * visexp_ffn_down = nullptr;
struct ggml_tensor * visexp_ffn_up = nullptr;
// xIELU activation parameters for Apertus
struct ggml_tensor * ffn_act_alpha_n = nullptr;
struct ggml_tensor * ffn_act_alpha_p = nullptr;
@ -500,9 +508,8 @@ struct llama_model {
ggml_tensor * get_rope_factors(const llama_cparams & cparams, int il) const;
// note: can mutate `cparams`
// TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
llama_memory_i * create_memory(const llama_memory_params & params, const llama_cparams & cparams) const;
// TODO: move this to new llm_arch_model_i interface
ggml_cgraph * build_graph(const llm_graph_params & params) const;

View File

@ -653,7 +653,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
// Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)std::abs(o.val_i64));
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {

View File

@ -401,6 +401,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT4O:
case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
regex_exprs = {
// original regex from tokenizer.json
// "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@ -1992,6 +1993,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "grok-2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
clean_spaces = false;
} else if (
tokenizer_pre == "minimax-m2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
clean_spaces = false;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}

View File

@ -49,6 +49,7 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
};
struct LLM_KV;

View File

@ -83,6 +83,7 @@ extern "C" {
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
LLAMA_ROPE_TYPE_IMROPE = GGML_ROPE_TYPE_IMROPE,
LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
};
@ -460,7 +461,11 @@ extern "C" {
LLAMA_API bool llama_supports_gpu_offload(void);
LLAMA_API bool llama_supports_rpc (void);
// NOTE: After creating a llama_context, it is recommended to query the actual values using these functions
// In some cases the requested values via llama_context_params may differ from the actual values used by the context
// ref: https://github.com/ggml-org/llama.cpp/pull/17046#discussion_r2503085732
LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ctx_seq (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
@ -481,6 +486,7 @@ extern "C" {
LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_embd_inp (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
@ -584,7 +590,7 @@ extern "C" {
LLAMA_API int32_t llama_adapter_meta_val_str_by_index(const struct llama_adapter_lora * adapter, int32_t i, char * buf, size_t buf_size);
// Manually free a LoRA adapter
// Note: loaded adapters will be free when the associated model is deleted
// NOTE: loaded adapters will be free when the associated model is deleted
LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
// Get the invocation tokens if the current lora is an alora
@ -1110,8 +1116,6 @@ extern "C" {
// // sample from the logits of the last token in the batch
// const llama_token id = llama_sampler_sample(smpl, ctx, -1);
//
// // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
// llama_sampler_accept(smpl, id);
// ...
// }
//

View File

@ -0,0 +1,125 @@
#include "models.h"
llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
cb(Vcur, "Vcur_pos", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network with xIELU activation
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// Up projection
ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
cb(up, "ffn_up", il);
float alpha_n_val = hparams.xielu_alpha_n[il];
float alpha_p_val = hparams.xielu_alpha_p[il];
float beta_val = hparams.xielu_beta[il];
float eps_val = hparams.xielu_eps[il];
// Apply xIELU activation
ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
cb(activated, "ffn_xielu", il);
// Down projection
cur = build_lora_mm(model.layers[il].ffn_down, activated);
cb(cur, "ffn_down", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_arcee::llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// ARCEE uses relu^2 instead of silu
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,138 @@
#include "models.h"
llm_build_arctic::llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
cb(ffn_out, "ffn_out", il);
// MoE
cur = build_norm(inpSA,
model.layers[il].ffn_norm_exps, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm_exps", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,86 @@
#include "models.h"
llm_build_arwkv7::llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
GGML_ASSERT(n_embd == hparams.n_embd_r());
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * v_first = nullptr;
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
const auto n_embd = hparams.n_embd;
const auto n_seq_tokens = ubatch.n_seq_tokens;
const auto n_seqs = ubatch.n_seqs;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const llama_layer * layer = &model.layers[il];
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
cb(att_norm, "attn_norm", il);
ggml_tensor * x_prev = ggml_concat(
ctx0,
token_shift,
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
1
);
cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_baichuan::llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
switch (model.type) {
case LLM_TYPE_7B:
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
break;
case LLM_TYPE_13B:
break;
default:
GGML_ABORT("fatal error");
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_bailingmoe::llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_bailingmoe2::llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 0 * sizeof(float) * (n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpSA);
cb(sa_out, "sa_out", il);
// MoE branch
cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,176 @@
#include "models.h"
llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inp_pos = nullptr;
if (model.arch != LLM_ARCH_JINA_BERT_V2) {
inp_pos = build_inp_pos();
}
// construct input embeddings (token, type, position)
inpL = build_inp_embd(model.tok_embd);
// token types are hardcoded to zero ("Sentence A")
if (model.type_embd) {
ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
}
if (model.arch == LLM_ARCH_BERT) {
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
}
cb(inpL, "inp_embd", -1);
// embed layer norm
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
cb(inpL, "inp_norm", -1);
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * cur = inpL;
{
ggml_tensor * Qcur;
ggml_tensor * Kcur;
ggml_tensor * Vcur;
// self-attention
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
} else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
if (model.layers[il].attn_q_norm) {
Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
}
if (model.layers[il].attn_k_norm) {
Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
}
// RoPE
if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
model.arch == LLM_ARCH_JINA_BERT_V3) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
// attention layer norm
cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
if (model.layers[il].attn_norm_2 != nullptr) {
cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
}
ggml_tensor * ffn_inp = cur;
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
// MoE branch
cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr,
model.layers[il].ffn_down_exps, nullptr, hparams.n_expert, hparams.n_expert_used,
LLM_FFN_GELU, false, false, 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
cb(cur, "ffn_moe_out", il);
} else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
model.arch == LLM_ARCH_JINA_BERT_V3) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// output layer norm
cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cb(cur, "result_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,160 @@
#include "models.h"
llm_build_bitnet::llm_build_bitnet(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].wq_scale) {
Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
}
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
// B1.K
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].wk_scale) {
Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
}
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
// B1.V
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].wv_scale) {
Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
}
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
NULL, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cur = build_norm(cur,
model.layers[il].attn_sub_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_sub_norm", il);
cur = build_lora_mm(model.layers[il].wo, cur);
if (model.layers[il].wo_scale) {
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
}
if (model.layers[il].bo) {
cur = ggml_add(ctx0, cur, model.layers[il].bo);
}
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
NULL, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_sub_out", il);
cur = build_norm(cur,
model.layers[il].ffn_sub_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_sub_norm", il);
cur = build_lora_mm(model.layers[il].ffn_down, cur);
if (model.layers[il].ffn_down_scale) {
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
}
cb(cur, "ffn_down", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
// FIXME: do not use model.tok_embd directly, duplicate as model.output
cur = build_lora_mm(model.tok_embd, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,101 @@
#include "models.h"
llm_build_bloom::llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
inpL = build_norm(inpL,
model.tok_norm,
model.tok_norm_b,
LLM_NORM, -1);
cb(inpL, "inp_norm", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,178 @@
#include "models.h"
#include <float.h>
llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
if (hparams.swin_norm) {
cur = inpL;
} else {
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].attn_q_norm) {
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
ggml_element_size(Qcur) * n_embd_head,
ggml_element_size(Qcur) * n_embd_head * n_head,
0);
cb(Qcur, "Qcur", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm,
model.layers[il].attn_q_norm_b,
LLM_NORM, il);
cb(Qcur, "Qcur", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
ggml_element_size(Kcur) * n_embd_head,
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
0);
cb(Kcur, "Kcur", il);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm,
model.layers[il].attn_k_norm_b,
LLM_NORM, il);
cb(Kcur, "Kcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
if (hparams.swin_norm) {
cur = build_norm(cur,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
if (!hparams.swin_norm) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
}
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
if (hparams.swin_norm) {
cur = build_norm(cur,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output_with_img_logits", -1);
// TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
// Needs to be removed once image outputs are supported.
int img_token_end_idx = 8196;
int img_token_start_idx = 4;
int num_img_tokens = img_token_end_idx - img_token_start_idx;
// creates 1d tensor of size num_img_tokens and values -FLT_MAX,
// which ensures that text token values are always at least larger than image token values
ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
cb(img_logits, "img_logits", -1);
cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,132 @@
#include "models.h"
llm_build_chatglm::llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv == nullptr) {
Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
} else {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
}
//printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = build_norm(inpL,
model.output_norm,
NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,111 @@
#include "models.h"
llm_build_codeshell::llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,100 @@
#include "models.h"
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
float kq_scale = 1.0f / sqrtf(float(n_embd_head));
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor *inpL, *cur;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
// check ubatch to see if we have input tokens (text)
// or an input embedding vector (image)
bool is_text;
if (ubatch.token) {
is_text = true;
} else {
is_text = false;
}
for (int il = 0; il < n_layer; ++il) {
// get either the text or image weight tensors
ggml_tensor *wqkv, *wo;
ggml_tensor *ffn_gate, *ffn_down, *ffn_up;
if (is_text) {
wqkv = model.layers[il].wqkv;
wo = model.layers[il].wo;
ffn_gate = model.layers[il].ffn_gate;
ffn_down = model.layers[il].ffn_down;
ffn_up = model.layers[il].ffn_up;
} else {
wqkv = model.layers[il].visexp_attn_wqkv;
wo = model.layers[il].visexp_attn_wo;
ffn_gate = model.layers[il].visexp_ffn_gate;
ffn_down = model.layers[il].visexp_ffn_down;
ffn_up = model.layers[il].visexp_ffn_up;
}
ggml_tensor * inpSA = inpL;
cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// build self attention
{
ggml_tensor * qkv = build_lora_mm(wqkv, cur);
// split qkv into Q, K, V along the first dimension
ggml_tensor * Qcur =
ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0);
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], n_embd * ggml_element_size(qkv));
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
cur = build_attn(inp_attn,
wo, nullptr,
Qcur, Kcur, Vcur,
nullptr, nullptr, nullptr,
kq_scale, il);
cb(cur, "attn_out", il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
ffn_up, NULL, NULL,
ffn_gate, NULL, NULL,
ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,131 @@
#include "models.h"
llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const bool is_swa = hparams.is_swa(il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
cb(cur, "attn_norm", il);
ggml_tensor * ffn_inp = cur;
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (is_swa) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
ggml_tensor * attn_out = cur;
// feed-forward network
{
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_command_r::llm_build_command_r(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
const float f_logit_scale = hparams.f_logit_scale;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
cb(cur, "attn_norm", il);
ggml_tensor * ffn_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM, il);
cb(Qcur, "Qcur", il);
}
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM, il);
cb(Kcur, "Kcur", il);
}
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
}
ggml_tensor * attn_out = cur;
// feed-forward network
{
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// add together residual + FFN + self-attention
cur = ggml_add(ctx0, cur, inpL);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (f_logit_scale) {
cur = ggml_scale(ctx0, cur, f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_dbrx::llm_build_dbrx(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].attn_out_norm, NULL,
LLM_NORM, il);
cb(cur, "attn_out_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,135 @@
#include "models.h"
llm_build_deci::llm_build_deci(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head = hparams.n_head(il);
const int64_t n_ff = hparams.n_ff(il);
if (n_head == 0) {
// attention-free layer of Llama-3_1-Nemotron-51B
cur = inpL;
} else {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
if (n_head > 0 && n_head_kv == 0) {
// "linear attention" of Llama-3_1-Nemotron-51B
cur = build_lora_mm(model.layers[il].wo, cur);
cb(cur, "wo", il);
} else if (n_head > 0) {
// self-attention
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
if (n_ff == 0) {
continue;
}
// modified to support attention-free layer of Llama-3_1-Nemotron-51B
ggml_tensor * ffn_inp = cur;
if (n_head > 0) {
ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
}
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_deepseek::llm_build_deepseek(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, hparams.expert_weights_scale,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,236 @@
#include "models.h"
llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
bool is_lite = (hparams.n_layer == 27);
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
const float kq_scale = 1.0f * mscale * mscale / sqrtf(float(n_embd_head_k));
const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
if (!is_lite) {
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = build_norm(q, model.layers[il].attn_q_a_norm, nullptr, LLM_NORM_RMS, il);
cb(q, "q", il);
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
} else {
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
}
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * q_nope =
ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head, 0);
cb(q_nope, "q_nope", il);
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(
ctx0, q, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head, ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_cmpr_pe, "kv_cmpr_pe", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_cmpr =
ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
cb(kv_cmpr, "kv_cmpr", il);
// and {n_embd_head_qk_rope, 1, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(q_pe, "q_pe", il);
k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(k_pe, "k_pe", il);
kv_cmpr = build_norm(kv_cmpr, model.layers[il].attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
cb(kv_cmpr, "kv_cmpr", il);
if (is_mla) {
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, model.layers[il].wv_b, kq_scale, il);
} else {
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
cb(kv, "kv", il);
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * k_nope =
ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head, 0);
cb(k_nope, "k_nope_view", il);
// and {n_embd_head_v, n_head, n_tokens}
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
ggml_row_size(kv->type, n_embd_head_qk_nope));
cb(Vcur, "Vcur_view", il);
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "Vcur_cont", il);
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
cb(Kcur, "Kcur", il);
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,134 @@
#include "models.h"
llm_build_dots1::llm_build_dots1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
{
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,105 @@
#include "models.h"
llm_build_dream::llm_build_dream(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
//copied from qwen2
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,150 @@
#include "models.h"
llm_build_ernie4_5_moe::llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
bool is_moe_layer =
static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
if (!is_moe_layer) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// Shared expert (if present)
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
} else {
cur = moe_out;
}
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,111 @@
#include "models.h"
llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
}
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,114 @@
#include "models.h"
llm_build_exaone::llm_build_exaone(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,123 @@
#include "models.h"
template <bool iswa>
llm_build_exaone4<iswa>::llm_build_exaone4(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// use RoPE for SWA layers or non-SWA models
const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
cur = inpL;
// self-attention
{
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
if (use_rope) {
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL, NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_exaone4<false>;
template struct llm_build_exaone4<true>;

View File

@ -0,0 +1,113 @@
#include "models.h"
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Build the inputs in the recurrent & kv cache
auto * inp = build_inp_mem_hybrid();
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur-post-rope", il);
cb(Kcur, "Kcur-post-rope", il);
cb(Vcur, "Vcur-post-rope", il);
ggml_tensor * attn_out = build_attn(inp->get_attn(),
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(attn_out, "attn_out", il);
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// Mamba2 layer
cb(cur, "ssm_in", il);
ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
cb(ssm_out, "ssm_out", il);
// // Aggregation
cur = ggml_add(ctx0, attn_out, ssm_out);
inpSA = ggml_add(ctx0, cur, inpSA);
cb(cur, "layer_out", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = inpSA;
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, inpSA);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,120 @@
#include "models.h"
llm_build_falcon::llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * attn_norm;
attn_norm = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
if (model.layers[il].attn_norm_2) {
// Falcon-40B
cur = build_norm(inpL,
model.layers[il].attn_norm_2,
model.layers[il].attn_norm_2_b,
LLM_NORM, il);
cb(cur, "attn_norm_2", il);
} else {
cur = attn_norm;
}
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
}
ggml_tensor * ffn_inp = cur;
// feed forward
{
cur = build_ffn(attn_norm, // !! use the attn norm, not the result
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
cur = build_norm(cur,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,120 @@
#include "models.h"
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur =
build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,112 @@
#include "models.h"
llm_build_gemma::llm_build_gemma(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur_scaled", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,125 @@
#include "models.h"
llm_build_gemma2_iswa::llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// final logit soft-capping
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,131 @@
#include "models.h"
llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// TODO: is causal == true correct? might need some changes
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
cb(sa_out, "sa_out", il);
cur = build_norm(sa_out,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, sa_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,377 @@
#include "models.h"
llm_build_gemma3n_iswa::llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model),
n_embd_head(model.hparams.n_embd_head_k),
n_embd_altup(model.hparams.n_embd_altup),
n_altup(model.hparams.n_altup),
i_altup_act(model.hparams.i_altup_act) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
if (ubatch.token) {
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// TODO: is causal == true correct? might need some changes
auto * inp_attn = build_attn_inp_kv_iswa();
// inp_per_layer shape: [n_embd_altup, n_tokens, n_layer]
ggml_tensor * inp_per_layer = project_per_layer_inputs(inpL, get_per_layer_inputs());
// inpL now has only 1 altup, project it to the rest of the altups
// these "added" altups will be concat to the last dim of inpL
{
ggml_tensor * target_magnitude = calc_magnitude(inpL);
ggml_tensor * inp_repeated = ggml_repeat_4d(ctx0, inpL, n_embd, n_tokens, n_altup - 1, 1);
ggml_tensor * altup_added =
ggml_mul_mat(ctx0, model.altup_proj, inp_repeated); // shape: [n_embd, n_tokens, n_altup - 1]
ggml_tensor * new_magnitude = calc_magnitude(altup_added);
altup_added = ggml_div(ctx0, ggml_mul(ctx0, altup_added, target_magnitude), new_magnitude);
inpL = ggml_concat(ctx0, inpL, altup_added, 2); // shape: [n_embd, n_tokens, n_altup]
cb(inpL, "inp_stacked", -1);
}
// inpL now has shape: [n_embd, n_tokens, n_altup]
// inp_per_layer now has shape: [n_embd_altup, n_tokens, n_layer]
for (int il = 0; il < n_layer; ++il) {
// this block is made to be closely resemble Gemma3p5DecoderLayer on python code
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * cur = inpL; // [n_embd, n_tokens, n_altup]
ggml_tensor * predictions = altup_predict(cur, il); // [n_embd, n_tokens, n_altup]
// predicted value will go through self-attention and laurel
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act); // [n_embd, n_tokens]
cur = active_prediction;
cb(cur, "active_prediction", il);
// norm
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// laurel
ggml_tensor * laurel_out = laurel(cur, il); // [n_embd, n_tokens]
// self-attention
if (hparams.has_kv(il)) {
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
Vcur = ggml_rms_norm(ctx0, Vcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
cb(Vcur, "Vcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
cur = build_attn(inp_attn, model.layers[il].wo,
NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr,
hparams.f_attention_scale, il);
} else {
// reuse KV cache of earlier layers
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur_pos", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, nullptr, nullptr, nullptr, nullptr, nullptr, hparams.f_attention_scale, il);
}
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
cur = ggml_add(ctx0, cur, active_prediction); // [n_embd, n_tokens]
cb(cur, "attn_gated", il);
ggml_tensor * attn_laurel = ggml_scale(ctx0, ggml_add(ctx0, cur, laurel_out),
1.0f / sqrtf(2.0f)); // [n_embd, n_tokens]
cb(attn_laurel, "attn_laurel", il);
cur = build_norm(attn_laurel, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
{
ggml_tensor * up_proj = build_lora_mm(model.layers[il].ffn_up, cur);
ggml_tensor * gate_proj = build_lora_mm(model.layers[il].ffn_gate, cur);
if (il < n_layer_sparsity) {
// apply activation sparsity
gate_proj = gaussian_topk(gate_proj);
}
gate_proj = ggml_gelu(ctx0, gate_proj);
cur = ggml_mul(ctx0, up_proj, gate_proj);
cur = build_lora_mm(model.layers[il].ffn_down, cur);
cb(cur, "ffn_out", il);
}
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", il);
ggml_tensor * attn_ffw_laurel_gated = ggml_add(ctx0, cur, attn_laurel); // [n_embd, n_tokens]
cb(attn_ffw_laurel_gated, "attn_ffw_laurel_gated", il);
ggml_tensor * corrected = altup_correct(predictions, attn_ffw_laurel_gated, il); // [n_embd, n_tokens, n_altup]
ggml_tensor * first_prediction; // [n_embd, n_tokens]
{
first_prediction = view_2d_slice(corrected, i_altup_act); // [n_embd, n_tokens]
first_prediction = ggml_mul(ctx0, first_prediction, model.layers[il].altup_correct_scale);
first_prediction = build_lora_mm(model.layers[il].per_layer_inp_gate, first_prediction);
first_prediction = ggml_gelu(ctx0, first_prediction); // [n_embd_altup, n_tokens]
cb(first_prediction, "first_prediction_gated", il);
ggml_tensor * inp_this_layer = view_2d_slice(inp_per_layer, il); // [n_embd_altup, n_tokens]
first_prediction = ggml_mul(ctx0, first_prediction, inp_this_layer); // [n_embd_altup, n_tokens]
cb(first_prediction, "first_prediction_scaled", il);
first_prediction = build_lora_mm(model.layers[il].per_layer_proj, first_prediction); // [n_embd, n_tokens]
first_prediction =
build_norm(first_prediction, model.layers[il].per_layer_post_norm, NULL, LLM_NORM_RMS, il);
cb(first_prediction, "first_prediction_out", il);
}
// equivalent to python code: corrected_predictions[1:] += first_prediction
{
ggml_tensor * slice_first = view_2d_slice(corrected, 0);
ggml_tensor * slice_rest = ggml_view_3d(
ctx0, corrected, n_embd, n_tokens, n_altup - 1, ggml_row_size(corrected->type, n_embd),
ggml_row_size(corrected->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(corrected));
ggml_tensor * tmp = ggml_add(ctx0, slice_rest, first_prediction); // [n_embd, n_tokens, n_altup - 1]
corrected = ggml_concat(ctx0, slice_first, tmp, 2); // [n_embd, n_tokens, n_altup]
}
cur = corrected; // [n_embd, n_tokens, n_altup]
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL; // [n_embd, n_tokens, n_altup]
// cur now has multiple altup(s), we want to merge them back to 1 altup
{
ggml_tensor * target_magnitude = calc_magnitude(view_2d_slice(cur, i_altup_act)); // [n_embd, n_tokens]
// do a view to skip the first slice (active altup)
ggml_tensor * alt_slice =
ggml_view_3d(ctx0, cur, n_embd, n_tokens, n_altup - 1, ggml_row_size(cur->type, n_embd),
ggml_row_size(cur->type, n_embd * n_tokens), n_embd * n_tokens * ggml_element_size(cur));
ggml_tensor * altup_unembd =
ggml_mul_mat(ctx0, model.altup_unembd_proj, alt_slice); // shape: [n_embd, n_tokens, n_altup - 1]
ggml_tensor * new_magnitude = calc_magnitude(altup_unembd);
altup_unembd = ggml_div(ctx0, ggml_mul(ctx0, altup_unembd, target_magnitude), new_magnitude);
cb(altup_unembd, "altup_unembd", -1);
// equivalent to torch.mean(hidden_states, dim=0)
cur = view_2d_slice(cur, 0); // [n_embd, n_tokens]
for (int i = 0; i < n_altup - 1; ++i) {
cur = ggml_add(ctx0, cur, view_2d_slice(altup_unembd, i));
}
cur = ggml_scale(ctx0, cur, 1.0f / float(n_altup)); // [n_embd, n_tokens]
cb(cur, "unembd_merged", -1);
}
// cur now has shape: [n_embd, n_tokens]
// TODO: move this to right after the last KV layer
{
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
{
// final logit soft-capping
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_gemma3n_iswa::calc_magnitude(ggml_tensor * x) {
return ggml_sqrt(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, x)));
}
// get 2D slice view from a 3D tensor, the idx corresponds to the 3rd dim
ggml_tensor * llm_build_gemma3n_iswa::view_2d_slice(ggml_tensor * x, int idx) {
GGML_ASSERT(idx < (int) x->ne[2]);
return ggml_view_2d(ctx0, x, x->ne[0], x->ne[1], ggml_row_size(x->type, x->ne[0]),
idx * x->ne[0] * x->ne[1] * ggml_element_size(x));
}
// equivalent to get_per_layer_inputs() in python code
// output shape: [n_embd_altup, n_layer, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::get_per_layer_inputs() {
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * inp_per_layer;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
ggml_set_input(inp->tokens);
res->t_tokens = inp->tokens;
inp_per_layer = ggml_get_rows(ctx0, model.tok_embd_per_layer, inp->tokens);
inp_per_layer = ggml_reshape_3d(ctx0, inp_per_layer, n_embd_altup, n_layer, n_tokens);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, sqrtf((float) n_embd_altup));
cb(inp_per_layer, "inp_per_layer_selected", -1);
} else {
GGML_ABORT("TODO: support embd input");
}
res->add_input(std::move(inp));
return inp_per_layer;
}
// equivalent to project_per_layer_inputs() in python code
// this calculates the per-layer inputs, so the final tensor shape will have n_layer as the last dim
// output shape: [n_embd_altup, n_tokens, n_layer]
ggml_tensor * llm_build_gemma3n_iswa::project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer) {
const float per_layer_projection_scale = 1.0f / sqrtf((float) n_embd);
const float per_layer_input_scale = 1.0f / sqrtf(2.0f);
ggml_tensor * per_layer_proj = ggml_mul_mat(ctx0, model.per_layer_model_proj, inputs_embeds);
per_layer_proj = ggml_scale(ctx0, per_layer_proj, per_layer_projection_scale);
per_layer_proj = ggml_reshape_3d(ctx0, per_layer_proj, n_embd_altup, n_layer, n_tokens);
per_layer_proj = build_norm(per_layer_proj, model.per_layer_proj_norm, NULL, LLM_NORM_RMS,
-1); // [n_embd_altup, n_layer, n_tokens]
cb(per_layer_proj, "per_layer_proj", -1);
inp_per_layer = ggml_add(ctx0, inp_per_layer, per_layer_proj);
inp_per_layer = ggml_scale(ctx0, inp_per_layer, per_layer_input_scale);
cb(inp_per_layer, "inp_per_layer", -1);
// permute to shape: [n_embd_altup, n_tokens, n_layer]
inp_per_layer = ggml_cont(ctx0, ggml_permute(ctx0, inp_per_layer, 0, 2, 1, 3));
return inp_per_layer;
}
// input cur shape: [n_altup, n_tokens]
// output shape: [n_altup, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::laurel(ggml_tensor * cur, int il) {
ggml_tensor * tmp = cur;
tmp = build_lora_mm(model.layers[il].laurel_l, tmp);
tmp = build_lora_mm(model.layers[il].laurel_r, tmp);
tmp = build_norm(tmp, model.layers[il].laurel_post_norm, NULL, LLM_NORM_RMS, il);
tmp = ggml_add(ctx0, tmp, cur);
cb(tmp, "laurel_out", il);
return tmp;
}
// input x shape: [n_embd, n_tokens]
// output shape: [n_embd, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::gaussian_topk(ggml_tensor * x) {
ggml_tensor * mean = ggml_mean(ctx0, x);
ggml_tensor * std = ggml_sqrt(ctx0, ggml_scale(ctx0, ggml_sum_rows(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x, mean))),
1.0f / (float) (x->ne[0] - 1)));
ggml_tensor * cutoff_x = ggml_add(ctx0, mean, ggml_scale(ctx0, std, f_sparsity_std_mul));
return ggml_relu(ctx0, ggml_sub(ctx0, x, cutoff_x));
}
//
// altup functions
//
// equivalent to compute_router_modalities() in python code
// input x shape: [n_embd, n_tokens]
// output shape: [n_altup, n_tokens]
ggml_tensor * llm_build_gemma3n_iswa::altup_compute_router_modalities(ggml_tensor * x, int il) {
ggml_tensor * router_inputs = build_norm(x, model.layers[il].altup_router_norm, NULL, LLM_NORM_RMS, il);
// router_input_scale
router_inputs = ggml_scale(ctx0, router_inputs, 1.0f / (float) n_embd);
ggml_tensor * output = ggml_mul_mat(ctx0, model.layers[il].altup_router, router_inputs);
return ggml_tanh(ctx0, output); // [n_altup, n_tokens]
}
// input cur shape: [n_embd, n_tokens, n_altup]
// output shape: [n_embd, n_tokens, n_altup]
ggml_tensor * llm_build_gemma3n_iswa::altup_predict(ggml_tensor * cur, int il) {
ggml_tensor * activated = view_2d_slice(cur, i_altup_act); // [n_embd, n_tokens]
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
cb(modalities, "modalities", il);
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_predict_coef, modalities);
cb(all_coefs, "all_coefs", il);
// first dim now having n_altup^2 elements, we reshape it to 2D (so we end up with 3D tensor)
all_coefs = ggml_reshape_3d(ctx0, all_coefs, n_altup, n_altup, n_tokens);
// permute to [n_altup, n_embd, n_tokens]
ggml_tensor * cur_permuted = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
ggml_tensor * predictions = ggml_mul_mat(ctx0, cur_permuted, all_coefs); // [n_altup, n_embd, n_tokens]
// final shape must be the same as cur: [n_embd, n_tokens, n_altup]
predictions = ggml_cont(ctx0, ggml_permute(ctx0, predictions, 0, 2, 1, 3));
predictions = ggml_add(ctx0, predictions, cur);
cb(predictions, "predictions", il);
return predictions;
}
// input predictions shape: [n_embd, n_tokens, n_altup]
// input activated shape: [n_embd, n_tokens]
// output shape: [n_embd, n_tokens, n_altup]
ggml_tensor * llm_build_gemma3n_iswa::altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il) {
ggml_tensor * modalities = altup_compute_router_modalities(activated, il); // [n_altup, n_tokens]
cb(modalities, "modalities", il);
ggml_tensor * active_prediction = view_2d_slice(predictions, i_altup_act);
ggml_tensor * innovation = ggml_sub(ctx0, activated, active_prediction); // [n_embd, n_tokens]
cb(innovation, "innovation", il);
ggml_tensor * all_coefs = build_lora_mm(model.layers[il].altup_correct_coef, modalities); // [n_altup, n_tokens]
all_coefs = ggml_scale_bias(ctx0, all_coefs, 1.0f, 1.0f); // + 1.0
cb(all_coefs, "all_coefs", il);
all_coefs = ggml_transpose(ctx0, all_coefs); // [n_tokens, n_altup]
all_coefs = ggml_cont_3d(ctx0, all_coefs, 1, n_tokens, n_altup); // [1, n_tokens, n_altup]
innovation = ggml_repeat_4d(ctx0, innovation, n_embd, n_tokens, n_altup, 1);
ggml_tensor * corrected = ggml_mul(ctx0, innovation, all_coefs); // [n_embd, n_tokens, n_altup]
corrected = ggml_add(ctx0, corrected, predictions); // [n_embd, n_tokens, n_altup]
cb(corrected, "corrected", il);
return corrected;
}

View File

@ -0,0 +1,153 @@
#include "models.h"
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Only process up to last layer (skip final NextN layer)
// Final layer tensors are loaded but not processed in forward pass
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// Post-attention norm
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// Process routed experts using existing MoE infrastructure
ggml_tensor * routed_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input
ggml_tensor * shared_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,127 @@
#include "models.h"
llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv == nullptr) {
Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
} else {
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
}
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Post-attention norm (new!)
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Add the input (residual connection after post-attention norm)
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FF
{
// Pre-MLP norm
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MLP
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
// Post-MLP norm
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_mlp_norm", il);
}
// Add residual connection after post-MLP norm
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
// Final norm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// Output projection
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,105 @@
#include "models.h"
llm_build_gpt2::llm_build_gpt2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * pos;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,144 @@
#include "models.h"
llm_build_gptneox::llm_build_gptneox(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// ffn
if (hparams.use_par_res) {
// attention and ffn are computed in parallel
// x = x + attn(ln1(x)) + ffn(ln2(x))
ggml_tensor * attn_out = cur;
cur = build_norm(inpL,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, inpL);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, attn_out);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
} else {
// attention and ffn are computed sequentially
// x = x + attn(ln1(x))
// x = x + ffn(ln2(x))
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,196 @@
#include "models.h"
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Positional embeddings populated if rope enabled
ggml_tensor * inp_pos = nullptr;
if (hparams.rope_finetuned) {
inp_pos = build_inp_pos();
}
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.is_recurrent(il)) {
// ssm layer //
cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
} else {
// attention layer //
cur = build_attention_layer(cur, inp_pos, inp->get_attn(), model, n_embd_head, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// ffn
cur = build_layer_ffn(cur, inpSA, model, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// For Granite architectures - scale logits
if (hparams.f_logit_scale) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_granite_hybrid::build_attention_layer(ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
const bool use_rope = hparams.rope_finetuned;
if (use_rope) {
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_granite_hybrid::build_layer_ffn(ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// For Granite MoE Shared
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp =
build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
}
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

View File

@ -0,0 +1,211 @@
#include "models.h"
llm_build_granite::llm_build_granite(
const llama_model & model,
const llm_graph_params & params)
: llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - built only if rope enabled
ggml_tensor * inp_pos = nullptr;
if (hparams.rope_finetuned) {
inp_pos = build_inp_pos();
}
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
cur = build_attention_layer(
cur, inp_pos, inp_attn,
model, n_embd_head, il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// ffn
cur = build_layer_ffn(cur, inpSA, model, il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
// For Granite architectures - scale logits
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_granite::build_attention_layer(
ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
const bool use_rope = hparams.rope_finetuned;
if (use_rope) {
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_granite::build_layer_ffn(
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il) {
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// For Granite MoE Shared
if (hparams.n_ff_shexp > 0) {
ggml_tensor * ffn_shexp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
}
// For Granite architectures - scale residual
if (hparams.f_residual_scale) {
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

View File

@ -0,0 +1,283 @@
#include "models.h"
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const auto & layer = model.layers[il];
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t dt_rank = hparams.ssm_dt_rank;
const int64_t n_head = d_inner;
const int64_t head_dim = 1;
const int64_t n_seqs = ubatch.n_seqs;
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
// split the above in two
// => {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
ggml_tensor * z =
ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner * ggml_element_size(xz));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all, (d_conv - 1) * (d_inner) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner) *ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
// bias
x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
x = ggml_silu(ctx0, x);
}
// ssm
{
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
// split
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
ggml_tensor * B =
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
x_db->nb[2], ggml_element_size(x_db) * dt_rank);
ggml_tensor * C =
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
x_db->nb[2], ggml_element_size(x_db) * (dt_rank + d_state));
// Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
}
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = build_lora_mm(layer.ssm_dt, dt);
dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
cur = x;
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
ggml_tensor * A = layer.ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, x->nb[3] * x->ne[3]),
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(layer.ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
return cur;
}
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) const {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_head = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_head;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
// split the above in three
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * zxBCdt->nb[0],
zxBCdt->nb[1], zxBCdt->nb[2], 0);
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2 * n_group * d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1],
zxBCdt->nb[2], d_inner * ggml_element_size(zxBCdt));
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2],
(2 * d_inner + 2 * n_group * d_state) * ggml_element_size(zxBCdt));
// conv
{
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs,
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
ggml_element_size(conv_states_all))));
// 1D convolution
// The equivalent is to make a self-overlapping view of conv_x
// over d_conv columns at each stride in the 3rd dimension,
// then element-wise multiply that with the conv1d weight,
// then sum the elements of each row,
// (the last two steps are a dot product over rows (also doable with mul_mat))
// then permute away the ne[0] dimension,
// and then you're left with the resulting x tensor.
// For simultaneous sequences, all sequences need to have the same length.
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
// bias
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
xBC = ggml_silu(ctx0, xBC);
}
// ssm
{
// These correspond to V K Q in SSM/attention duality
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * xBC->nb[0],
xBC->nb[1], xBC->nb[2], 0);
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
xBC->nb[1], xBC->nb[2], d_inner * ggml_element_size(xBC));
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
xBC->nb[1], xBC->nb[2], (d_inner + n_group * d_state) * ggml_element_size(xBC));
// {n_head, n_seq_tokens, n_seqs}
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
ggml_tensor * A = model.layers[il].ssm_a;
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
// TODO: use semistructured matrices to implement state-space duality
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, ggml_nelements(x) * x->nb[0]),
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head * x->nb[1],
n_seq_tokens * n_head * x->nb[1], 0);
// TODO: skip computing output earlier for unused tokens
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
cb(y, "mamba2_y_add_d", il);
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
// grouped RMS norm
if (model.layers[il].ssm_norm) {
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
}
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
cur = build_lora_mm(model.layers[il].ssm_out, y);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}

View File

@ -0,0 +1,159 @@
#include "models.h"
llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_out_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_out_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// MoE branch
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_GELU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
if (model.layers[il].ffn_up) {
ggml_tensor * ffn_out = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_PAR, il);
cb(ffn_out, "ffn_out", il);
cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
cb(cur, "ffn_out", il);
} else {
cur = moe_out;
}
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
// final logit soft-capping
if (hparams.f_final_logit_softcapping) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,141 @@
#include "models.h"
llm_build_grovemoe::llm_build_grovemoe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, cur); // [n_expert, n_tokens]
cb(probs, "ffn_moe_logits", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
nullptr,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il,
probs);
cb(moe_out, "ffn_moe_out", il);
cur = moe_out;
// TODO: Only do the expert selection and weights once
moe_out = build_moe_ffn(cur,
nullptr,
model.layers[il].ffn_up_chexps,
model.layers[il].ffn_gate_chexps,
model.layers[il].ffn_down_chexps,
nullptr,
n_chunk_expert, n_expert_used > n_chunk_expert ? n_chunk_expert : n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il,
probs);
cb(moe_out, "ffn_adj_moe_out", il);
cur = ggml_add(ctx0, cur, ggml_scale(ctx0, moe_out, hparams.expert_group_scale));
cb(cur, "ffn_final_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,132 @@
#include "models.h"
llm_build_hunyuan_dense::llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, nullptr,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_norm", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, nullptr,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_norm", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_mlp, "ffn_out", il);
cur = ggml_add(ctx0, cur_mlp, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,154 @@
#include "models.h"
llm_build_hunyuan_moe::llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, nullptr,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_norm", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, nullptr,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_norm", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_mlp, "ffn_mlp", il);
// MoE branch
ggml_tensor * cur_moe = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU,
true, // norm_topk_prob
false,
0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur_moe, "ffn_moe_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
cb(ffn_out, "ffn_out", il);
cur = ggml_add(ctx0, ffn_out, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,120 @@
#include "models.h"
llm_build_internlm2::llm_build_internlm2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,86 @@
#include "models.h"
llm_build_jais::llm_build_jais(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*cur->nb[0]*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/float(n_embd_head), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// FF
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
inpL = ggml_add(ctx0, cur, ffn_inp);
cb(inpL, "l_out", il);
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,106 @@
#include "models.h"
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head_kv = hparams.n_head_kv(il);
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (n_head_kv == 0) {
cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
} else {
// Attention
struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// No RoPE :)
cur = build_attn(inp_hybrid->get_attn(),
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
cb(cur, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
// FFN
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
// residual
cur = ggml_add(ctx0, ffn_inp, cur);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,173 @@
#include "models.h"
#include "../llama-memory-hybrid.h"
llm_build_lfm2::llm_build_lfm2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {
ggml_tensor * cur = build_inp_embd(model.tok_embd);
cb(cur, "model.embed_tokens", -1);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
auto * prev_cur = cur;
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "model.layers.{}.operator_norm", il);
cur = hparams.is_recurrent(il) ? build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
}
cur = ggml_add(ctx0, prev_cur, cur);
auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
ggml_tensor * ffn_out =
is_moe_layer ? build_moe_feed_forward(ffn_norm_out, il) : build_dense_feed_forward(ffn_norm_out, il);
cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_out);
}
cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "model.embedding_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "lm_head", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_lfm2::build_moe_feed_forward(ggml_tensor * cur, int il) const {
return build_moe_ffn(cur,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0,
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
}
ggml_tensor * llm_build_lfm2::build_dense_feed_forward(ggml_tensor * cur, int il) const {
GGML_ASSERT(!model.layers[il].ffn_up_b);
GGML_ASSERT(!model.layers[il].ffn_gate_b);
GGML_ASSERT(!model.layers[il].ffn_down_b);
return build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
}
ggml_tensor * llm_build_lfm2::build_attn_block(ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
int il) const {
GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
const auto n_embd_head = hparams.n_embd_head_v;
const auto n_head_kv = hparams.n_head_kv(il);
auto * q = build_lora_mm(model.layers[il].wq, cur);
cb(q, "model.layers.{}.self_attn.q_proj", il);
auto * k = build_lora_mm(model.layers[il].wk, cur);
cb(k, "model.layers.{}.self_attn.k_proj", il);
auto * v = build_lora_mm(model.layers[il].wv, cur);
cb(v, "model.layers.{}.self_attn.v_proj", il);
q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
// qk norm
q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(q, "model.layers.{}.self_attn.q_layernorm", il);
k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(k, "model.layers.{}.self_attn.k_layernorm", il);
// RoPE
q = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
attn_factor, beta_fast, beta_slow);
k = ggml_rope_ext(ctx0, k, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
attn_factor, beta_fast, beta_slow);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q, k, v, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
cb(cur, "model.layers.{}.self_attn.out_proj", il);
return cur;
}
ggml_tensor * llm_build_lfm2::build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
const uint32_t kv_head = mctx_cur->get_head();
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
const int64_t n_seqs = ubatch.n_seqs;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
cb(bcx, "model.layers.{}.conv.in_proj", il);
constexpr auto n_chunks = 3;
GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
const auto chunk_size = bcx->ne[0] / n_chunks;
auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
0 * chunk_size * ggml_element_size(bcx));
auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
1 * chunk_size * ggml_element_size(bcx));
auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
2 * chunk_size * ggml_element_size(bcx));
auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
// read conv state
auto * conv_state = mctx_cur->get_r_l(il);
auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
bx = ggml_concat(ctx0, conv, bx, 0);
GGML_ASSERT(bx->ne[0] > conv->ne[0]);
// last d_conv columns is a new conv state
auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2],
(bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
// write new conv conv state
ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv,
ggml_view_1d(ctx0, conv_state, ggml_nelements(new_conv),
kv_head * d_conv * n_embd * ggml_element_size(new_conv))));
auto * conv_kernel = model.layers[il].shortconv.conv;
auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
cb(conv_out, "model.layers.{}.conv.conv", il);
auto * y = ggml_mul(ctx0, c, conv_out);
y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
cb(y, "model.layers.{}.conv.out_proj", il);
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
return y;
}

View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_llada_moe::llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,99 @@
#include "models.h"
llm_build_llada::llm_build_llada(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// Non-causal attention for diffusion
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,174 @@
#include "models.h"
llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// temperature tuning
ggml_tensor * inp_attn_scale = nullptr;
inp_attn_scale = build_inp_attn_scale();
auto * inp_attn = build_attn_inp_kv_iswa();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
(il + 1) % hparams.n_no_rope_layer_step != 0;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
} else if (inp_attn_scale) {
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (use_rope && hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
il);
// Shared experts
ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shexp_out, "ffn_moe_shexp", il);
cur = ggml_add(ctx0, moe_out, shexp_out);
cb(cur, "ffn_moe_out_merged", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,155 @@
#include "models.h"
llm_build_llama::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,55 @@
#include "models.h"
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
auto * rs_inp = build_rs_inp();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (model.arch == LLM_ARCH_MAMBA2) {
cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il);
} else {
cur = build_mamba_layer(rs_inp, cur, model, ubatch, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// residual
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
// final rmsnorm
cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,199 @@
#include "models.h"
llm_build_minicpm3::llm_build_minicpm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
//TODO: if the model varies, these parameters need to be read from the model
const int64_t n_embd_base = 256;
const float scale_embd = 12.0f;
const float scale_depth = 1.4f;
const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// scale the input embeddings
inpL = ggml_scale(ctx0, inpL, scale_embd);
cb(inpL, "inp_scaled", -1);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
q = build_norm(q,
model.layers[il].attn_q_a_norm, NULL,
LLM_NORM_RMS, il);
cb(q, "q", il);
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// scale_res - scale the hidden states for residual connection
const float scale_res = scale_depth/sqrtf(float(n_layer)); // TODO: is this correct?
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
// scale the hidden states for residual connection
cur = ggml_scale(ctx0, cur, scale_res);
cb(cur, "hidden_scaled_ffn", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head scaling
const float scale_lmhead = float(n_embd_base)/float(n_embd);
cur = ggml_scale(ctx0, cur, scale_lmhead);
cb(cur, "lmhead_scaling", -1);
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_minimax_m2::llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
// GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = inpL;
// self_attention
{
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,481 @@
#pragma once
#include "../llama-model.h"
#include "../llama-graph.h"
#include "../llama-memory-recurrent.h"
#include <cmath>
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params);
virtual ~llm_graph_context_mamba() = default;
ggml_tensor * build_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_mamba2_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) const;
};
// Base class for RWKV-related models
struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model;
llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params);
virtual ~llm_build_rwkv6_base() = default;
ggml_tensor * build_rwkv6_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const;
ggml_tensor * build_rwkv6_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
const llama_ubatch & ubatch,
int il) const;
};
// Base class for RWKV7-related models
struct llm_build_rwkv7_base : public llm_graph_context {
const llama_model & model;
llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params);
virtual ~llm_build_rwkv7_base() = default;
// RWKV7-specific graph building methods
ggml_tensor * build_rwkv7_channel_mix(const llama_layer * layer,
ggml_tensor * cur,
ggml_tensor * x_prev,
llm_arch arch) const;
ggml_tensor * build_rwkv7_time_mix(llm_graph_input_rs * inp,
ggml_tensor * cur,
ggml_tensor * x_prev,
ggml_tensor *& first_layer_value,
const llama_ubatch & ubatch,
int il) const;
};
struct llm_build_apertus : public llm_graph_context {
llm_build_apertus(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arcee : public llm_graph_context {
llm_build_arcee(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arctic : public llm_graph_context {
llm_build_arctic(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_arwkv7 : public llm_build_rwkv7_base {
llm_build_arwkv7(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_baichuan : public llm_graph_context {
llm_build_baichuan(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bailingmoe2 : public llm_graph_context {
llm_build_bailingmoe2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bailingmoe : public llm_graph_context {
llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bert : public llm_graph_context {
llm_build_bert(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bitnet : public llm_graph_context {
llm_build_bitnet(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_bloom : public llm_graph_context {
llm_build_bloom(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_chameleon : public llm_graph_context {
llm_build_chameleon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_chatglm : public llm_graph_context {
llm_build_chatglm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_codeshell : public llm_graph_context {
llm_build_codeshell(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_cogvlm : public llm_graph_context {
llm_build_cogvlm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_cohere2_iswa : public llm_graph_context {
llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_command_r : public llm_graph_context {
llm_build_command_r(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dbrx : public llm_graph_context {
llm_build_dbrx(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deepseek2 : public llm_graph_context {
llm_build_deepseek2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_deepseek : public llm_graph_context {
llm_build_deepseek(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dots1 : public llm_graph_context {
llm_build_dots1(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_dream : public llm_graph_context {
llm_build_dream(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_ernie4_5 : public llm_graph_context {
llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_ernie4_5_moe : public llm_graph_context {
llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_exaone4 : public llm_graph_context {
llm_build_exaone4(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_exaone : public llm_graph_context {
llm_build_exaone(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma2_iswa : public llm_graph_context {
llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3_iswa : public llm_graph_context {
llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3n_iswa : public llm_graph_context {
const llama_model & model;
const int64_t n_embd_head;
const int64_t n_embd_altup;
const int64_t n_altup;
const int i_altup_act;
const int n_layer_sparsity = 10; // number of layers using activation sparsity
const float f_sparsity_std_mul = 1.6448533535003662f; // std_multiplier = normal_dist.icdf(0.95)
llm_build_gemma3n_iswa(const llama_model & model, const llm_graph_params & params);
ggml_tensor * calc_magnitude(ggml_tensor * x);
ggml_tensor * view_2d_slice(ggml_tensor * x, int idx);
ggml_tensor * get_per_layer_inputs();
ggml_tensor * project_per_layer_inputs(ggml_tensor * inputs_embeds, ggml_tensor * inp_per_layer);
ggml_tensor * gaussian_topk(ggml_tensor * x);
ggml_tensor * altup_compute_router_modalities(ggml_tensor * x, int il);
ggml_tensor * altup_predict(ggml_tensor * cur, int il);
ggml_tensor * laurel(ggml_tensor * cur, int il);
ggml_tensor * altup_correct(ggml_tensor * predictions, ggml_tensor * activated, int il);
};
struct llm_build_gemma_embedding : public llm_graph_context {
llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma : public llm_graph_context {
llm_build_gemma(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_glm4 : public llm_graph_context {
llm_build_glm4(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_glm4_moe : public llm_graph_context {
llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gpt2 : public llm_graph_context {
llm_build_gpt2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gptneox : public llm_graph_context {
llm_build_gptneox(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_granite : public llm_graph_context {
llm_build_granite(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_attention_layer(
ggml_tensor * cur,
ggml_tensor * inp_pos,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
ggml_tensor * inpSA,
const llama_model & model,
const int il);
};
struct llm_build_granite_hybrid : public llm_graph_context_mamba {
llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_layer_ffn(ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn,
const llama_model & model,const int64_t n_embd_head, const int il);
};
struct llm_build_grok : public llm_graph_context {
llm_build_grok(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_grovemoe : public llm_graph_context {
llm_build_grovemoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_hunyuan_dense : public llm_graph_context {
llm_build_hunyuan_dense(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_hunyuan_moe : public llm_graph_context {
llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_internlm2 : public llm_graph_context {
llm_build_internlm2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jais : public llm_graph_context {
llm_build_jais(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_lfm2 : public llm_graph_context {
const llama_model & model;
llm_build_lfm2(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_moe_feed_forward(ggml_tensor * cur, int il) const;
ggml_tensor * build_dense_feed_forward(ggml_tensor * cur, int il) const;
ggml_tensor * build_attn_block(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn, int il) const;
ggml_tensor * build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il);
};
struct llm_build_llada : public llm_graph_context {
llm_build_llada(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llada_moe : public llm_graph_context {
llm_build_llada_moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llama : public llm_graph_context {
llm_build_llama(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_llama_iswa : public llm_graph_context {
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_minicpm3 : public llm_graph_context {
llm_build_minicpm3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_minimax_m2 : public llm_graph_context {
llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mpt : public llm_graph_context {
llm_build_mpt(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron_h : public llm_graph_context_mamba {
llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn,
const llama_model & model, const int64_t n_embd_head, const int il);
};
struct llm_build_neo_bert : public llm_graph_context {
llm_build_neo_bert(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_olmo2 : public llm_graph_context {
llm_build_olmo2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_olmoe : public llm_graph_context {
llm_build_olmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_olmo : public llm_graph_context {
llm_build_olmo(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_openai_moe_iswa : public llm_graph_context {
llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_openelm : public llm_graph_context {
llm_build_openelm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_orion : public llm_graph_context {
llm_build_orion(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_pangu_embedded : public llm_graph_context {
llm_build_pangu_embedded(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_phi2 : public llm_graph_context {
llm_build_phi2(const llama_model & model, const llm_graph_params & params);
};
template<bool iswa>
struct llm_build_phi3 : public llm_graph_context {
llm_build_phi3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plamo2 : public llm_graph_context_mamba {
llm_build_plamo2(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_plamo2_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_plamo2_attn_layer(llm_graph_input_attn_kv * inp, ggml_tensor * inp_pos, ggml_tensor * cur,
const llama_model & model, int il);
};
struct llm_build_plamo : public llm_graph_context {
llm_build_plamo(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plm : public llm_graph_context {
llm_build_plm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2 : public llm_graph_context {
llm_build_qwen2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2moe : public llm_graph_context {
llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen2vl : public llm_graph_context {
llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3 : public llm_graph_context {
llm_build_qwen3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3moe : public llm_graph_context {
llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3vl : public llm_graph_context {
llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen : public llm_graph_context {
llm_build_qwen(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_refact : public llm_graph_context {
llm_build_refact(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv6 : public llm_build_rwkv6_base {
llm_build_rwkv6(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_rwkv7 : public llm_build_rwkv7_base {
llm_build_rwkv7(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_seed_oss : public llm_graph_context {
llm_build_seed_oss(const llama_model & model, const llm_graph_params & params);
};
template <bool iswa>
struct llm_build_smallthinker : public llm_graph_context {
llm_build_smallthinker(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_smollm3 : public llm_graph_context {
llm_build_smollm3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_stablelm : public llm_graph_context {
llm_build_stablelm(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_starcoder2 : public llm_graph_context {
llm_build_starcoder2(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_starcoder : public llm_graph_context {
llm_build_starcoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_dec : public llm_graph_context {
llm_build_t5_dec(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_enc : public llm_graph_context {
llm_build_t5_enc(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_xverse : public llm_graph_context {
llm_build_xverse(const llama_model & model, const llm_graph_params & params);
};

View File

@ -0,0 +1,126 @@
#include "models.h"
llm_build_mpt::llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * pos;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
auto * inp_attn = build_attn_inp_kv();
if (model.pos_embd) {
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
cb(pos, "pos_embd", -1);
inpL = ggml_add(ctx0, inpL, pos);
cb(inpL, "inpL", -1);
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * attn_norm;
attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il);
cb(attn_norm, "attn_norm", il);
// self-attention
{
cur = attn_norm;
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
if (model.layers[il].bqkv) {
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
}
if (hparams.f_clamp_kqv > 0.0f) {
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(cur, "wqkv_clamped", il);
}
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 0 * sizeof(float) * (n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
// Q/K Layernorm
if (model.layers[il].attn_q_norm) {
Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// Add the input
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
cb(ffn_inp, "ffn_inp", il);
// feed forward
{
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_build_forward_expand(gf, inpL);
auto * inp = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
if (hparams.is_recurrent(il)) {
// ssm layer //
cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
} else if (hparams.n_ff(il) == 0) {
// attention layer //
cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
} else {
cur = build_ffn_layer(cur, model, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// add residual
cur = ggml_add(ctx0, cur, inpSA);
cb(cur, "nemotron_h_block_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
const int64_t n_embd_head,
const int il) {
// compute Q and K and (optionally) RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
const float kq_scale =
hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
return cur;
}

View File

@ -0,0 +1,122 @@
#include "models.h"
llm_build_nemotron::llm_build_nemotron(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
//GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm,
model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,104 @@
#include "models.h"
llm_build_neo_bert::llm_build_neo_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
ggml_tensor * inp_pos = build_inp_pos();
// construct input embeddings (token, type, position)
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "inp_embd", -1);
auto * inp_attn = build_attn_inp_no_cache();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * cur = inpL;
// pre-norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
{
ggml_tensor * Qcur;
ggml_tensor * Kcur;
ggml_tensor * Vcur;
// self-attention
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
// RoPE
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
// re-add the layer input
cur = ggml_add(ctx0, cur, inpL);
ggml_tensor * ffn_inp = cur;
cb(ffn_inp, "ffn_inp", il);
// pre-norm
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
cur = build_ffn(cur,
model.layers[il].ffn_up,
NULL, NULL, NULL, NULL, NULL,
model.layers[il].ffn_down,
NULL, NULL, NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
// attentions bypass the intermediate layer
cur = ggml_add(ctx0, cur, ffn_inp);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm_enc, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_embd", -1);
res->t_embd = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_olmo::llm_build_olmo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
NULL, NULL,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (hparams.f_clamp_kqv > 0.0f) {
Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
NULL, NULL,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
NULL, NULL,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,150 @@
#include "models.h"
template <bool iswa>
llm_build_olmo2<iswa>::llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = inpL;
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
const bool is_swa = hparams.is_swa(il);
if (is_swa) {
// For sliding window layers, Olmo3 use regular rope with no yarn rope scaling.
// This is achieved here by setting freq_scale and attn_factor to 1.
// We also set ext_factor to 0 to avoid a few unnecessary computations.
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
0.0, 1.0, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, 1.0,
0.0, 1.0, beta_fast, beta_slow
);
} else {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
cur = build_norm(cur,
model.layers[il].attn_post_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_ffn(ffn_inp,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_olmo2<false>;
template struct llm_build_olmo2<true>;

View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_olmoe::llm_build_olmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, nullptr,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = ffn_inp;
cur = build_norm(cur,
model.layers[il].attn_post_norm, nullptr,
LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b,
model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b,
model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SWIGLU_OAI_MOE, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
il);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,124 @@
#include "models.h"
llm_build_openelm::llm_build_openelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const int64_t n_head = hparams.n_head(il);
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_head_qkv = 2*n_head_kv + n_head;
cur = inpL;
ggml_tensor * residual = cur;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur,
model.layers[il].attn_q_norm, NULL,
LLM_NORM_RMS, il);
cb(Qcur, "Qcur", il);
Kcur = build_norm(Kcur,
model.layers[il].attn_k_norm, NULL,
LLM_NORM_RMS, il);
cb(Kcur, "Kcur", il);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, NULL,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, NULL,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Qcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
// norm
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,123 @@
#include "models.h"
llm_build_orion::llm_build_orion(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
// if (model.layers[il].bq) {
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
// cb(Qcur, "Qcur", il);
// }
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
// if (model.layers[il].bk) {
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
// cb(Kcur, "Kcur", il);
// }
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
// if (model.layers[il].bv) {
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
// cb(Vcur, "Vcur", il);
// }
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_pangu_embedded::llm_build_pangu_embedded(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (model.output_b != nullptr) {
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,121 @@
#include "models.h"
llm_build_phi2::llm_build_phi2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * attn_norm_output;
ggml_tensor * ffn_output;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM, il);
cb(attn_norm_output, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
} else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
// with phi2, we scale the Q to avoid precision issues
// ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
}
// FF
{
ffn_output = build_ffn(attn_norm_output,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, il);
cb(ffn_output, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_output);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,152 @@
#include "models.h"
template<bool iswa>
llm_build_phi3<iswa>::llm_build_phi3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
auto * residual = inpL;
// self-attention
{
// rope freq factors for 128k context
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor* attn_norm_output = build_norm(inpL,
model.layers[il].attn_norm,
model.layers[il].attn_norm_b,
LLM_NORM_RMS, il);
cb(attn_norm_output, "attn_norm", il);
ggml_tensor * Qcur = nullptr;
ggml_tensor * Kcur = nullptr;
ggml_tensor * Vcur = nullptr;
if (model.layers[il].wqkv) {
cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
cb(cur, "wqkv", il);
Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 0 * sizeof(float) * (n_embd));
Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd));
Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
}
else {
Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
cb(Qcur, "Qcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
}
cur = ggml_add(ctx0, cur, residual);
residual = cur;
cur = build_norm(cur,
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward network
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
} else {
// MoE branch
cur = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(cur, "ffn_moe_out", il);
}
cur = ggml_add(ctx0, residual, cur);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = build_norm(inpL,
model.output_norm,
model.output_norm_b,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
if (model.output_b != nullptr) {
cb(cur, "result_output_no_bias", -1);
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
// Explicit template instantiations
template struct llm_build_phi3<false>;
template struct llm_build_phi3<true>;

View File

@ -0,0 +1,110 @@
#include "models.h"
llm_build_plamo::llm_build_plamo(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
ggml_tensor * sa_inp = cur;
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
sa_inp = ggml_get_rows(ctx0, sa_inp, inp_out_ids);
inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
}
ggml_tensor * sa_out = cur;
cur = sa_inp;
// feed-forward network
{
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, sa_out);
cur = ggml_add(ctx0, cur, inpL);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,316 @@
#include "models.h"
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "embedding_output", -1);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_hybrid = build_inp_mem_hybrid();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * residual = inpL;
// ggml_graph_add_node(gf, model.layers[il].attn_norm);
// cb(model.layers[il].attn_norm, "attn_norm", il);
// pre_mixer_norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
// check if this layer is Mamba or Attention
bool is_mamba_layer = hparams.is_recurrent(il);
if (is_mamba_layer) {
// PLaMo-2 Mamba layer
cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
} else {
// PLaMo-2 Attention layer
cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
}
// post_mixer_norm
cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_post_norm", il);
// residual connection
cur = ggml_add(ctx0, cur, residual);
cb(cur, "attn_residual", il);
residual = cur;
// pre-ffn norm
cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_pre_norm", il);
// feed-forward network
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
// post ffn norm
cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_post_norm", il);
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
residual = ggml_get_rows(ctx0, residual, inp_out_ids);
}
// residual connection
cur = ggml_add(ctx0, cur, residual);
cb(cur, "ffn_residual", il);
inpL = cur;
}
cur = inpL;
// final norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
// Explicitly mark as output tensor to ensure proper backend assignment
ggml_set_output(cur);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
ggml_tensor * llm_build_plamo2::build_plamo2_attn_layer(llm_graph_input_attn_kv * inp,
ggml_tensor * inp_pos,
ggml_tensor * cur,
const llama_model & model,
int il) {
// self-attention
{
// PLaMo-2 uses combined QKV tensor
ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
cb(qkv, "wqkv", il);
// split QKV tensor into Q, K, V
const int64_t n_embd_head_q = hparams.n_embd_head_k;
const int64_t n_embd_head_k = hparams.n_embd_head_k;
const int64_t n_embd_head_v = hparams.n_embd_head_v;
int32_t n_head = hparams.n_head(il);
int32_t n_head_kv = hparams.n_head_kv(il);
const int64_t q_offset = 0;
const int64_t k_offset = n_embd_head_q * n_head;
const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float),
qkv->nb[1], q_offset * ggml_element_size(qkv));
ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float),
qkv->nb[1], k_offset * ggml_element_size(qkv));
ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float),
qkv->nb[1], v_offset * ggml_element_size(qkv));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
cur = build_attn(inp,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f / sqrtf(float(n_embd_head_v)), il);
}
cb(cur, "attn_out", il);
return cur;
}
ggml_tensor * llm_build_plamo2::build_plamo2_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
int il) {
const auto * mctx_cur = inp->mctx;
const auto kv_head = mctx_cur->get_head();
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = hparams.ssm_d_inner;
const int64_t d_state = hparams.ssm_d_state;
const int64_t n_heads = hparams.ssm_dt_rank;
const int64_t head_dim = d_inner / n_heads;
const int64_t n_group = hparams.ssm_n_group;
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
// in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
cb(zx, "mamba_in_proj", il);
// {8192, 5, 1, 1} -> {8192, 1, 5, 1}
zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
cb(zx, "mamba_in_proj_out", il);
// split into z and x
// => {head_dim * n_heads, n_seq_tokens, n_seqs}
ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3],
head_dim * ggml_element_size(zx));
x = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
// x = ggml_permute(ctx0, x, 0, 2, 1, 3);
cb(x, "mamba_x_split", il);
ggml_tensor * z =
ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
cb(z, "mamba_z_split", il);
// conv1d
{
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
cb(conv_x, "mamba_conv1d_input", il);
// copy last (d_conv - 1) columns back into the state cache
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
n_seq_tokens * (conv_x->nb[0]));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
ggml_view_1d(ctx0, conv_states_all,
(d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
ggml_element_size(conv_states_all))));
cb(conv_states_all, "mamba_conv1d_state", il);
// 1D convolution
x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
cb(x, "mamba_conv1d", il);
x = ggml_silu(ctx0, x);
cb(x, "mamba_conv1d_silu", il);
}
// SSM
{
// bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
cb(x_bcdt, "mamba_bcdt_proj", il);
// split into dt, B, C
const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
ggml_tensor * B = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
ggml_tensor * C = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
ggml_element_size(x_bcdt) * d_state);
ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
ggml_element_size(x_bcdt) * (2 * d_state));
cb(B, "mamba_B_raw", il);
cb(C, "mamba_C_raw", il);
cb(dt, "mamba_dt_raw", il);
// Apply RMS norm to dt, B, C (PLaMo-2 specific)
B = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
C = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
cb(B, "mamba_B_normed", il);
cb(C, "mamba_C_normed", il);
cb(dt, "mamba_dt_normed", il);
// dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
dt = build_lora_mm(model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
cb(dt, "mamba_dt_proj", il);
ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
cb(A, "mamba_A", il);
x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x),
head_dim * n_heads * ggml_element_size(x),
head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
// use the states and the indices provided by build_recurrent_state
// (this is necessary in order to properly use the states before they are overwritten,
// while avoiding to make unnecessary copies of the states)
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
// Custom operator to optimize the parallel associative scan
// as described in the Annex D of the Mamba paper.
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
};
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
cb(y_ssm, "mamba_ssm_scan", il);
// store last states
ggml_build_forward_expand(
gf, ggml_cpy(
ctx0,
ggml_view_1d(ctx0, y_ssm, n_heads * head_dim * d_state * n_seqs,
n_heads * head_dim * n_seq_tokens * n_seqs * ggml_element_size(y_ssm)),
ggml_view_1d(ctx0, ssm_states_all, n_heads * head_dim * d_state * n_seqs,
kv_head * n_seqs * n_heads * head_dim * d_state * ggml_element_size(ssm_states_all))));
cb(ssm_states_all, "mamba_ssm_states", il);
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs,
head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x),
head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
cb(y, "mamba_y_view", il);
// Add D parameter and apply gating with z
// {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
cb(y, "mamba_y_add_d", il);
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
cb(y, "mamba_y_swiglu_z", il);
// out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
y = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
cur = build_lora_mm(model.layers[il].ssm_out, y);
cb(cur, "mamba_out_proj", il);
}
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
cb(cur, "mamba_out", il);
return cur;
}

View File

@ -0,0 +1,168 @@
#include "models.h"
llm_build_plm::llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,108 @@
#include "models.h"
llm_build_qwen::llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
cur = build_lora_mm(model.layers[il].wqkv, cur);
cb(cur, "wqkv", il);
cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
cb(cur, "bqkv", il);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
// using mode = 2 for neox mode
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward forward
{
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,117 @@
#include "models.h"
llm_build_qwen2::llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
if (model.output_b != nullptr) {
cur = ggml_add(ctx0, cur, model.output_b);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -0,0 +1,151 @@
#include "models.h"
llm_build_qwen2moe::llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out =
build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
il);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
{
ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
// sigmoid
ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
cb(cur_gate, "ffn_shexp_gate", il);
ggml_tensor * cur_ffn = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur_ffn, "ffn_shexp", il);
ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
cb(ffn_shexp_out, "ffn_shexp_out", il);
moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
cb(moe_out, "ffn_out", il);
cur = moe_out;
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

Some files were not shown because too many files have changed in this diff Show More