#include "models.h" template llm_build_gemma3::llm_build_gemma3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_k; ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings) if (ubatch.token) { inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); } // inp_pos - contains the positions ggml_tensor * inp_pos = build_inp_pos(); // TODO: is causal == true correct? might need some changes using inp_attn_type = std::conditional_t; inp_attn_type * inp_attn = nullptr; if constexpr (iswa) { inp_attn = build_attn_inp_kv_iswa(); } else { inp_attn = build_attn_inp_kv(); } ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { float freq_base_l = 0.0f; float freq_scale_l = 0.0f; if constexpr (iswa) { freq_base_l = model.get_rope_freq_base (cparams, il); freq_scale_l = model.get_rope_freq_scale(cparams, il); } else { freq_base_l = freq_base; freq_scale_l = freq_scale; } // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self-attention { // compute Q and K and RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); cb(Qcur, "Qcur_normed", il); Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); cb(Kcur, "Kcur_normed", il); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315 Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale); cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); cb(sa_out, "sa_out", il); cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); // feed-forward network { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GELU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "ffn_post_norm", il); cur = ggml_add(ctx0, cur, sa_out); cur = build_cvec(cur, il); cb(cur, "l_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); if (hparams.f_final_logit_softcapping) { cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping); cur = ggml_tanh(ctx0, cur); cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping); } cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } template struct llm_build_gemma3; template struct llm_build_gemma3;