#include "models.h" llm_build_granite::llm_build_granite( const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // inp_pos - built only if rope enabled ggml_tensor * inp_pos = nullptr; if (hparams.rope_finetuned) { inp_pos = build_inp_pos(); } auto * inp_attn = build_attn_inp_kv(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention cur = build_attention_layer( cur, inp_pos, inp_attn, model, n_embd_head, il); if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // ffn cur = build_layer_ffn(cur, inpSA, model, il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); // For Granite architectures - scale logits cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } ggml_tensor * llm_build_granite::build_attention_layer( ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn, const llama_model & model, const int64_t n_embd_head, const int il) { // compute Q and K and (optionally) RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); const bool use_rope = hparams.rope_finetuned; if (use_rope) { ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); return cur; } ggml_tensor * llm_build_granite::build_layer_ffn( ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il) { // For Granite architectures - scale residual if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network (non-MoE) if (model.layers[il].ffn_gate_inp == nullptr) { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { // MoE branch cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); cb(moe_out, "ffn_moe_out", il); // For Granite MoE Shared if (hparams.n_ff_shexp > 0) { ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } else { cur = moe_out; } } // For Granite architectures - scale residual if (hparams.f_residual_scale) { cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); return cur; }