#include "models.h" llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { const int64_t n_embd_head = hparams.n_embd_head_v; GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_build_forward_expand(gf, inpL); auto * inp = build_inp_mem_hybrid(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; // norm cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); if (hparams.is_recurrent(il)) { // ssm layer // cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il); } else if (hparams.n_ff(il) == 0) { // attention layer // cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il); } else { cur = build_ffn_layer(cur, model, il); } if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } // add residual cur = ggml_add(ctx0, cur, inpSA); cb(cur, "nemotron_h_block_out", il); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; // lm_head cur = build_lora_mm(model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); } ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn, const llama_model & model, const int64_t n_embd_head, const int il) { // compute Q and K and (optionally) RoPE them ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); cb(Qcur, "Qcur", il); if (model.layers[il].bq) { Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); cb(Qcur, "Qcur", il); } ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); cb(Kcur, "Kcur", il); if (model.layers[il].bk) { Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); cb(Kcur, "Kcur", il); } ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); cb(Vcur, "Vcur", il); if (model.layers[il].bv) { Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); cb(Vcur, "Vcur", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens); Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens); Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale; cur = build_attn(inp_attn, model.layers[il].wo, model.layers[il].bo, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); cb(cur, "attn_out", il); return cur; } ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) { if (model.layers[il].ffn_gate_inp == nullptr) { cur = build_ffn(cur, model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { ggml_tensor * ffn_inp = cur; ggml_tensor * moe_out = build_moe_ffn(ffn_inp, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr, // no gate model.layers[il].ffn_down_exps, model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_RELU_SQR, hparams.expert_weights_norm, true, hparams.expert_weights_scale, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il); cb(moe_out, "ffn_moe_out", il); ggml_tensor * ffn_shexp = build_ffn(ffn_inp, model.layers[il].ffn_up_shexp, NULL, NULL, NULL /* no gate */ , NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_RELU_SQR, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } cur = build_cvec(cur, il); cb(cur, "l_out", il); return cur; }