#include "models.h" llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { ggml_tensor * cur; ggml_tensor * inpL; // {n_embd, n_tokens} inpL = build_inp_embd(model.tok_embd); auto * rs_inp = build_rs_inp(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); if (model.arch == LLM_ARCH_MAMBA2) { cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il); } else { cur = build_mamba_layer(rs_inp, cur, model, ubatch, il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // residual cur = ggml_add(ctx0, cur, inpL); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } // final rmsnorm cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }