#include "models.h" llm_build_t5_enc::llm_build_t5_enc(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc(); auto * inp_attn = build_attn_inp_no_cache(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm_enc, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc; ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b); cur = build_attn(inp_attn, model.layers[il].wo_enc, nullptr, Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il); cb(cur, "kqv_out", il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network { cur = build_norm(ffn_inp, model.layers[il].ffn_norm_enc, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // T5 uses relu, flan-T5 uses gelu-gated cur = build_ffn(cur, model.layers[il].ffn_up_enc, NULL, NULL, model.layers[il].ffn_gate_enc, NULL, NULL, model.layers[il].ffn_down_enc, NULL, NULL, NULL, model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU, model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ, il); cb(cur, "ffn_out", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cb(cur, "result_embd", -1); cur = build_norm(cur, model.output_norm_enc, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; ggml_build_forward_expand(gf, cur); }