sync : llama.cpp
This commit is contained in:
parent
0e5deca8e2
commit
b12abefa9b
|
|
@ -0,0 +1,16 @@
|
||||||
|
set( CMAKE_SYSTEM_NAME Darwin )
|
||||||
|
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||||
|
|
||||||
|
set( target arm64-apple-darwin-macho )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER clang )
|
||||||
|
set( CMAKE_CXX_COMPILER clang++ )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||||
|
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||||
|
|
||||||
|
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
|
||||||
|
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
|
||||||
|
|
||||||
|
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||||
|
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||||
|
|
@ -0,0 +1,16 @@
|
||||||
|
set( CMAKE_SYSTEM_NAME Windows )
|
||||||
|
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||||
|
|
||||||
|
set( target arm64-pc-windows-msvc )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER clang )
|
||||||
|
set( CMAKE_CXX_COMPILER clang++ )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||||
|
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||||
|
|
||||||
|
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
|
||||||
|
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
|
||||||
|
|
||||||
|
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||||
|
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||||
|
|
@ -0,0 +1,29 @@
|
||||||
|
set(CMAKE_SYSTEM_NAME Linux)
|
||||||
|
set(CMAKE_SYSTEM_PROCESSOR riscv64)
|
||||||
|
set(CMAKE_SYSTEM_VERSION 1)
|
||||||
|
|
||||||
|
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
|
||||||
|
message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
|
||||||
|
else()
|
||||||
|
set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
|
||||||
|
if (DEFINED ENV{RISCV_ROOT_PATH})
|
||||||
|
file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
|
||||||
|
else()
|
||||||
|
message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
|
||||||
|
set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
|
||||||
|
set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
|
||||||
|
set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
|
||||||
|
set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
|
||||||
|
set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
|
||||||
|
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
|
||||||
|
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
|
||||||
|
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
|
||||||
|
set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
|
||||||
|
set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
|
||||||
|
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")
|
||||||
|
|
@ -0,0 +1,5 @@
|
||||||
|
set( CMAKE_SYSTEM_NAME Windows )
|
||||||
|
set( CMAKE_SYSTEM_PROCESSOR x86_64 )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER clang )
|
||||||
|
set( CMAKE_CXX_COMPILER clang++ )
|
||||||
|
|
@ -90,6 +90,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||||
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
|
{ LLM_ARCH_BAILINGMOE2, "bailingmoe2" },
|
||||||
{ LLM_ARCH_DOTS1, "dots1" },
|
{ LLM_ARCH_DOTS1, "dots1" },
|
||||||
{ LLM_ARCH_ARCEE, "arcee" },
|
{ LLM_ARCH_ARCEE, "arcee" },
|
||||||
|
{ LLM_ARCH_AFMOE, "afmoe" },
|
||||||
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
|
{ LLM_ARCH_ERNIE4_5, "ernie4_5" },
|
||||||
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
|
{ LLM_ARCH_ERNIE4_5_MOE, "ernie4_5-moe" },
|
||||||
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
|
||||||
|
|
@ -333,6 +334,36 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_AFMOE,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||||
|
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||||
|
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_GATE, "blk.%d.attn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||||
|
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_LLAMA4,
|
LLM_ARCH_LLAMA4,
|
||||||
{
|
{
|
||||||
|
|
@ -2444,6 +2475,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||||
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
|
{LLM_TENSOR_ATTN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
|
||||||
|
|
|
||||||
|
|
@ -94,6 +94,7 @@ enum llm_arch {
|
||||||
LLM_ARCH_BAILINGMOE2,
|
LLM_ARCH_BAILINGMOE2,
|
||||||
LLM_ARCH_DOTS1,
|
LLM_ARCH_DOTS1,
|
||||||
LLM_ARCH_ARCEE,
|
LLM_ARCH_ARCEE,
|
||||||
|
LLM_ARCH_AFMOE,
|
||||||
LLM_ARCH_ERNIE4_5,
|
LLM_ARCH_ERNIE4_5,
|
||||||
LLM_ARCH_ERNIE4_5_MOE,
|
LLM_ARCH_ERNIE4_5_MOE,
|
||||||
LLM_ARCH_HUNYUAN_MOE,
|
LLM_ARCH_HUNYUAN_MOE,
|
||||||
|
|
@ -312,6 +313,7 @@ enum llm_tensor {
|
||||||
LLM_TENSOR_ATTN_POST_NORM,
|
LLM_TENSOR_ATTN_POST_NORM,
|
||||||
LLM_TENSOR_ATTN_ROT_EMBD,
|
LLM_TENSOR_ATTN_ROT_EMBD,
|
||||||
LLM_TENSOR_ATTN_SINKS,
|
LLM_TENSOR_ATTN_SINKS,
|
||||||
|
LLM_TENSOR_ATTN_GATE,
|
||||||
LLM_TENSOR_FFN_GATE_INP,
|
LLM_TENSOR_FFN_GATE_INP,
|
||||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||||
LLM_TENSOR_FFN_NORM,
|
LLM_TENSOR_FFN_NORM,
|
||||||
|
|
|
||||||
|
|
@ -1592,9 +1592,10 @@ ggml_tensor * llm_graph_context::build_attn(
|
||||||
int il) const {
|
int il) const {
|
||||||
// these nodes are added to the graph together so that they are not reordered
|
// these nodes are added to the graph together so that they are not reordered
|
||||||
// by doing so, the number of splits in the graph is reduced
|
// by doing so, the number of splits in the graph is reduced
|
||||||
|
// expand k later to enable rope fusion which directly writes into k-v cache
|
||||||
ggml_build_forward_expand(gf, q_cur);
|
ggml_build_forward_expand(gf, q_cur);
|
||||||
ggml_build_forward_expand(gf, k_cur);
|
|
||||||
ggml_build_forward_expand(gf, v_cur);
|
ggml_build_forward_expand(gf, v_cur);
|
||||||
|
ggml_build_forward_expand(gf, k_cur);
|
||||||
|
|
||||||
const auto * mctx_cur = inp->mctx;
|
const auto * mctx_cur = inp->mctx;
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -151,7 +151,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
||||||
p1 = std::numeric_limits<llama_pos>::max();
|
p1 = std::numeric_limits<llama_pos>::max();
|
||||||
}
|
}
|
||||||
|
|
||||||
// models like Mamba or RWKV can't have a state partially erased
|
// models like Mamba or RWKV can't have a state partially erased at the end
|
||||||
|
// of the sequence because their state isn't preserved for previous tokens
|
||||||
if (seq_id >= (int64_t) size) {
|
if (seq_id >= (int64_t) size) {
|
||||||
// could be fatal
|
// could be fatal
|
||||||
return false;
|
return false;
|
||||||
|
|
@ -160,8 +161,8 @@ bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
||||||
int32_t & tail_id = cells[seq_id].tail;
|
int32_t & tail_id = cells[seq_id].tail;
|
||||||
if (tail_id >= 0) {
|
if (tail_id >= 0) {
|
||||||
const auto & cell = cells[tail_id];
|
const auto & cell = cells[tail_id];
|
||||||
// partial intersection is invalid
|
// partial intersection is invalid if it includes the final pos
|
||||||
if ((0 < p0 && p0 < cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
if (0 < p0 && p0 <= cell.pos && p1 > cell.pos) {
|
||||||
//printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: partial intersection is invalid, so returning false\n");
|
//printf("[DEBUG] inside `llama_memory_recurrent::seq_rm`: partial intersection is invalid, so returning false\n");
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -84,6 +84,7 @@ const char * llm_type_name(llm_type type) {
|
||||||
case LLM_TYPE_15B: return "15B";
|
case LLM_TYPE_15B: return "15B";
|
||||||
case LLM_TYPE_16B: return "16B";
|
case LLM_TYPE_16B: return "16B";
|
||||||
case LLM_TYPE_20B: return "20B";
|
case LLM_TYPE_20B: return "20B";
|
||||||
|
case LLM_TYPE_26B: return "26B";
|
||||||
case LLM_TYPE_27B: return "27B";
|
case LLM_TYPE_27B: return "27B";
|
||||||
case LLM_TYPE_30B: return "30B";
|
case LLM_TYPE_30B: return "30B";
|
||||||
case LLM_TYPE_32B: return "32B";
|
case LLM_TYPE_32B: return "32B";
|
||||||
|
|
@ -695,6 +696,37 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||||
default: type = LLM_TYPE_UNKNOWN;
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_AFMOE:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
||||||
|
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||||
|
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||||
|
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
|
||||||
|
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
|
||||||
|
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||||
|
|
||||||
|
// Set up interleaved sliding window attention (ISWA)
|
||||||
|
// Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
|
||||||
|
if (hparams.n_swa > 0) {
|
||||||
|
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||||
|
hparams.set_swa_pattern(4);
|
||||||
|
} else {
|
||||||
|
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Default to sigmoid if not set
|
||||||
|
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
|
||||||
|
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 56: type = LLM_TYPE_6B; break;
|
||||||
|
case 32: type = LLM_TYPE_26B; break;
|
||||||
|
default: type = LLM_TYPE_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_DECI:
|
case LLM_ARCH_DECI:
|
||||||
{
|
{
|
||||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||||
|
|
@ -5749,6 +5781,71 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_AFMOE:
|
||||||
|
{
|
||||||
|
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||||
|
|
||||||
|
// output
|
||||||
|
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
||||||
|
|
||||||
|
// if output is NULL, init from the input tok embed
|
||||||
|
if (output == NULL) {
|
||||||
|
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
||||||
|
}
|
||||||
|
|
||||||
|
const int64_t n_ff_exp = hparams.n_ff_exp;
|
||||||
|
const int64_t n_expert_shared = hparams.n_expert_shared;
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
auto & layer = layers[i];
|
||||||
|
|
||||||
|
// dual attention normalization
|
||||||
|
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
|
||||||
|
// attention projections
|
||||||
|
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||||
|
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
|
||||||
|
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
|
||||||
|
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
|
||||||
|
|
||||||
|
// Q/K normalization
|
||||||
|
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||||
|
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
|
||||||
|
|
||||||
|
// attention gating
|
||||||
|
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
|
||||||
|
|
||||||
|
// dual ffn normalization
|
||||||
|
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
|
||||||
|
|
||||||
|
if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
|
||||||
|
// MoE layers
|
||||||
|
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
|
||||||
|
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
|
||||||
|
|
||||||
|
// grouped expert weights
|
||||||
|
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
|
||||||
|
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
|
||||||
|
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
|
||||||
|
|
||||||
|
// shared expert
|
||||||
|
if (n_expert_shared > 0) {
|
||||||
|
const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
|
||||||
|
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
|
||||||
|
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
|
||||||
|
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// Dense layers
|
||||||
|
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
|
||||||
|
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_ERNIE4_5:
|
case LLM_ARCH_ERNIE4_5:
|
||||||
case LLM_ARCH_ERNIE4_5_MOE:
|
case LLM_ARCH_ERNIE4_5_MOE:
|
||||||
{
|
{
|
||||||
|
|
@ -7243,6 +7340,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_arcee>(*this, params);
|
llm = std::make_unique<llm_build_arcee>(*this, params);
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_AFMOE:
|
||||||
|
{
|
||||||
|
llm = std::make_unique<llm_build_afmoe>(*this, params);
|
||||||
|
} break;
|
||||||
case LLM_ARCH_ERNIE4_5:
|
case LLM_ARCH_ERNIE4_5:
|
||||||
{
|
{
|
||||||
llm = std::make_unique<llm_build_ernie4_5>(*this, params);
|
llm = std::make_unique<llm_build_ernie4_5>(*this, params);
|
||||||
|
|
@ -7528,6 +7629,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||||
case LLM_ARCH_MINIMAX_M2:
|
case LLM_ARCH_MINIMAX_M2:
|
||||||
case LLM_ARCH_COGVLM:
|
case LLM_ARCH_COGVLM:
|
||||||
case LLM_ARCH_PANGU_EMBED:
|
case LLM_ARCH_PANGU_EMBED:
|
||||||
|
case LLM_ARCH_AFMOE:
|
||||||
return LLAMA_ROPE_TYPE_NEOX;
|
return LLAMA_ROPE_TYPE_NEOX;
|
||||||
|
|
||||||
case LLM_ARCH_QWEN2VL:
|
case LLM_ARCH_QWEN2VL:
|
||||||
|
|
|
||||||
|
|
@ -76,6 +76,7 @@ enum llm_type {
|
||||||
LLM_TYPE_15B,
|
LLM_TYPE_15B,
|
||||||
LLM_TYPE_16B,
|
LLM_TYPE_16B,
|
||||||
LLM_TYPE_20B,
|
LLM_TYPE_20B,
|
||||||
|
LLM_TYPE_26B,
|
||||||
LLM_TYPE_27B,
|
LLM_TYPE_27B,
|
||||||
LLM_TYPE_30B,
|
LLM_TYPE_30B,
|
||||||
LLM_TYPE_32B,
|
LLM_TYPE_32B,
|
||||||
|
|
@ -234,6 +235,7 @@ struct llama_layer {
|
||||||
struct ggml_tensor * wk_enc = nullptr;
|
struct ggml_tensor * wk_enc = nullptr;
|
||||||
struct ggml_tensor * wv_enc = nullptr;
|
struct ggml_tensor * wv_enc = nullptr;
|
||||||
struct ggml_tensor * wo_enc = nullptr;
|
struct ggml_tensor * wo_enc = nullptr;
|
||||||
|
struct ggml_tensor * wqkv_gate = nullptr;
|
||||||
|
|
||||||
// attention bias
|
// attention bias
|
||||||
struct ggml_tensor * bq = nullptr;
|
struct ggml_tensor * bq = nullptr;
|
||||||
|
|
|
||||||
|
|
@ -4,6 +4,7 @@
|
||||||
#include "llama-vocab.h"
|
#include "llama-vocab.h"
|
||||||
#include "llama-grammar.h"
|
#include "llama-grammar.h"
|
||||||
|
|
||||||
|
#include <array>
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
#include <cfloat>
|
#include <cfloat>
|
||||||
|
|
@ -1625,10 +1626,12 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||||
auto * ctx = new llama_sampler_grammar;
|
auto * ctx = new llama_sampler_grammar;
|
||||||
|
|
||||||
if (grammar_str != nullptr && grammar_str[0] != '\0') {
|
if (grammar_str != nullptr && grammar_str[0] != '\0') {
|
||||||
|
std::string trigger_pattern;
|
||||||
|
llama_grammar * grammar = nullptr;
|
||||||
// TODO: remove trigger_words support.
|
// TODO: remove trigger_words support.
|
||||||
if (trigger_words != nullptr && num_trigger_words > 0) {
|
if (trigger_words != nullptr && num_trigger_words > 0) {
|
||||||
GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
|
GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
|
||||||
std::string trigger_pattern("[\\s\\S]*?(");
|
trigger_pattern = "[\\s\\S]*?(";
|
||||||
for (size_t i = 0; i < num_trigger_words; ++i) {
|
for (size_t i = 0; i < num_trigger_words; ++i) {
|
||||||
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
|
||||||
if (i > 0) {
|
if (i > 0) {
|
||||||
|
|
@ -1637,15 +1640,17 @@ static struct llama_sampler * llama_sampler_init_grammar_impl(
|
||||||
trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
|
trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
|
||||||
}
|
}
|
||||||
trigger_pattern += ")[\\s\\S]*";
|
trigger_pattern += ")[\\s\\S]*";
|
||||||
const auto * trigger_pattern_c = trigger_pattern.c_str();
|
|
||||||
trigger_patterns = &trigger_pattern_c;
|
std::array<const char *, 1> tmp_trigger_patterns = { trigger_pattern.c_str() };
|
||||||
num_trigger_patterns = 1;
|
grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, tmp_trigger_patterns.data(), tmp_trigger_patterns.size(), trigger_tokens, num_trigger_tokens);
|
||||||
|
} else {
|
||||||
|
grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens);
|
||||||
}
|
}
|
||||||
*ctx = {
|
*ctx = {
|
||||||
/* .vocab = */ vocab,
|
/* .vocab = */ vocab,
|
||||||
/* .grammar_str = */ grammar_str,
|
/* .grammar_str = */ grammar_str,
|
||||||
/* .grammar_root = */ grammar_root,
|
/* .grammar_root = */ grammar_root,
|
||||||
/* .grammar = */ llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens),
|
/* .grammar = */ grammar,
|
||||||
};
|
};
|
||||||
if (!ctx->grammar) {
|
if (!ctx->grammar) {
|
||||||
delete ctx;
|
delete ctx;
|
||||||
|
|
|
||||||
|
|
@ -443,6 +443,17 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||||
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||||
};
|
};
|
||||||
break;
|
break;
|
||||||
|
case LLAMA_VOCAB_PRE_TYPE_AFMOE:
|
||||||
|
regex_exprs = {
|
||||||
|
// Digit handling - uses custom implementation in unicode.cpp
|
||||||
|
// Groups digits with leading 1-2 based on total length modulo 3
|
||||||
|
"\\p{AFMoE_digits}",
|
||||||
|
// CJK and Asian scripts (using direct Unicode literals)
|
||||||
|
"[一-鿿㐀-䶿豈--ゟ゠-ヿ・-゚⼀-เ--ក-က-႟ꩠ-ꩿꧠ-가-ᄀ-ᇿ]+",
|
||||||
|
// Main BPE pattern
|
||||||
|
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\\r\\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
||||||
|
};
|
||||||
|
break;
|
||||||
default:
|
default:
|
||||||
// default regex for BPE tokenization pre-processing
|
// default regex for BPE tokenization pre-processing
|
||||||
regex_exprs = {
|
regex_exprs = {
|
||||||
|
|
@ -1013,7 +1024,7 @@ private:
|
||||||
}
|
}
|
||||||
private:
|
private:
|
||||||
uint32_t get_node(size_t index) {
|
uint32_t get_node(size_t index) {
|
||||||
if (index > xcda_array_size) {
|
if (index >= xcda_array_size) {
|
||||||
throw std::runtime_error("Index out of array bounds in XCDA array!");
|
throw std::runtime_error("Index out of array bounds in XCDA array!");
|
||||||
}
|
}
|
||||||
return xcda_array[index];
|
return xcda_array[index];
|
||||||
|
|
@ -1993,6 +2004,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||||
tokenizer_pre == "grok-2") {
|
tokenizer_pre == "grok-2") {
|
||||||
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
|
pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
|
||||||
clean_spaces = false;
|
clean_spaces = false;
|
||||||
|
} else if (
|
||||||
|
tokenizer_pre == "afmoe") {
|
||||||
|
pre_type = LLAMA_VOCAB_PRE_TYPE_AFMOE;
|
||||||
|
clean_spaces = false;
|
||||||
} else if (
|
} else if (
|
||||||
tokenizer_pre == "minimax-m2") {
|
tokenizer_pre == "minimax-m2") {
|
||||||
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
|
||||||
|
|
|
||||||
|
|
@ -50,6 +50,7 @@ enum llama_vocab_pre_type {
|
||||||
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
|
LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
|
||||||
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
|
LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
|
||||||
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
|
LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
|
||||||
|
LLAMA_VOCAB_PRE_TYPE_AFMOE = 42,
|
||||||
};
|
};
|
||||||
|
|
||||||
struct LLM_KV;
|
struct LLM_KV;
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,187 @@
|
||||||
|
#include "models.h"
|
||||||
|
|
||||||
|
llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
|
||||||
|
ggml_tensor * cur;
|
||||||
|
ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = build_inp_embd(model.tok_embd);
|
||||||
|
|
||||||
|
// MuP scaling: embeddings * sqrt(hidden_size)
|
||||||
|
// mup_enabled = true, hidden_size = 1024, scale = 32.0
|
||||||
|
inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
|
||||||
|
cb(inpL, "inp_embd_scaled", -1);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
auto * inp_attn = build_attn_inp_kv_iswa();
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
|
const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// dual attention normalization (pre)
|
||||||
|
cur = build_norm(inpL,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
ggml_tensor * attn_inp = cur; // save input for gate computation
|
||||||
|
|
||||||
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
// compute gate from input
|
||||||
|
ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
|
||||||
|
cb(gate, "attn_gate_proj", il);
|
||||||
|
|
||||||
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||||
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
// Q/K normalization
|
||||||
|
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
||||||
|
cb(Qcur, "Qcur_normed", il);
|
||||||
|
cb(Kcur, "Kcur_normed", il);
|
||||||
|
|
||||||
|
// RoPE only for sliding_attention layers
|
||||||
|
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
||||||
|
((il + 1) % hparams.n_no_rope_layer_step) != 0;
|
||||||
|
if (use_rope) {
|
||||||
|
Qcur = ggml_rope_ext(
|
||||||
|
ctx0, Qcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
|
cb(Qcur, "Qcur_rope", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_ext(
|
||||||
|
ctx0, Kcur, inp_pos, nullptr,
|
||||||
|
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||||
|
cb(Kcur, "Kcur_rope", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||||
|
|
||||||
|
cur = build_attn(inp_attn,
|
||||||
|
NULL, NULL, // wo will be applied after gating
|
||||||
|
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||||
|
cb(cur, "attn_out", il);
|
||||||
|
|
||||||
|
// attention gating: attn_out * sigmoid(gate) BEFORE o_proj
|
||||||
|
gate = ggml_sigmoid(ctx0, gate);
|
||||||
|
cb(gate, "attn_gate_sig", il);
|
||||||
|
cur = ggml_mul(ctx0, cur, gate);
|
||||||
|
cb(cur, "attn_gated", il);
|
||||||
|
|
||||||
|
// now apply output projection
|
||||||
|
cur = build_lora_mm(model.layers[il].wo, cur);
|
||||||
|
cb(cur, "attn_o_proj", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
// dual attention normalization (post)
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.layers[il].attn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "attn_post_norm", il);
|
||||||
|
|
||||||
|
if (il == n_layer - 1 && inp_out_ids) {
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// dual ffn normalization (pre)
|
||||||
|
cur = build_norm(ffn_inp,
|
||||||
|
model.layers[il].ffn_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
|
// MoE or dense FFN
|
||||||
|
if ((uint32_t)il >= hparams.n_layer_dense_lead) {
|
||||||
|
// MoE layer with sigmoid routing, normalization, and scaling
|
||||||
|
ggml_tensor * moe_out = build_moe_ffn(cur,
|
||||||
|
model.layers[il].ffn_gate_inp,
|
||||||
|
model.layers[il].ffn_up_exps,
|
||||||
|
model.layers[il].ffn_gate_exps,
|
||||||
|
model.layers[il].ffn_down_exps,
|
||||||
|
model.layers[il].ffn_exp_probs_b,
|
||||||
|
n_expert, n_expert_used,
|
||||||
|
LLM_FFN_SILU,
|
||||||
|
hparams.expert_weights_norm, // norm_w (route_norm=True)
|
||||||
|
hparams.expert_weights_scale, // scale_w
|
||||||
|
hparams.expert_weights_scale, // w_scale (route_scale=2.826)
|
||||||
|
(llama_expert_gating_func_type) hparams.expert_gating_func,
|
||||||
|
il);
|
||||||
|
cb(moe_out, "ffn_moe_out", il);
|
||||||
|
|
||||||
|
// shared expert
|
||||||
|
if (hparams.n_expert_shared > 0) {
|
||||||
|
ggml_tensor * ffn_shexp = build_ffn(cur,
|
||||||
|
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||||
|
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||||||
|
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||||
|
cb(ffn_shexp, "ffn_shexp", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
} else {
|
||||||
|
cur = moe_out;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
// dense layer
|
||||||
|
cur = build_ffn(cur,
|
||||||
|
model.layers[il].ffn_up, NULL, NULL,
|
||||||
|
model.layers[il].ffn_gate, NULL, NULL,
|
||||||
|
model.layers[il].ffn_down, NULL, NULL,
|
||||||
|
NULL,
|
||||||
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
}
|
||||||
|
|
||||||
|
// dual ffn normalization (post)
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.layers[il].ffn_post_norm, NULL,
|
||||||
|
LLM_NORM_RMS, il);
|
||||||
|
cb(cur, "ffn_post_norm", il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cur = build_cvec(cur, il);
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = build_norm(cur,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM_RMS, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
res->t_embd = cur;
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = build_lora_mm(model.output, cur);
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
res->t_logits = cur;
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
}
|
||||||
|
|
@ -1,7 +1,5 @@
|
||||||
#include "models.h"
|
#include "models.h"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
|
llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
|
||||||
llm_graph_context(params) {
|
llm_graph_context(params) {
|
||||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
|
@ -19,6 +17,8 @@ llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_grap
|
||||||
|
|
||||||
auto * inp_attn = build_attn_inp_kv();
|
auto * inp_attn = build_attn_inp_kv();
|
||||||
|
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_tensor * inpSA = inpL;
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
|
@ -67,9 +67,8 @@ llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_grap
|
||||||
}
|
}
|
||||||
if (il == n_layer - 1) {
|
if (il == n_layer - 1) {
|
||||||
// skip computing output for unused tokens
|
// skip computing output for unused tokens
|
||||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
||||||
}
|
}
|
||||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
cb(ffn_inp, "ffn_inp", il);
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
|
||||||
|
|
@ -57,6 +57,10 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
||||||
int il) const;
|
int il) const;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
struct llm_build_afmoe : public llm_graph_context {
|
||||||
|
llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
|
||||||
|
};
|
||||||
|
|
||||||
struct llm_build_apertus : public llm_graph_context {
|
struct llm_build_apertus : public llm_graph_context {
|
||||||
llm_build_apertus(const llama_model & model, const llm_graph_params & params);
|
llm_build_apertus(const llama_model & model, const llm_graph_params & params);
|
||||||
};
|
};
|
||||||
|
|
|
||||||
|
|
@ -11,6 +11,8 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
|
||||||
|
|
||||||
auto * inp_attn = build_attn_inp_kv_iswa();
|
auto * inp_attn = build_attn_inp_kv_iswa();
|
||||||
|
|
||||||
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
ggml_tensor * inpSA = inpL;
|
ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
|
@ -69,7 +71,6 @@ llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model,
|
||||||
}
|
}
|
||||||
if (il == n_layer - 1) {
|
if (il == n_layer - 1) {
|
||||||
// skip computing output for unused tokens
|
// skip computing output for unused tokens
|
||||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
||||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -729,6 +729,80 @@ static std::vector<size_t> unicode_regex_split_custom_kimi_k2(const std::string
|
||||||
return bpe_offsets;
|
return bpe_offsets;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// AFMOE digit handling: splits digits with leading 1-2 based on total length modulo 3
|
||||||
|
static std::vector<size_t> unicode_regex_split_custom_afmoe(const std::string & text, const std::vector<size_t> & offsets) {
|
||||||
|
std::vector<size_t> bpe_offsets;
|
||||||
|
bpe_offsets.reserve(offsets.size());
|
||||||
|
|
||||||
|
const auto cpts = unicode_cpts_from_utf8(text);
|
||||||
|
|
||||||
|
size_t start = 0;
|
||||||
|
for (auto offset : offsets) {
|
||||||
|
const size_t offset_ini = start;
|
||||||
|
const size_t offset_end = start + offset;
|
||||||
|
assert(offset_end <= cpts.size());
|
||||||
|
start = offset_end;
|
||||||
|
|
||||||
|
auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
|
||||||
|
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
|
||||||
|
};
|
||||||
|
|
||||||
|
size_t _prev_end = offset_ini;
|
||||||
|
auto _add_token = [&] (const size_t end) -> size_t {
|
||||||
|
assert(_prev_end <= end && end <= offset_end);
|
||||||
|
size_t len = end - _prev_end;
|
||||||
|
if (len > 0) {
|
||||||
|
bpe_offsets.push_back(len);
|
||||||
|
}
|
||||||
|
_prev_end = end;
|
||||||
|
return len;
|
||||||
|
};
|
||||||
|
|
||||||
|
for (size_t pos = offset_ini; pos < offset_end; ) {
|
||||||
|
const auto flags = _get_flags(pos);
|
||||||
|
|
||||||
|
// Handle digit sequences with special splitting logic
|
||||||
|
if (flags.is_number) {
|
||||||
|
size_t digit_start = pos;
|
||||||
|
size_t digit_count = 0;
|
||||||
|
|
||||||
|
// Count consecutive digits
|
||||||
|
while (_get_flags(pos).is_number && pos < offset_end) {
|
||||||
|
digit_count++;
|
||||||
|
pos++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Split based on total length modulo 3
|
||||||
|
size_t remainder = digit_count % 3;
|
||||||
|
size_t current = digit_start;
|
||||||
|
|
||||||
|
// Emit leading 1-2 digits if needed
|
||||||
|
if (remainder > 0) {
|
||||||
|
_add_token(current + remainder);
|
||||||
|
current += remainder;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Emit groups of 3
|
||||||
|
while (current < digit_start + digit_count) {
|
||||||
|
_add_token(current + 3);
|
||||||
|
current += 3;
|
||||||
|
}
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// For non-digits, just move forward
|
||||||
|
pos++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add any remaining content
|
||||||
|
if (_prev_end < offset_end) {
|
||||||
|
_add_token(offset_end);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return bpe_offsets;
|
||||||
|
}
|
||||||
|
|
||||||
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
|
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
|
||||||
std::vector<size_t> bpe_offsets;
|
std::vector<size_t> bpe_offsets;
|
||||||
|
|
||||||
|
|
@ -742,6 +816,9 @@ static std::vector<size_t> unicode_regex_split_custom(const std::string & text,
|
||||||
} else if (regex_expr == "\\p{Han}+") {
|
} else if (regex_expr == "\\p{Han}+") {
|
||||||
// K2's first pattern - handle all K2 patterns together
|
// K2's first pattern - handle all K2 patterns together
|
||||||
bpe_offsets = unicode_regex_split_custom_kimi_k2(text, offsets);
|
bpe_offsets = unicode_regex_split_custom_kimi_k2(text, offsets);
|
||||||
|
} else if (regex_expr == "\\p{AFMoE_digits}") {
|
||||||
|
// AFMOE digit pattern - use custom implementation for proper splitting
|
||||||
|
bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets);
|
||||||
}
|
}
|
||||||
|
|
||||||
return bpe_offsets;
|
return bpe_offsets;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue