#include "models.h" llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv(); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale; ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur_pos", il); cb(Kcur, "Kcur_pos", il); cb(Vcur, "Vcur_pos", il); cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); // feed-forward network with xIELU activation { cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // Up projection ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur); cb(up, "ffn_up", il); float alpha_n_val = hparams.xielu_alpha_n[il]; float alpha_p_val = hparams.xielu_alpha_p[il]; float beta_val = hparams.xielu_beta[il]; float eps_val = hparams.xielu_eps[il]; // Apply xIELU activation ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val); cb(activated, "ffn_xielu", il); // Down projection cur = build_lora_mm(model.layers[il].ffn_down, activated); cb(cur, "ffn_down", il); } cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }