#include "models.h" llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; float kq_scale = 1.0f / sqrtf(float(n_embd_head)); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_rot); ggml_tensor *inpL, *cur; inpL = build_inp_embd(model.tok_embd); ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv(); // check ubatch to see if we have input tokens (text) // or an input embedding vector (image) bool is_text; if (ubatch.token) { is_text = true; } else { is_text = false; } for (int il = 0; il < n_layer; ++il) { // get either the text or image weight tensors ggml_tensor *wqkv, *wo; ggml_tensor *ffn_gate, *ffn_down, *ffn_up; if (is_text) { wqkv = model.layers[il].wqkv; wo = model.layers[il].wo; ffn_gate = model.layers[il].ffn_gate; ffn_down = model.layers[il].ffn_down; ffn_up = model.layers[il].ffn_up; } else { wqkv = model.layers[il].visexp_attn_wqkv; wo = model.layers[il].visexp_attn_wo; ffn_gate = model.layers[il].visexp_ffn_gate; ffn_down = model.layers[il].visexp_ffn_down; ffn_up = model.layers[il].visexp_ffn_up; } ggml_tensor * inpSA = inpL; cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); // build self attention { ggml_tensor * qkv = build_lora_mm(wqkv, cur); // split qkv into Q, K, V along the first dimension ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0); ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], n_embd * ggml_element_size(qkv)); ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 2 * n_embd * ggml_element_size(qkv)); Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type); Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type); cur = build_attn(inp_attn, wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, ffn_up, NULL, NULL, ffn_gate, NULL, NULL, ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }